

Omics Playground

User-friendly, cloud-based platform for no-code visualization and analysis of transcriptomics, proteomics, and multi-omics data.

https://bigomics.ch/

Overview

Omics Playground, developed by BigOmics Analytics, is a comprehensive, self-service analytics platform designed to democratize the visualization, analysis, and exploration of Big Omics Data. It is specifically built for both biologists and bioinformaticians, allowing non-coders to perform state-of-the-art analysis on data types including RNA-Seq, scRNA-seq, microarray, proteomics, and metabolomics, without needing to write code. The platform is structured to be highly efficient, with an offline data preprocessing component that handles filtering, normalization, and precomputing of statistics to enable real-time visualization and interaction on the online interface.

Key Benefits and Capabilities:

No-Code Analysis: Enables life scientists to accelerate their discovery process and analyze data up to 10x faster, reducing the reliance on bioinformaticians for routine tasks. **Comprehensive Modules:** Offers more than 18 interactive analysis modules and 150+ interactive plots.

Multi-Omics Support: Features advanced multi-omics analysis capabilities (e.g., using MOFA, MixOmics, and Deep Learning) to integrate and interpret data from different omics layers.

Robust Results: Utilizes best-in-class methods and algorithms, ensuring robust and reproducible results.

Collaboration: Supports effortless data sharing for seamless collaboration between teams.

Target Users and Use Cases:

Target Users: Biologists, Life Scientists, Bioinformaticians, and Managers/PIs in academic labs and the life science industry (biotech/pharma).

Use Cases: Differential expression analysis, biomarker discovery, pathway and gene set enrichment analysis (GSEA), drug connectivity analysis, comparative analysis with public datasets, and quality checking of omics data.

Key Features

- RNA-Seg and Proteomics Data Analysis
- Multi-Omics Data Integration (MOFA, MixOmics, Deep Learning)
- Differential Expression and Enrichment Analysis (GSEA, Pathway Analysis)
- Clustering Analysis (PCA, t-SNE, UMAP, Heatmap)
- Biomarker Discovery and Correlation Analysis
- Drug Connectivity and Drug Sensitivity Analysis
- Access to 6,000+ Public Datasets
- User-friendly, No-Code Interface

Pricing

Model: freemium

Offers a free 'Trial' tier with limited functionality (e.g., 1 user, 4 datasets, 20 samples/dataset) and tiered subscription plans (Small, Medium, Large, Pro, Enterprise, Ultimate) with increasing limits on users, comparisons, and features. Enterprise and Ultimate tiers offer custom features like on-premise deployment and SSO. Contact BigOmics Analytics for specific pricing on paid tiers.

Target Company Size: startup, small, medium, enterprise

Integrations

GEO Database (6,000+ experiments), Gene Ontology (GO), Reactome, Hallmark Gene Sets, MSigDB, Drug Connectivity Databases

This document was generated	by IntuitionLabs.ai with the assistance of Al. While we strive for accuracy, please verify critical information independently.