

Abbott Alinity

A harmonized family of next-generation, high-throughput diagnostic systems for clinical chemistry, immunoassay, hematology, molecular, and point-of-care testing.

https://www.corelaboratory.abbott/

Overview

The Abbott Alinity family is a suite of next-generation diagnostic systems designed to simplify laboratory operations, standardize workflows, and improve efficiency in high-volume clinical settings. The system is characterized by its **harmonized design**, featuring a common software interface, iconography, and operational procedures across different disciplines, including clinical chemistry (Alinity c), immunoassay (Alinity i), integrated chemistry/immunoassay (Alinity ci-series), hematology (Alinity h-series), molecular diagnostics (Alinity m), blood/plasma screening (Alinity s), and point-of-care testing (i-STAT Alinity).

Key Benefits and Features

Scalability and High Throughput: The modular design, particularly of the Alinity ci-series, allows laboratories to easily add modules and reconfigure the system as testing volumes grow, maximizing throughput per square meter due to a smaller footprint compared to previous systems. The Alinity ciseries can process up to 1,550 tests per hour.

Operational Productivity: Features like continuous access and "on-the-fly" loading of samples and reagents allow for uninterrupted testing and extended walkaway time. Dedicated STAT racks ensure urgent samples are prioritized.

User Experience: The intuitive, user-driven graphic interface and standardized design across platforms simplify training and reduce the potential for manual errors, enhancing employee satisfaction.

Digital Health Solutions (AlinIQ): The systems are supported by Abbott's AlinIQ informatics solution, which provides intelligent insights and professional services to help labs achieve greater operational and clinical excellence. The i-STAT Alinity also features secure, cloud technology for remote connectivity and management.

Assay Quality: The systems utilize high-quality assays, such as CHEMIFLEX chemiluminescent detection technology for immunoassay, which is designed to be free from biotin interference.

Target Users and Use Cases

The Alinity family is primarily targeted at **medium to enterprise-level clinical laboratories, hospital systems, and blood/plasma screening centers** that handle high-volume, complex testing. Use cases span the entire laboratory: Clinical Chemistry, Immunoassay, Hematology, Molecular Diagnostics, and Transfusion Medicine.

Key Features

- · Harmonized Systems and Software Interface
- Scalable and Modular Design (Add/Reconfigure Modules)
- High Throughput and Small Footprint
- Continuous Access / On-the-fly Reagent and Sample Loading
- Dedicated STAT Sample Prioritization
- Digital Health Solutions (AlinIQ Informatics)
- Bidirectional LIS/LIMS/EMR Connectivity
- Error-Proof Design Elements (e.g., color-coded reagents)

Pricing

Model: enterprise

The Alinity systems are capital equipment (analyzers) requiring a significant negotiated purchase or long-term reagent rental contract. Ongoing costs are primarily tied to proprietary reagents and consumables. Pricing is customized based on laboratory size, testing volume, and system configuration.

Target Company Size: medium, enterprise

Integrations

LIS (Laboratory Information System), LIMS (Laboratory Information Management System), EMR (Electronic Medical Record), Third-Party Automation Systems (Track Connectivity)

Compliance & Certifications

FDA 510(k) Clearance, CE Mark, CLSI (Clinical and Laboratory Standards Institute) Harmonization

This document was generated by IntuitionLabs.ai with the assistance of AI. While we strive for accuracy, please verify critical information independently.