MIM Theranostics Solutions

Vendor-neutral, Al-driven software suite for molecular radiotherapy (MRT) dosimetry and theranostics treatment planning.

https://example.com/1762583716453

Overview

MIM Theranostics Solutions, anchored by **MIM SurePlan MRT**, is a comprehensive, vendor-neutral software suite developed by MIM Software (a GE HealthCare Company) for the entire Theranostics pathway. It is designed to automate and standardize complex radiopharmaceutical therapy (RPT) dosimetry, turning a traditionally slow, manual process into an efficient, clinically realistic workflow.

Key Capabilities and Features

The core of the solution is its ability to perform high-precision, patient-specific dosimetry using the patient's own anatomy. Key features include:

Al-Driven Automation: Features like Contour ProtégéAl™ enable zero-click, Al-driven auto-segmentation of organs-at-risk and tumors, significantly reducing manual effort and inter-user variability. Advanced Dosimetry: Supports accurate single-time-point and multiple-time-point dosimetry, including the gold-standard Monte Carlo dosimetry (via the Dose Planning Method - DPM) on existing hospital hardware (CPU-based, no dedicated GPU required).

Vendor-Neutral Reconstruction: Provides vendor-neutral quantitative SPECT reconstruction (e.g., using SPECTRA Quant™) and planar corrections, allowing standardization across different camera manufacturers.

Image Alignment: Utilizes multi-modality rigid and deformable alignment to propagate volumes of interest (VOIs) between timepoints and modalities with minimal adjustment.

Integrated Reporting: Generates integrated, customizable dosimetry reports, including dose-volume histograms (DVH) and dose maps, to communicate treatment course and statistics to referring physicians and patients.

Multi-Tracer Support: Supports dosimetry for numerous SPECT and PET isotopes, including FDA-approved therapies like Lu-177 and I-131, as well as additional radionuclides for research.

Target Users and Use Cases

The software is used by medical physicists, nuclear medicine physicians, and oncologists in hospitals, cancer centers, and integrated delivery networks globally. Its primary use cases are:

Molecular Radiotherapy (MRT) Dosimetry: Providing accurate, personalized absorbed dose measurements for RPT treatments.

Theranostics Treatment Planning: Aiding in the planning, monitoring, and dose accumulation across multi-cycle theranostics protocols.

Clinical Workflow Standardization: Automating complex image processing and dose calculation to maximize efficiency and ensure consistent quality across a health system.

Key Features

- AI-Driven Auto-Segmentation (Contour ProtégéAI™)
- Monte Carlo Dosimetry (DPM) on existing hardware
- Vendor-Neutral Quantitative SPECT Reconstruction
- Voxel-Based Patient-Specific Absorbed Dose Calculation
- Integrated and Customizable Dosimetry Reporting
- Multi-Modality Rigid and Deformable Alignment
- Dose Accumulation Across Therapy Cycles
- Support for Lu-177, I-131, and other radionuclides

Pricing

Model: enterprise

Pricing is not publicly disclosed; the solution is sold on an enterprise licensing model, typically involving a quote from the vendor.

Target Company Size: medium, enterprise

Integrations

DICOM, DICOM RT, HL7, FHIR, OIS (Oncology Information Systems), SPECT/PET Cameras (Vendor-Neutral)

Compliance & Certifications

FDA 510(k), CE Mark, SOC 2 Type 2, GDPR

This document was generated by IntuitionLabs.ai with the assistance of AI. While we strive for accuracy, please verify critical information independently.