MIM SurePlan MRT

Automated, vendor-neutral dosimetry software for molecular radiotherapy (MRT) and theranostics, featuring Al-driven segmentation and voxel-based dose calculation.

https://example.com/1762583716453

Overview

MIM SurePlan MRT is a comprehensive software solution developed by MIM Software (now a GE HealthCare Company) for Molecular Radiotherapy (MRT) dosimetry, designed to streamline and standardize the entire workflow from image acquisition to reporting. It is a vendor-neutral platform, meaning it supports quantitative SPECT reconstruction (via SPECTRA Quant™) and planar corrections on existing cameras from various vendors, helping to standardize measurements across a department.

Key Features and Capabilities

The software provides timesaving, patient-specific tools for organ and tumor segmentation, deformable registration, and voxel-based dosimetry. It performs absorbed dose calculation using the patient's own anatomy (voxel-based dosimetry), which is considered more precise than model-based methods.

Al-Driven Automation: Features "zero-click" Al-driven auto-segmentation (Contour ProtégéAl™) for normal structures (like liver and kidneys) and tumors, significantly reducing manual effort and inter-user variability.

Patient-Specific Dosimetry: Calculates absorbed dose using the Voxel S-Value (VSV) schema in MIRD Pamphlet No. 17, providing dose maps and Dose-Volume Histograms (DVH) for analysis.

Multi-Isotope Support: Supports FDA-cleared and CE-marked therapies for Lu-177 and I-131, as well as numerous other radionuclides (e.g., I-123, Cu-64, Y-90, Ac-225) for research and clinical use.

Dose Accumulation: Tracks and accumulates dose and volume changes across multiple therapy cycles.

Integrated Reporting: Offers customizable reporting solutions that incorporate images, statistics, and DVH curves for referring physicians and patients.

Dosimetry Techniques: Supports both Single-Time-Point and Multiple-Time-Point dosimetry for flexible workflow.

Target Users and Use Cases

MIM SurePlan MRT is primarily used by medical physicists, nuclear medicine physicians, and oncologists in hospitals and leading theranostics centers. Its main use cases include:

Molecular Radiotherapy (MRT) Dosimetry: Providing accurate, personalized absorbed dose measurements for RPT treatments.

Theranostics Treatment Planning: Aiding in the planning and monitoring of multi-tracer theranostics protocols.

Clinical Workflow Standardization: Automating and standardizing complex dosimetry processes to maximize efficiency and clinical value.

Key Features

- Voxel-based Patient-Specific Dosimetry
- AI-Driven Auto-Segmentation (Contour ProtégéAI™)
- Vendor-Neutral Quantitative SPECT Reconstruction
- Multi-Modality Rigid and Deformable Alignment
- Integrated and Customizable Dosimetry Reporting
- Dose Accumulation Across Therapy Cycles

Pricing

Model: enterprise

Contact vendor for a quote. Standard enterprise licensing model for hospitals and specialized centers.

Target Company Size: medium, enterprise

Integrations

Vendor-Neutral SPECT/PET Cameras, MIM Maestro, MIM Encore, MIM LesionID Pro

Compliance & Certifications

FDA 510(k), CE Mark, SOC 2 Type 2, GDPR

This document was generated by IntuitionLabs.ai with the assistance of AI. While we strive for accuracy, please verify critical information independently.