

Outcomes-Based Contracts: IT & Data Challenges Explained

By Adrien Laurent, CEO at IntuitionLabs • 1/8/2026 • 50 min read

outcomes-based contracts • value-based care • drug reimbursement • health informatics • real-world evidence • healthcare data
risk-sharing agreements

Executive Summary

Outcomes-based drug reimbursement contracts – often referred to as “money-back” or performance-based agreements – aim to align payment for high-cost medicines with the **real-world health outcomes** they deliver. These arrangements require continual collection and analysis of patient data to determine whether agreed-upon clinical results are achieved. In practice, **establishing such contracts has proven extremely challenging**. Early experiments in Europe (e.g. Italy’s national health system in the mid-2000s) found that administrative costs and data barriers rendered reimbursements “trifling” and the schemes “very, very poor” in performance ([1] www.propublica.org) ([2] pmc.ncbi.nlm.nih.gov). Similarly, U.S. experience (e.g. major insurers’ recent pilot deals) suggests that tracking outcomes often collapses “under their own weight” ([3] www.propublica.org) – an insurer’s executive summed it up as “*not cost-effective*” because “the work to track patient outcomes is expensive and burdensome” ([4] www.propublica.org).

Despite these hurdles, interest in such agreements has grown amid rising drug prices and demand for value-based care. By 2022 more than half of U.S. payers reported having at least one outcomes-based contract ([5] www.techtarget.com), and industry analysts project significant future growth if operational barriers can be overcome ([6] pmc.ncbi.nlm.nih.gov). These contracts promise that payers **only pay for what works**: for example, insurers were reimbursed if patients on Merck’s diabetes drug Januvia failed to meet glucose targets, or if users of Amgen’s cholesterol drug Repatha suffered a heart attack or stroke ([7] www.propublica.org). In theory this could improve value, but **in practice the evidence of cost savings or improved outcomes is limited**. A 2017 analysis concluded there was “no evidence” outcomes contracts had yet reduced overall drug spending or improved care ([8] www.commonwealthfund.org).

Crucially, outcomes contracts **depend on complex IT and data infrastructures**. Payers, providers, and manufacturers must link individual patients’ medication use with outcomes (e.g. lab results, hospital admissions, clinical scales) across fragmented health systems. This report examines the **technological, administrative, and clinical data challenges** of outcomes-based drug deals. We review case studies (EU and US), outline required data systems (from claims databases and EHRs to registries and connected devices), and analyze evidence on what has and hasn’t worked. We highlight how interoperability standards (e.g. HL7 FHIR initiatives) and registries form essential building blocks. Finally, we discuss policy and future directions – noting that without substantial investments in healthcare data infrastructure and governance, these “money-back” schemes will remain rare novelties ([2] pmc.ncbi.nlm.nih.gov) ([9] www.techtarget.com), even as payers increasingly demand proof of value.

Introduction and Background

Prescription drug costs have surged in recent decades, straining patients and health systems worldwide. In response, a movement toward **value-based reimbursement** has emerged: shifting from paying solely by volume to paying by performance. Under traditional models, manufacturers set a list price based on **clinical trial results** (the “**trial-and-project**” model), and payers reimburse per unit with little adjustment for actual patient benefit ([10] pmc.ncbi.nlm.nih.gov) ([2] pmc.ncbi.nlm.nih.gov). In contrast, **outcomes-based contracts** tie payment to real-world outcomes. If patients fail to achieve predefined health targets, the manufacturer provides rebates or refunds – effectively a “money-back guarantee.”

These contracts go by many names (value-based agreements, managed entry agreements, risk-sharing agreements). Common examples include **performance guarantees** and **payment-by-results** contracts. They typically specify: **target population**, **outcome metrics** (e.g. HbA1c level, avoided hospitalization), and **financial adjustments** (rebates or reduced prices) triggered if outcomes fall short. For instance, under such a deal, a health plan might pay full price only if, say, 80% of patients on a diabetes drug reach a glucose target; otherwise the manufacturer refunds part of the cost ([11] www.commonwealthfund.org).

Interest in these arrangements has grown at global policy levels. As a recent analysis noted, during the 2010s “a number of drug companies have recently entered into” outcomes-based arrangements ([7] www.propublica.org), and even U.S. policymakers (e.g. the 2017 Trump-era drug pricing task force) explicitly considered promoting money-back schemes ([12] www.propublica.org). Pharmaceutical leaders argue that paying for outcomes, *not pills* aligns with scientific progress and patient welfare ([13] www.propublica.org) ([14] www.pharmasources.com). However, others view the hype skeptically: critics in the press have called it a “carnival game” where manufacturers still win ([15] www.propublica.org), and experts warn that unless schemes challenge list prices or regulations, they offer little net benefit ([16] www.propublica.org) ([17] www.propublica.org).

The principal difference is that **outcomes-based contracts require robust patient monitoring**. Unlike a standard sale, they demand tracking each treated patient’s response. This often involves linking data from **pharmacy claims**, **medical claims**, **laboratory systems**, **electronic health records (EHRs)**, and even patient surveys or devices. Achieving this linkage is nontrivial: **health data are siloed** across providers, insurers, and pharmacies. Moreover, differences in coding standards and privacy rules between systems further complicate matters ([18] pmc.ncbi.nlm.nih.gov) ([19] pmc.ncbi.nlm.nih.gov). Thus, while the **concept** of “paying only for what works” is appealing, the **implementation** depends on sophisticated IT pipelines.

This report explores **how such IT systems must function**, the obstacles encountered, and what the evidence shows. We proceed as follows: First, we review historical and recent case studies of outcomes-based deals globally. Next we dissect the **data and technical requirements**: what information must be collected, how it is processed, and what platforms or standards are used. We then present evidence on costs, benefits, and stakeholder experiences. Finally, we discuss implications and future needs for making these models viable. Throughout, we draw on academic studies, industry reports, and news investigations, emphasizing data and citations.

Outcomes-Based Contracts: Definitions and Examples

Outcomes-based pharmaceutical contracts are structured so that the final payment depends on patient-level results in routine care. As a Commonwealth Fund brief explains, these contracts are “the functional equivalent of tiered pricing or rebate structures” ([11] www.commonwealthfund.org): if agreed thresholds of response are met, the payer pays the full price; if not, the manufacturer refunds part of the cost. This generally obliges the payer to analyze real-world data to verify performance.

Two broad models exist:

- **Performance guarantees or refunds.** Manufacturers refund money for each patient not meeting the target. For example, Pfizer in the UK once rebated local payers if statin patients did not reach LDL-cholesterol goals (eur-lex.europa.eu). Merck arranged with U.S. insurers (e.g. Aetna) to **refund** payments on its diabetes drugs Januvia and Janumet if patients’ blood glucose remained uncontrolled ([7] www.propublica.org). Novartis similarly agreed to reimburse U.S. plans if too many patients on its heart-failure drug Entresto were hospitalized ([20] www.propublica.org). Italy’s national system had “*payments by results*” deals: drugmakers would repay portions of their fees when patients failed clinical benchmarks ([21] www.propublica.org) ([1] www.propublica.org).

- **Conditional reimbursements or annuities.** Especially for very high-cost gene or cell therapies, manufacturers may require staggered payments or withholding part of the price until confirming long-term benefit. For example, Novartis is implementing five-year payment plans for Zolgensma (a \$2.1M gene therapy for SMA) such that most payments only come if the patient remains alive or improves over five years ([22] www.forbes.com). Spark Therapeutics' Luxturna (a \$425K gene therapy for blindness) was sold under a contract (with Harvard Pilgrim Health) that allows refunds if patients lose vision benefits ([23] www.forbes.com). In thalassemia, Bluebird Bio planned a five-year plan for LentiGlobin, with up to 80% of the payment contingent on achieving transfusion independence; "success would then be measured and tracked in patient registries maintained by payers" ([24] www.forbes.com).

Table 1 (below) summarizes key differences between traditional reimbursement and outcomes-based contracts. By construction, outcomes-based deals shift **some financial risk** back to the manufacturer and require ongoing verification of outcomes:

Characteristic	Traditional Reimbursement	Outcomes-Based Contracting
Payment trigger	Based on ex-ante clinical trial results; fixed price.	Tied to real-world outcomes (pre-agreed endpoints); pay-if-success.
Data sources for payment	Usually claims (for transaction) and clinical trials (for price-setting).	Real-world data: claims, EHR, registries, labs, device data.
Payment adjustments	Rare; rebates usually volume-based or for formulary.	Rebate/refund if outcome targets unmet ([11] www.commonwealthfund.org).
Risk-sharing	Payer bears risk if effectiveness lower than hoped.	Shared: manufacturer refunds for low effectiveness ([2] pmc.ncbi.nlm.nih.gov).
Administration complexity	Relatively low (standard claims processing).	High: requires tracking each patient, data integration, and audits.
Implementation status	Widespread, mature systems.	Early-stage; scattered pilots; heavy coordination required.

Table 1. Comparison of traditional vs. outcomes-based drug reimbursement frameworks (adapted from Commonwealth Fund and other sources ([11] www.commonwealthfund.org) ([2] pmc.ncbi.nlm.nih.gov)). Outcomes-based schemes demand extensive patient-level data flows and complex administration, whereas traditional models do not evaluate post-marketing outcomes.

Real-World Examples

Europe's Early Schemes. European countries first experimented with outcome-based deals in the late 1990s and 2000s. For instance, Italy's Medicines Agency (AIFA) made a series of **risk-sharing agreements** in which patient registries tracked treatment success. A 2015 evaluation of Italy's flagship scheme reported that company refunds were "trifling" and the system's performance "very, very poor," largely because doctors and administrators struggled with the required data tracking ([1] www.propublica.org). Italy eventually replaced many of these with "success fee" schemes where payment is withheld until benefit is demonstrated ([25] www.propublica.org). Likewise, the UK's National Health Service ran a **10-year MS risk-sharing program** for interferon and glatiramer but found it unworkable – after prolonged data collection and disputes the program was viewed as a failure ([26] pmc.ncbi.nlm.nih.gov).

Across Europe, outcomes deals remain uncommon. Bohm et al. (2021) report that **uptake has been limited**, with Italy and Spain leading the few projects, whereas the UK and many countries revert to conventional discounts ([27] pmc.ncbi.nlm.nih.gov). In Germany, a few contracts were struck in the 2000s: for example, insurer DAK made a **performance guarantee** with Novartis to cover immunosuppressants (post-transplant drugs) – the payer would be reimbursed if a patient lost a transplanted kidney (eur-lex.europa.eu). Similarly, Barmer had a money-back deal on zoledronic acid (Aclasta) for osteoporosis: if a patient fractured, the drugmaker refunded the cost (eur-lex.europa.eu). The UK has seen several government agreements: Pfizer once agreed to rebate if cholesterol control goals were missed (eur-lex.europa.eu), and Merck agreed to reimburse the NHS for every vial of Erbitux (cetuximab) used in colorectal cancer patients who did not show a response at six weeks (eur-lex.europa.eu). Another J&J/Velcade deal refunded treatment costs for multiple myeloma patients who failed to respond after four cycles (eur-lex.europa.eu). In these European examples, **the outcome measures were relatively concrete** (e.g. organ transplant survival, fracture occurrence, tumor response). Nevertheless, even in these simpler contexts the data collection burden was heavy.

United States Pilots. In the U.S., outcomes-based drug contracts remain mostly confined to some private insurers and Pharmacy Benefit Managers, often undisclosed. A 2017 stakeholder survey identified **25+ publicized deals** (heart disease, diabetes, osteoporosis, MS, MSK, hepatitis C, cancer) ([28] www.commonwealthfund.org). Well-publicized cases include:

- **PCSK9 inhibitors (cholesterol drugs):** In 2016–17, Amgen made deals for Repatha (evolocumab) with insurers like Harvard Pilgrim and Cigna. Insurers received upfront discounts and additional rebates tied to patient outcomes. For example, one contract offered a full refund to the insurer if a patient taking Repatha suffered a heart attack or stroke, even though only a small percentage (5% or less) were expected to have such events ([29] www.commonwealthfund.org) ([30] www.commonwealthfund.org). Other Repatha deals measured LDL-cholesterol reduction; insurers agreed to cover the drug as long as patients achieved trial-quality LDL drops, or refunded if not ([29] www.commonwealthfund.org). These arrangements required insurers to obtain lab results (LDL levels) from patient records – a non-trivial data task ([31] www.commonwealthfund.org) (see Data Systems below).
- **Heart Failure (Entresto):** Novartis negotiated with U.S. insurers (Harvard Pilgrim, Cigna, Aetna) on Entresto. Under these deals, Novartis agreed to provide extra rebates if patients on Entresto had higher-than-expected hospitalization rates for heart failure ([32] www.commonwealthfund.org). In return, insurers lowered barriers to patient access (faster formulary placement). Tracking these outcomes demanded linking pharmacy claims, admissions records, and possibly EHR data for each patient.
- **Diabetes (Januvia/Janumet):** In 2016, Aetna and Merck announced a value-based contract on Merck's Januvia. They agreed to monitor patients' blood sugar levels and outcomes; if patients failed to meet agreed A1c targets, Merck would refund a portion of costs ([33] www.ajmc.com). The contract also included a wellness program leveraging predictive analytics – for instance, Merck's "Adherence Estimator" tool identified patients at risk for poor adherence, and even integrated glucometer readings via **cloud platforms** to track glucose levels in real time ([34] www.ajmc.com) ([35] www.ajmc.com). These innovations illustrate the **IT intensity** of modern deals – using advanced analytics and connected devices to support outcome measurement.
- **Gene Therapies:** The EUA of one-time "cures" has spurred novel contracting. Spark's Luxturna (for pediatric blindness), priced at \$425K per eye, was bundled into an outcomes contract with Harvard Pilgrim: the payer would pay only if vision improvements were sustained – otherwise Spark refunds (capped by Medicaid pricing rules at 23.1%) ([23] www.forbes.com). Novartis structured its Zolgensma (SMA gene therapy, \$2.1M) under a pay-over-time with outcomes: insurers pay over five years and receive refunds if the child does not survive or achieve motor milestones in that period ([22] www.forbes.com). Biotech Bluebird Bio aimed to do the same for LentiGlobin (thalassemia): initial cost is refunded unless patients remain transfusion-free. In these examples, **patient registries** become critical: outcomes (survival, functional gains, transfusion needs) must be tracked longitudinally ([24] www.forbes.com).

- **Other Disease-Modifying Drugs:** Numerous high-cost specialty drugs have been tied to performance deals in the U.S. For example, outcomes-based rebates have been reported for hepatitis C therapies and oncology drugs (e.g. Hepatitis C cure rates, survival). Gilead and UHC in 2015 struck a deal on Harvoni (HCV) where missed cure rates triggered rebates, although details remain opaque. A 2017 survey found "significant challenges in OBC operationalization," but also that both payers and manufacturers see them as offering potential value ^[36] pmc.ncbi.nlm.nih.gov ^[16] pmc.ncbi.nlm.nih.gov.

The evidence so far is mixed. While manufacturers tout patient access improvements, **independent analyses remain skeptical**. A Commonwealth Fund issue brief reviewed outcomes contracts in the U.S. and concluded that their power to cut spending is "questionable." It warned that such deals are limited to a small set of drugs and that hard metrics for success are lacking ^[18] www.commonwealthfund.org. Similarly, journalists have noted that many announced contracts generate little public follow-up – as one analyst quipped, companies consider *all* outcomes-based deals to be wins for themselves ^[19] www.propublica.org. (Importantly, manufacturers still set high list prices and cede only limited rebates.) Many industry observers call these arrangements more *symbolic* than substantive, unless marketplace or policy changes force broader pricing reforms ^[17] www.propublica.org.

Nonetheless, interest remains high. A 2023 survey by Avalere found **58% of U.S. payers** had at least one outcomes contract on the books ^[5] www.techtarget.com, up sharply from previous years. Over **35% of payers** reported having more than ten such contracts ^[5] www.techtarget.com. Concern for data limitations persists: 74% of payers said they *want* both clinical and claims-based outcomes in contracts, but more than half noted that purely claims-based measures "do not accurately represent clinical benefit" ^[37] www.techtarget.com. As one summary observes, despite enthusiasm, "*operational feasibility*" remains a core hurdle to adoption ^[6] pmc.ncbi.nlm.nih.gov.

In the next sections we examine **what information and IT infrastructure underlie these deals**, why so many have faltered, and what is needed moving forward.

Data and Information Systems Requirements

At the heart of any outcomes-based drug contract is data: identifying the target patients, measuring their outcomes, and tying results back to payments. In practice this requires integrating data across multiple sources and entities. Key components include:

- **Patient Identification & Tracking.** The system must identify each patient who received the therapy and follow their clinical course. This often involves linking pharmacy dispensing data (to verify the patient filled the drug) with medical records of their healthcare encounters. In the U.S., this may require matching on names/DOB in different insurer claims or using unique patient IDs; in Europe, it may use national identifiers. Importantly, agreements often specify *which patients count* (e.g. newly treated adults under Medicare Part D), necessitating precise enrollment and eligibility logic in the IT system.
- **Outcome Measurement.** For each patient, **specific clinical outcomes must be captured**. This can be as straightforward as a lab value (e.g. HbA1c level, cholesterol reading) or as complex as a clinical event (e.g. hospitalization for heart failure, tumor response, disability score). Table 2 (below) illustrates examples of contract endpoints and the data required. In practice:
- **Surrogates vs. clinical events:** Many contracts use lab or numeric surrogates (HbA1c, LDL levels, blood counts) because raw claims data can capture labs/measurements. For example, an insurer might require access to patients' lab records to see if an A1c target is met ^[31] www.commonwealthfund.org. In contrast, major clinical events (heart attack, stroke) are captured by diagnosis codes in claims, but still must be validated.
- **Toxicity or progression:** Oncology deals often hinge on short-term response indicators (e.g. tumor shrinkage at 6 weeks eur-lex.europa.eu), requiring radiology or physician report data. Capturing imaging outcomes may demand EHR integration or registry queries.

Payer / Region	Drug (Indication)	Outcome Metric	Data Sources Needed	Notes / Source
Germany (DAK / Barmer)	Novartis – Transplant immunosuppression (Sandimmun, etc.)	Donor graft survival (no organ rejection)	Transplant registries, lab/imaging reports	Novartis would cover drug cost if patient lost kidney eur-lex.europa.eu .
Germany (DAK / Barmer)	Novartis – Osteoporosis (Aclasta)	Occurrence of osteoporotic fracture	Radiology/X-ray reports	Money-back guarantee if patient suffered a fracture eur-lex.europa.eu .
UK (NHS)	Pfizer – Statins (cholesterol)	LDL-C level target achieved	Lab results (lipid panel), claims	Rebate offset if LDL goals not met eur-lex.europa.eu .
UK (NHS)	Merck – Erbitux (colorectal cancer)	Tumor response at 6 weeks	Oncology EHR records, imaging logs	Rebate on drug cost for each non-responder eur-lex.europa.eu .
UK (NHS)	J&J – Velcade (myeloma)	Response after 4 infusions	Oncology notes, lab/diagnosis codes	J&J reimbursed for non-responders eur-lex.europa.eu (lack of response).
Italy (NHS)	(Multiple drugs, risk-sharing)	Various endpoints (e.g. MS disability measures)	National patient registries	Italy's schemes used registries; one analysis found no incentive for clinicians to update them, undermining data ^[38] pmc.ncbi.nlm.nih.gov .
USA (Harvard Pilgrim)	Amgen – Repatha (LDL-C drug)	Major CV events (MI, stroke)	Claims (hospitalizations), some lab data	Amgen agreed full refund if patient on Repatha had heart attack or stroke ^[30] www.commonwealthfund.org .
USA (Aetna/Harvard)	Merck – Januvia/Janumet (diabetes)	Glycemic control (HbA1c) or hospitalizations	Lab results, claims	Refunds if patients' diabetes "did not meet goals" ^[7] www.propublica.org ; includes use of patient glucose meters ^[39] www.ajmc.com .
USA (Harvard Pilgrim)	Novartis – Entresto (HF drug)	Heart-failure hospitalizations	Claims (admissions), EHR	Payer gets extra rebates if too many HF hospital stays occur ^[20] www.propublica.org .
USA (Spark & Harvard)	Spark – Luxturna (eye gene therapy)	Durable vision improvement (years)	Ophthalmology exam data (registry/EHR)	Payer pays, but receives refunds if Luxturna's effect "wears off" ^[23] www.forbes.com (capped by Medicaid rules).
USA (Novartis)	Novartis – Zolgensma (SMA gene therapy)	Survival / motor milestones (5-year)	Neurology follow-up, patient registry	Payment over 5 years; refunds if patient dies or fails to respond ^[22] www.forbes.com .
USA (Biotech)	Bluebird – LentiGlobin (thalassemia)	Transfusion-independence (80% of doses)	Hospital transfusion logs, lab tests	Up to 80% of cost paid only if patient achieves long-term success, verified by registries ^[24] www.forbes.com .

Table 2. Sample outcomes-based drug contracts and outcome measures. These illustrate the range of therapeutic areas and data sources. Even for relatively simple endpoints, the IT system must pull together registries, lab/EHR data, and claims to verify each patient's outcome.

In summary, the **data required** typically includes:

- **Claims data:** Medical and pharmacy claims to identify treatment initiation, patient demographics, and broad outcomes (e.g. hospitalizations or procedures via ICD codes). Claims systems are already robust, so payers often default to claims-based measures (e.g. whether a patient was re-hospitalized, or had a cardiovascular event) because they require little new IT setup ([9] www.techtarget.com).
- **Laboratory/EHR data:** Many desired metrics (A1c, LDL, blood counts) are *not* in claims. Retrieving lab values or clinical notes usually mandates additional integration. For instance, in one U.S. PCSK9 contract the insurer needed to gather patient LDL labs from disparate electronic health records – an effort described as “costly and labor-intensive” ([31] www.commonwealthfund.org). Without such clinical data, only proxy endpoints are possible.
- **Specialty registries:** In diseases like rare neuromuscular disorders, dedicated registries often serve as the outcome database. Italy’s MS risk-sharing scheme, for example, relied on a national MS registry to track patients’ disability progression. Registries can centralize data, but as noted by Bohm *et al.*, their effectiveness depends on clinician engagement – and studies found that doctors may lack incentive to keep registries updated if the institutional refund does not benefit their budget ([38] pmc.ncbi.nlm.nih.gov).
- **Patient-reported or device data:** Some programs experiment with digital health tools. In the Aetna–Merck diabetes deal, real-time patient monitoring (connected glucometers, smartphones) and predictive analytics were explicitly incorporated ([34] www.ajmc.com) ([35] www.ajmc.com). Such data streams are promising but require infrastructure to capture, secure, and analyze.

Overall, this web of data sources demands a **healthcare data ecosystem** that spans insurers, providers, pharmacies, and patients. Unlinking siloed data (often on incompatible platforms) is the first technical hurdle. According to Eichler *et al.*, successful “track-and-pay” frameworks completely depend on “an adequate data infrastructure that enables generation of robust, actionable clinical data” ([2] pmc.ncbi.nlm.nih.gov). Without such infrastructure – including access governance and consent mechanisms – these contracts cannot be executed reliably.

Challenges in Implementation

Implementing an entire tracking system for outcomes-based contracts encounters a web of interrelated challenges. We group them here into **(1) Data Infrastructure and Privacy, (2) Administrative and Workflow Burden, and (3) Legal/Regulatory Issues**. (Bohm *et al.* provide a similar high-level taxonomy ([40] pmc.ncbi.nlm.nih.gov.)

1. Data Infrastructure & Privacy

The foremost challenge is **building and integrating the data pipelines** needed to collect outcomes for each patient. In nearly every country, healthcare data are decentralized across multiple systems. Bohm *et al.* note that “decentralized healthcare systems often have their own data infrastructure, making it technically challenging to share patient information between systems” ([18] pmc.ncbi.nlm.nih.gov). Even a national system like the NHS in the UK remains “fractured,” as they describe, meaning trackers must bridge numerous disconnected EHRs and registries ([18] pmc.ncbi.nlm.nih.gov). In the U.S., the task is even more daunting: multiple insurers, providers, and pharmacies each hold pieces of the puzzle.

Key technical issues include:

- **Interoperability:** Systems must essentially speak the same language. Real-world implementations are turning to standards like HL7 FHIR to enable exchange of performance reports. The HL7 *DaVinci* initiative, for example, has published a Value-Based Performance Reporting guide to help health plans share quality and outcome data with providers ([41] build.fhir.org). Other efforts define specific code sets (e.g. FHIR “ValueSet-payment-outcome”) to standardize outcome variables ([42] build.fhir.org). However, adoption of these standards is still patchy in practice, so many payers resort to custom interfaces or manual data uploads.
- **Data Quality and Completeness:** The data must be timely and accurate. As clinical pharmaco-economists emphasize, patient-level outcomes often degrade data quality, because one must move beyond aggregate averages to each individual’s trajectory ([43] pmc.ncbi.nlm.nih.gov). Missing data is a constant risk: if a patient’s outcome event (e.g. a lab result) is not captured in the electronic system, the contract calculation breaks down. Ensuring near-complete data capture is very resource-intensive. Even in well-run setups, payers have reported difficulties: one study found that 47% of eligible rebates were **never claimed** in some NHS hospitals, simply because the follow-up data or claims were not processed ([38] pmc.ncbi.nlm.nih.gov). In Italy, researchers observed an “incentivisation gap”: doctors had no reward to finalize registry entries or submit refund claims, so the system perpetually missed reimbursements ([38] pmc.ncbi.nlm.nih.gov).
- **Data Privacy & Governance:** Outcomes contracts require handling of personal health information (PHI). In Europe, contracts must comply with GDPR and related codes of conduct ([19] pmc.ncbi.nlm.nih.gov). Unique patient identifiers, consent (especially in follow-up studies), and data ownership issues must all be addressed upfront. Decisions about data de-identification vs. patient-level tracking directly affect the feasibility of the scheme. If outcomes are measured in the aggregate (e.g. population-level surrogate metrics), privacy is simpler, but most contracts rely on *individual patient outcomes*, which require identifiable data ([19] pmc.ncbi.nlm.nih.gov). The literature notes these hurdles: for instance, one thematic analysis warns that requiring individual patient data in a contract adds “higher regulatory burden” compared to population aggregates ([19] pmc.ncbi.nlm.nih.gov). Complex safeguards (encryption, audits, patient communications) are needed, further raising costs. ([19] pmc.ncbi.nlm.nih.gov)
- **Third-Party Data Coordination:** Some analysts argue for an independent data custodian or third-party to handle outcome verification ([44] pmc.ncbi.nlm.nih.gov). By standardizing formats and auditing results outside of the stakeholders, such an approach could mitigate bias (e.g. concerns that a manufacturer-dominated process might skew results). Bohm *et al.* note that trusted intermediaries, common data formats, and shared registries are recommended to address transparency and bias ([45] pmc.ncbi.nlm.nih.gov). However, establishing such neutral platforms itself requires infrastructure investment and agreement by all parties.

In summary, creating the IT backbone for outcomes contracts is a **major technical undertaking**. It involves data modeling, new extract-transform-load (ETL) pipelines, possibly cloud and analytics platforms, and staff with IT and clinical expertise. As one commentator put it, building these systems is not a footstep process: it requires a “fundamentally different approach” and fundamentally new capabilities ([40] pmc.ncbi.nlm.nih.gov) ([2] pmc.ncbi.nlm.nih.gov).

2. Administration and Workflow Burden

Even with robust data infrastructure, the **administrative workload** of an outcomes-based contract is heavy compared to conventional reimbursement. Every contract entails defining outcome criteria, negotiating thresholds, coding those rules into software, and establishing processes for monitoring. Staff must be trained across multiple disciplines (finance, IT, clinical, legal) to manage the program end-to-end. In practice:

- **Operational Complexity:** A JMC study of industry and payer stakeholders found that “operational feasibility” was a significant hurdle for outcomes contracts ([6] pmc.ncbi.nlm.nih.gov). At launch, contracts generate much activity: communicating protocols to providers, obtaining informed consent for data use if needed, and setting up reporting channels. But maintenance is onerous. For each patient, one must collect follow-up data, adjudicate whether the outcome was met, and compute any rebates. This often falls outside routine billing workflows and may require custom processes. If disputes arise (e.g. disagreement on whether an outcome truly occurred), lawyers and

clinicians may need to arbitrate. Such human and process burdens drive up transaction costs. One rough estimate interviewed in the literature is that **staff costs** for a single outcomes contract may rival any financial rebate the deal ultimately delivers. For example, a Prime Therapeutics executive bluntly noted at an industry conference that many of these deals "are not cost-effective" because the monitoring needs outweigh the financial returns (^[4] www.propublica.org).

- **Inefficiencies and Lost Rebates:** As noted above, hospitals and clinics often fail to claim the rebates they are entitled to. The UK study found that nearly half of potential refunds were left unclaimed in one program (^[38] pmc.ncbi.nlm.nih.gov). This reflects fragmented responsibility: the decision to prescribe a drug (and thus enter a patient into an outcomes contract) may lie with a specialist, while managing the rebate claim involves pharmacy or finance departments. If incentives are not aligned, steps fall through. Additionally, the **delayed nature of outcomes** can complicate budgeting and accrual: if rebates are only determined years after treatment, payers and governments face accounting and cash-flow challenges (^[46] pmc.ncbi.nlm.nih.gov). Fiscal authorities may be reluctant to accept such uncertain future liabilities.
- **Standardization Difficulties:** Contracts often lack standard templates. Each drug and payer negotiate bespoke terms. There is no universally accepted protocol, making scaling difficult. Efforts to categorize and taxonomize these deals (e.g. by Wenzl & Taranto) underscore the variety: some are purely financial with no outcome monitoring, others focus on single measures, and still others combine clinical and utilization metrics. This variety means health plans and pharmacies must tailor IT systems to each contract's logic, rather than reuse a single platform.
- **Provider Engagement:** Clinicians bear part of the execution burden (documenting outcomes, verifying adherence). But if their incentives don't align, compliance suffers. For example, Italy's story illustrates this well: researchers observed that doctors often failed to update patient registries or file claims because "the money to be refunded does not go to the prescribing cost centre" (^[38] pmc.ncbi.nlm.nih.gov). In other words, if a doctor's department sees no direct funding for meeting the outcome, the bureaucratic work is deprioritized. This "incentivisation gap" is a systemic hurdle. Meaningful results-based contracts likely need workflows that engage providers (perhaps sharing part of the savings, or feeding results back into clinical quality programs) to succeed.

In sum, the **human and organizational costs** of these programs are substantial. They go far beyond the usual claims processing. Interviews and surveys consistently emphasize that navigating and administering the contracts – not just paying the rebates – often determines success or failure (^[6] pmc.ncbi.nlm.nih.gov) (^[38] pmc.ncbi.nlm.nih.gov).

3. Legal, Regulatory, and Financial Constraints

Outcomes contracts must also navigate complex legal and regulatory environments, which **differ by country and by context**:

- **Regulatory Barriers:** In the U.S., federal laws like the Medicaid Best Price rule can inadvertently penalize outcomes deals. For example, Spark's Luxturna contract could only offer a limited 23.1% refund due to Medicaid rebate requirements (^[47] www.forbes.com), capping the manufacturer's liability. To structure more flexible deals (e.g. milestone-based annuities), some companies have lobbied for waivers or changes in federal policy (^[47] www.forbes.com) (^[22] www.forbes.com). The industry has also called for safe harbors under the Anti-Kickback Statute to allow novel payment models. On the payers' side, requiring investigators to report outcomes can conflict with privacy laws (HIPAA in the U.S., GDPR in the EU). Contracts must explicitly handle data-use agreements and any required patient consent, which can slow implementation.
- **Accounting and Budgeting Rules:** The multi-year nature of these agreements raises timing issues. As Bohn *et al.* note, payment or rebate may not occur until long after the treatment, complicating fiscal accounting (^[46] pmc.ncbi.nlm.nih.gov). For example, if a gene therapy is paid for upfront but outcomes are not evaluated until years later, the company must provision for uncertain returns. National budgets may be ill-equipped to absorb these delayed cash flows, as each year's accounting typically expects finished transactions.
- **Confidentiality:** Many deals – particularly in competitive markets – remain secret. Providers and insurers often sign nondisclosure agreements, meaning public data on effectiveness or rebate amounts is scarce. As a result, independent evaluation of contract performance is difficult. (Public reporting requirements have been suggested, but to date disclosures remain limited.)
- **International Variability:** In Europe, legal frameworks for pricing and coverage vary by country. Bohn *et al.* point out that differing laws and HTA rules hinder pan-European approaches (^[48] pmc.ncbi.nlm.nih.gov). For example, one country may allow a five-year outcome evaluation, while another caps negotiations to a year. Harmonizing these is complex. As a result, global pharma companies often have to negotiate separate IT and data setups for each country's outcomes scheme, rather than deploying a single solution.

Overall, such legal and policy factors **limit the scope** of outcomes contracts. They generally apply only in environments with flexibility (usually private markets or enlightened national payers) and to drugs that justify the extra hassle (very expensive or hard-to-predict therapies). As the Commonwealth Fund analysts observed, most drugs will never be subject to these deals because of measurement and regulatory constraints (^[49] www.commonwealthfund.org).

Data Flow and IT Architecture

Drawing on the above requirements, we can outline a generic IT system architecture for outcomes-based contracts (see Figure 1 as conceptual). The system typically involves multiple modules:

1. **Patient Eligibility and Cohort Identification:** The insurer's IT must first flag patients who have started the drug being contracted. This is often done via claims adjudication: any pharmacy claim for the drug triggers a record. Additional filters (diagnosis codes, patient age, prior therapies) may be applied.
2. **Data Integration Layer:** The core of the system is a secure data warehouse or federated query engine that links the patient cohort to outcome data. This may include:
 - **Claims DB:** Contains hospitalization or procedure codes relevant to the outcome (e.g. ICD codes for MI/stroke, hospital discharge records).
 - **EHR/Lab Systems:** Interfaces pull lab results (glucose, lipids, etc.) or physician notes. This might be done via health information exchanges or direct EHR API connections (HL7/FHIR).
 - **Specialty Registries:** Some diseases have centralized registries; patient IDs from the insurer are matched to registry entries (e.g. national MS database, transplant registry).
 - **Patient-Generated Data:** Connections to patient devices or apps are less common but may feed into the system via APIs (as in the Aetna-Merck example (^[35] www.ajmc.com)).

In practice, these data often live on **different platforms**. Thus, the system must support either a central data repository (ETL from each source) or a federated query (send requests to each system and aggregate results). Cleaning and standardizing data (country-specific codes, date formats, unit conversions) is a major ongoing task.

3. **Outcome Evaluation Engine:** Once data are consolidated, a rules engine applies the contract logic. It checks each patient's outcomes against the pre-specified targets. For instance:

- Did patient X have an A1c < target after 6 months? If yes, classify as success; if not, mark for rebate.

- Did patient Y have any hospitalization for heart failure during the year? If yes, mark for rebate. These rules must be coded precisely (for example, requiring persistence on therapy or allowing for permissible lab value ranges). Because some conditions require time-to-event analysis (e.g., 5-year survival), the engine may run periodic batch jobs (monthly, annually) to update outcomes.
- 4. **Financial Settlement Module:** The final step calculates financial adjustments (rebates) based on outcomes. This output is then fed into the payer's CRM or pharmacy finance system to collect refunds from the manufacturer (or to adjust future payments). In some cases, this involves invoicing, verifying, and reprocess claims.
- 5. **Audit and Reporting:** In parallel, the system must keep an auditable trail of all data and decisions. Contracts often stipulate external audits of performance. Thus the architecture must log everything: raw data snapshots, date/time of processing, outcome decisions, and communication with external agencies (like third-party auditors).
- 6. **Stakeholder Interface:** Finally, some user interface is usually needed. Payers and manufacturers typically meet periodically to review status; so the system may provide dashboards showing current adherence, outcomes achieved, budget impact, etc. Transparency (within confidentiality limits) helps build trust that the data are correct.

Building such a system requires expertise in healthcare IT architecture, database management, and analytics. Commercial and open-source tools (data lakes, analytics platforms, FHIR servers) can be combined, but often **custom development** is needed to implement the contract rules and workflows. Notably, the system must scale with the number of contracts and patients, since many large plans manage hundreds of thousands of members on specialty drugs.

Below is a simplified schematic of how these pieces fit together:

! [Data Flow Diagram for Outcomes-Based Contracts]
 (
 | Figure 1. Data flow in an outcomes-based contract system. Medication dispensing and patient enrollment data trigger monitoring. An integration layer aggregates claims, EHR, lab, and registry data. An outcomes engine applies contract rules to those data (e.g. "X out of Y patients must reach target") and computes any rebate. Payments/Rebates are then issued through the finance module. All steps are logged for audit. (Diagram: conceptual.)

The critical path is **data acquisition**: without automated feeds, many programs have relied on ad hoc methods (exporting spreadsheets, manual chart reviews) which are not sustainable. Recognizing this, some large-scale IT initiatives are emerging. For instance, the FDA's Sentinel Program – originally built for drug safety – now federates claims and EHR data across diverse partners ([50] [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)). Such networks demonstrate the feasibility of high-volume data linkage. Similarly, clinical research networks like PCORnet have shown how to query hospital EHR data for multi-site studies. Adapting these infrastructures for payment contracts (rather than research) is a key potential enabler.

In summary, for an effective outcomes contract the IT system must: (a) securely merge multi-source health data, (b) reliably identify each patient's end-of-contract status, and (c) apply transparent contract logic. Any gaps or errors (missed lab values, unmatched records, software bugs) can undermine the entire financial agreement. This explains why many contracts insist on "audit rights" and manual verification as safeguards.

Evidence, Lessons Learned, and Data Analysis

Despite their theoretical appeal, outcomes-based contracts have delivered **mixed results** in practice. Empirical evidence and expert commentary consistently highlight the limits:

- **Limited Cost Savings.** The amount of money recovered by payers has generally been small. Italy's program, for instance, yielded only trivial refunds relative to expenditure ([1] www.propublica.org). A systematic assessment of U.S. contracts found no observable drop in overall spending attributable to outcomes deals ([8] www.commonwealthfund.org). Part of the problem is **leakage of benefits**: manufacturers reduce list prices for whole markets gradually, and the small rebates often go to payers or PBMs rather than patients or employers, so public health savings are uncertain. Generically, experts argue that outcomes contracts *might* steer development toward drugs with clearer value, but have not yet produced major system-wide cost containment ([16] www.propublica.org) ([8] www.commonwealthfund.org).
- **Claims vs. Clinical Outcomes.** A consistent theme is the tension between **what's easy to measure and what's clinically meaningful**. A survey of U.S. payers found that the majority prefer contracts including clinical outcomes, but they acknowledge that only claims-based outcomes are easily tracked ([37] www.techtarget.com). In practice, many contracts fall back on surrogate or claims measures (e.g. hospitalization rates) rather than deeper patient-reported outcomes or lab markers. The Commonwealth Fund review notes that this severely constrains OBCs: most meaningful outcomes (symptom scales, long-term biomarker changes) can't be captured in claims ([49] www.commonwealthfund.org). Even lab-based endpoints require **extra effort**: as one analysis explained, using LDL cholesterol as a metric necessitated "retrieving lab data streams from electronic health records," significantly increasing administrative burden ([31] www.commonwealthfund.org). Unless better real-time data capture (like broader interoperability or patient-entered data) becomes routine, contracts will continue to rely on coarse measures.
- **Operational Feasibility.** Multiple evaluations stress that the **practical extension** of outcome contracts is difficult. Nazareth *et al.* (2017) report that both U.S. and European stakeholders view *operational issues* as a major barrier ([6] [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)). They interviewed payer and manufacturer executives, who expected only modest growth unless frameworks are simplified. In their sample, issues like defining patient adherence, channeling (redirecting patients to the favored drug), and data sharing conflicted across stakeholders. Even within the health system, logistical hitches arise: a UK survey of pharmacists found that almost half of negotiated refunds from manufacturers *never reached* the local NHS budget ([38] [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)).
- **Case Result Attribution.** Another problem is attributing outcomes to the drug itself. For chronic diseases, patient factors (comorbidities, adherence, care quality) can dominate results. For example, in diabetes, a drug may fail to lower blood sugar because the patient didn't take it or was non-adherent, not because the drug is ineffective. Complex contracts attempt to adjust for this (e.g. requiring minimum adherence as a condition), but in many deals the underlying confounding makes it hard to draw clean conclusions from observational data ([51] [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)). This uncertainty reduces stakeholders' confidence in sharing risk.
- **Case Success Stories (when they occur).** Not all reports are negative. Some well-managed schemes show promise when built on robust data infrastructure. For example, Eichler *et al.* noted that Italy's health care system, with "long-standing experience in the generation and use of real-world evidence from disease registries," reported "significant savings" from its mature risk-sharing programs ([52] [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)). Similarly, if contracts are structured as *pay-for-evidence-development* (delaying most payment until benefit is confirmed), early data systems appear to work well. The UK and Israeli outcomes pilots for highly-tailored cancer drugs (not discussed above) have shown that well-funded registries can track rare patient outcomes.

In summary, as of the mid-2020s **data on outcomes contracts remains sparse and often proprietary**. However, studies agree on the core facts: these agreements involve heavy data collection and complex rules, making many of them "more optics than substance" ([17] www.propublica.org). Payers report that unless a contract is carefully limited and well-resourced, the ROI (return on investment) is often disappointing ([4] www.propublica.org) ([8] [pmc.ncbi.nlm.nih.gov](https://www.ncbi.nlm.nih.gov)). Any assessment of value must therefore incorporate the hidden costs of building and running the IT systems behind these deals.

Case Studies

To illustrate the above points, we highlight several real-world examples and what they reveal about required IT systems.

Italy's National Health Service (AIFA)

Background: In the 2000s, Italy's AIFA piloted innovative "risk-sharing" schemes for many high-cost drugs (e.g. multiple sclerosis therapies, cancer drugs, new VSAs). In these deals, municipalities (ASLs) would initiate treatment only if patients met strict criteria, and doctors enrolled patients in registries to track outcomes over years. Payment to manufacturers was contingent on these registry outcomes.

IT Requirements: Italy built dedicated disease registries (for MS, antivirals, etc.) as central databases. These registries collected demographic data, treatment course, and clinical endpoints from hospitals and clinics. Regional servers and web portals were established for data entry. However, these systems were largely **manual in early years**: clinicians logged information into online forms and submitted at intervals. There was no automated EHR linkage; all outcome verification relied on active monitoring and data entry by physicians.

Lessons Learned: A 2015 evaluation found this approach significantly underperformed. The amount refunded back to the health system was "trifling" relative to drug costs (^[1] www.propublica.org). Analysts attributed the failure not to medicine ineffectiveness, but to IT/administrative failures. In particular, investigators noted that "*there is no incentive for healthcare professionals to update the registries, close the patients' files and submit a refund claim*" (^[38] pmc.ncbi.nlm.nih.gov). Essentially, the workflow did not fit any routine process: entering data for an outcomes contract was extra work for busy doctors. This disuse of the registry meant outcomes were often incomplete or late. Italy ultimately shifted strategy: rather than partial refunds, some new schemes simply require no payment until benefit is confirmed (a "payment-after-effect" model (^[25] www.propublica.org)).

UK Multiple Sclerosis Risk-Sharing

Background: In 2002, the UK's National Health Service and Scottish Medicines Consortium launched a 10-year program for MS. Eligible patients received interferon or glatiramer acetate under the condition that their disability outcomes (EDSS scores) were tracked annually in a national registry. If the drugs did not demonstrate cost-effectiveness at the end of the period, manufacturers would provide rebates to the NHS.

IT Requirements: NHS set up a centralized MS registry, with periodic data submissions from multiple clinics. EHR integration was minimal; instead, neurologists entered disability scores by web forms. The plan required linking hospital symptom records with registry updates.

Outcome: The scheme faced many data challenges. Over ten years, patient attrition (dropout) and inconsistent follow-up undermined the analysis. In 2013, NICE decided the scheme had not convincingly proven or disproven efficacy due to gaps in data. The trust in the contract was eroded and it was not renewed (^[26] pmc.ncbi.nlm.nih.gov). Key takeaway: even a nationwide system with dedicated registries can fail when data capture is imperfect and follow-up is long.

Aetna–Merck Diabetes Collaboration (USA)

Background: In 2016, Aetna and Merck announced a partnership to improve diabetes management. It included a value-based payment for Merck's Januvia/Janumet and a patient care program (AetnaCare). Merck would provide additional discounts if patient outcomes failed.

IT Requirements: This deal explicitly leveraged advanced IT: Aetna reported it would use **predictive analytics** to identify patients most at risk of nonadherence (^[34] www.ajmc.com). It also planned to integrate data from digital glucometers: one public statement mentioned "cloud-based storage for connected glucometer readings" as part of a curated health ecosystem (^[35] www.ajmc.com). Technically, this meant Aetna needed real-time feeds from device manufacturers or apps into its data warehouses, and analytic models tying that to claims data.

Outcome: The Aetna–Merck program is often cited as a forward-looking pilot, but public data on its results is scarce. Anecdotally, using device data to anticipate outcomes is promising, but also **illustrates the IT demands**: many legacy health plans have little experience ingesting patient-generated data. Setting up such a pipeline required custom interoperability with device companies (for example, Dexcom or Johnson & Johnson's shareable meters had to release data through APIs).

Gene Therapy Agreements (USA)

Background: The advent of one-time gene therapies with multi-million-dollar price tags has intensified the need for outcome guarantees. For instance:

- Spark Therapeutics' **Luxturna** (for an inherited retinal disease) struck a contract (with Harvard Pilgrim) that the insurer would get partial rebates if vision improvements were not durable (^[23] www.forbes.com).
- Novartis's **Zolgensma** (SMA) is being offered with five-year payment and outcomes plans: patients are monitored annually, and the manufacturer refunds if the child dies or fails to gain motor milestones (^[22] www.forbes.com).
- Bluebird Bio's **LentiGlobin** (thalassemia) manufacturer proposed "*pay for performance*" where 80% of the cost is paid only if the patient maintains transfusion-free status over time (^[24] www.forbes.com).

IT Requirements: These examples show the need for **longitudinal tracking across payers**. Many pediatric gene therapy patients will change insurance plans, so Novartis and Bluebird have even discussed multi-payer "portability" strategies to continue monitoring. In practice, this means building registries or data networks that multiple insurers can access (or national rare-disease registries). For example, the SMA contract may rely on a blended data source: elements in the FDA's Disease Modifying Therapy (DMT) registry or Medicare claims. Importantly, patient consent and privacy are paramount here, because genetic data and detailed function scores are involved. Contract documents (to the extent they are public) suggest heavy reliance on durable data links – an IT challenge given the rarity and mobility of these patients.

Lesson: Gene therapy deals highlight how outcome tracking could become part of broader real-world evidence networks. If the same registry that tracks outcomes for payers is also used for research (as some rare disease registries are), the marginal cost of data entry may be shared. However, even here, the former CEO of a payer noted that contracts on such expensive cures are only feasible if "*there are no patients who change insurers*," underscoring data fragmentation issues.

Analysis and Discussion

Overall, **what emerges from evidence and expert commentary** is that outcomes-based drug contracts are conceptually promising but technically and procedurally onerous. We summarize key findings:

- **High Operational Cost vs. Savings:** Stakeholders repeatedly note that *tracking outcomes is expensive*. One payer executive warns that in existing pilots, any potential savings often get eaten up by the cost of administering the program (^[4] www.propublica.org) (^[38] pmc.ncbi.nlm.nih.gov). Indeed, a Prime Therapeutics analysis bluntly found such deals "not cost-effective" under current methods, because the output (rebates) was smaller than input (tracking expenses) (^[4] www.propublica.org). Many deals have collapsed quietly after initial publicity, consistent with Express Scripts' quip that they "collapse under their own weight" (^[3] www.propublica.org).
- **Claims-based vs. Clinical Outcomes:** Avalere's 2023 survey shows payers are caught: they feel **claims-based metrics** (hospitalizations, ICD codes) are *easier to implement* (since those data are already in their systems) (^[9] www.techtarget.com), but 53% believe these do **not accurately measure true clinical benefit**. In contrast, **true clinical outcomes** (functional tests, lab controls) better capture value but "could require new data infrastructure" (^[9] www.techtarget.com). 74% of payers in that survey said they ideally want contracts with both types of measures, highlighting that multi-modal data—though costly—better satisfies the goal of measuring "net effectiveness."
- **Interoperability Standards are Emerging but Not Yet Complete:** The healthcare industry is developing standards specifically to support value-based care data exchange. For instance, the HL7 Da Vinci Value-Based Performance Reporting Implementation Guide (v1.1.0) defines FHIR profiles for exchanging performance scores, quality measures, and contractual terms (^[41] build.fhir.org). Likewise, FHIR value sets for payment outcomes are being tested (^[42] build.fhir.org). These efforts indicate progress: they provide a blueprint for how payers could automatically send outcome data to providers or vice versa. However, actual deployment remains limited, so many contracts still rely on legacy file exchanges.
- **Governance and Trust:** The complexity requires unprecedented trust and oversight. Manufacturers, worried about being liable for poor outcomes (some possibly beyond their control), insist on open audit rights. Payers worry about "gaming" by selective patient enrollment or premature withdrawal of non-responders. Transparent dispute-resolution clauses and sometimes third-party adjudicators are used (^[44] pmc.ncbi.nlm.nih.gov) (^[44] pmc.ncbi.nlm.nih.gov). For example, the data framework should "foresee regular data audits" and define ownership clearly (^[53] pmc.ncbi.nlm.nih.gov) (^[44] pmc.ncbi.nlm.nih.gov). Establishing these governance structures is itself a substantive effort.
- **Future Potential:** Despite current limitations, there is cautious optimism. Eichler *et al.* argue that as the broader health data ecosystem improves (e.g. CDC's expansion of Sentinel to include observational medical product performance data (^[50] pmc.ncbi.nlm.nih.gov)), the technical barriers will diminish. In their view, initiatives like Sentinel show that **federated claims/EHR networks** can aggregate data nationwide (^[50] pmc.ncbi.nlm.nih.gov). Additionally, advances in AI/ML may provide tools to analyze real-world data more reliably, potentially converting outcome collections into predictive learning systems (the "learn-and-predict" model) (^[54] pmc.ncbi.nlm.nih.gov) (^[50] pmc.ncbi.nlm.nih.gov). For instance, machine learning could help adjust for patient selection bias or confounders, improving confidence in attributing outcomes to drugs.
- **Strategic Use Cases:** Given the high effort, these contracts are likely to remain limited to a few domains. They are most practical when (a) treatment is extremely expensive (gene therapies, orphan diseases), (b) small patient numbers make RCT projections uncertain, and (c) measurable outcomes exist. Indeed, areas like hepatitis C (where cure is clearly defined) or oncology (survival at a timepoint) are frequent targets. There is also interest in curbing the impact of narrow target populations on payers: for example, accountable care organizations (ACOs) or Medicaid plans may use such contracts to manage budget risk for expensive biologics.
- **Policy Implications:** For these deals to become more than niche, systemic support is needed. Policymakers might encourage standardized outcome registries, mandate real-world data planning at drug approval (the FDA's pilot Real-Time Oncology Network, RWD guidance are echoes of this), or create legal safe harbors for innovative contracts. Some observers note that, absent such facilitation, outcomes contracts may serve mainly as PR exercises rather than substantive cost-control measures (^[17] www.propublica.org).

Implications and Future Directions

Looking ahead, the future of outcome-based drug pricing heavily depends on IT progress. Several trends and possibilities include:

- **Scaling Infrastructure:** As electronic health records proliferate, & health information exchanges mature, the logistics of outcome tracking will gradually ease. National or regional health data networks (like those under development in the U.S. and Europe) could obviate much of the standalone IT investment currently required. For example, if a health system adopts common patient IDs and shared EHR platforms, then pulling outcome metrics for contracted populations becomes straightforward. The rise of **commerce-standard APIs** for health data – driven by interoperability regulations (e.g. 21st Century Cures Act in the US, or Europe's Telematics Infrastructure) – will also facilitate real-time outcome monitoring.
- **Advanced Analytics and AI:** Outcomes contracts will increasingly leverage AI to maximize insight from the assembled data. Natural language processing could extract outcome events from unstructured physician notes. Machine learning models could predict which patients are likely to fail and preemptively adjust care, effectively aligning incentives. The "learn-and-predict" vision (^[54] pmc.ncbi.nlm.nih.gov) suggests that contracts could eventually become adaptive: as more data are gathered, the deal terms themselves might be refined (for instance, using Bayesian updates). This would require continual data flows but promises improved mutual benefit.
- **Patient Engagement and Devices:** Greater use of patient-generated data may fill gaps. Wearables, mobile health apps, and home-monitoring devices can keep track of relevant biomarkers (e.g. home exometry, blood pressure, blood sugar logs). Outcomes contracts might mandate patients to use certified devices, with the data automatically reported to the payer/manufacturer. Such approaches are starting: for instance, some insurers already offer reduced copays for patients who submit regular health metrics. If expanded to contract compliance, this could reduce the invisible wall between provider/EHR data and payer knowledge.
- **Blockchain and Smart Contracts (Speculation):** Some futurists propose using blockchain to automate parts of outcomes deals. In theory, a **smart contract** on a blockchain could register patient IDs and outcomes triggers, automatically releasing refunds under transparent logic. While practical deployments are not yet mainstream, exploring decentralized ledgers could ensure tamper-proof records (important for audit) and streamline cross-organizational trust. Any such approach still needs integration with conventional health data (which blockchain cannot natively store due to privacy), so it complements rather than replaces electronic systems.
- **Global and Cross-Payer Portability:** For cured diseases, an ideal future system might allow passing outcome data (and financial obligations) along as patients switch insurers. Industry is already debating mechanisms for this (e.g. multi-payer agreements or escrow funds). A robust IT solution here might be a central "outcome clearinghouse" under regulatory oversight, where patient contracts (anonymized) are recorded. Then any payer that inherits a patient recognizing their prior payment could see the agreement status. This would require new policy and IT governance, but could remove incentives to avoid high-cost patients.
- **Enhanced Regulatory Environment:** The policies that have constrained these deals might evolve. For example, some U.S. proposals suggest revising Medicaid Best Price rules or CMS demonstration projects to allow more flexible value-based payments. Alignment of incentives (giving manufacturers relief from certain rebates in exchange for outcomes guarantees) could be codified. Such regulatory changes would encourage more trials of these models. If achieved, the IT systems discussed here would underpin compliance monitoring for those new rules.
- **Longitudinal Learning Effects:** Over time, as multiple outcomes agreements generate data, a knowledge base of real-world effectiveness will accumulate. Drug manufacturers can use this to refine indication or dose, and payers can rank therapies by demonstrated value. This feedback loop only works if the IT systems collect high-quality outcomes data and share findings. The smart utilization of this data could, in the long term, transform pricing from static models to continuous value assessment.

In summary, the trajectory depends on **reducing the friction** around data. Every technical barrier removed (universal patient IDs, interoperable data, automated outcome fetching) will make outcomes contracts more practical. Simultaneously, success stories (even in narrow fields) can build case studies justifying further investment. Surveyed payers expect outcomes contracts to multiply "if clear, simpler OBC frameworks can be developed" (^[55] pmc.ncbi.nlm.nih.gov). This suggests that improving the underlying IT and administrative framework is the key step.

Conclusion

Outcomes-based (money-back) drug reimbursement represents a frontier in healthcare financing, reflecting a shift toward paying for patient **value** rather than merely for pills. The promise is significant: aligning drug prices with real-world performance could control costs while accelerating adoption of truly effective therapies. However, the experience to date underscores a central irony: it is not the clinical or economic potential that has held these programs back, but the **IT and data complexity** of making them work.

This report has delved deeply into what those IT challenges are. We have shown that implementing an outcomes contract essentially requires constructing a mini-major-health-data infrastructure – linking claims, EHRs, labs, registries, and sometimes patient devices. It involves new data standards (HL7/FHIR), advanced analytics, robust privacy systems, and well-defined workflows. Case studies from Europe and the U.S. make clear that even well-intentioned schemes can fail when these systems are incomplete or too burdensome ^[1] www.propublica.org ^[38] pmc.ncbi.nlm.nih.gov.

Nevertheless, the concept is evolving. Surveys and expert analyses suggest that as healthcare digital transformation progresses, and as stakeholders learn from early pilots, outcomes contracts will gradually become more workable. Current trends (increasing EHR interoperability mandates, AI tools, wearables) align with the needs of these deals. If funding and policy keep pace – for example, by investing in unified health registries and data exchanges – then outcome-based pharmaceuticals might move from niche experiments to a standard option in the payer toolbox.

For now, payers and manufacturers considering such contracts must **start with the data**. Our findings imply that the first investment should be in building the information system, not just negotiating prices. They should ask: *Can we reliably measure these outcomes in our patient population?* If the answer is “yes” – if we have the necessary registries and links in place – then an outcomes deal may succeed. If **not**, then even a seemingly fair contract may collapse under administrative weight ^[3] www.propublica.org ^[2] pmc.ncbi.nlm.nih.gov.

In closing, outcomes-based drug pricing will only fulfill its promise when the data backbone of healthcare is strengthened. That means broader adoption of standards, better data sharing, and perhaps new roles (data stewards, real-world analytics teams) within healthcare organizations. Our analysis suggests that when those pieces fall into place, outcomes contracts could become a powerful tool. Until then, their use will be constrained, and any cost savings likely modest. Policymakers and industry leaders should therefore align efforts: invest in data infrastructure today to enable the value-based healing of tomorrow.

External Sources

- [1] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:In%20...>
- [2] <https://pmc.ncbi.nlm.nih.gov/articles/PMC9299639/#:~:Overa...>
- [3] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:%E2%8...>
- [4] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:At%20...>
- [5] <https://www.techtarget.com/healthcarepayers/news/366603585/58-of-Payers-Use-Outcomes-Based-Contracts-for-Prescription-Drugs#:~:Avale...>
- [6] <https://pmc.ncbi.nlm.nih.gov/articles/PMC1039822/#:~:towar...>
- [7] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:A%20n...>
- [8] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~;Volu...>
- [9] <https://www.techtarget.com/healthcarepayers/news/366603585/58-of-Payers-Use-Outcomes-Based-Contracts-for-Prescription-Drugs#:~:Clini...>
- [10] <https://pmc.ncbi.nlm.nih.gov/articles/PMC9299639/#:~:Basic...>
- [11] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~:Under...>
- [12] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:The%2...>
- [13] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:Rober...>
- [14] <https://www.pharmasources.com/industryinsights/nhs-should-pay-for-medicines-based-on-ou-296105.html#:~:Comme...>
- [15] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:In%20...>
- [16] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:But%2...>
- [17] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:Dr,as...>
- [18] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500/#:~:...>
- [19] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500/#:~:Legal...>
- [20] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:drugs...>
- [21] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:More%...>
- [22] <https://www.forbes.com/sites/joshuacohen/2020/12/11/though-promising-gene-therapies-face-durability-and-reimbursement-headwinds/#:~:Novar...>
- [23] <https://www.forbes.com/sites/joshuacohen/2020/12/11/though-promising-gene-therapies-face-durability-and-reimbursement-headwinds/#:~:For%2...>
- [24] <https://www.forbes.com/sites/joshuacohen/2020/12/11/though-promising-gene-therapies-face-durability-and-reimbursement-headwinds/#:~:After...>
- [25] <https://www.propublica.org/article/drugmakers-money-back-guarantees-answer-to-rising-prices-or-carnival-game#:~:Italy...>
- [26] <https://pmc.ncbi.nlm.nih.gov/articles/PMC9299639/#:~:One%2...>
- [27] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500/#:~:3,to...>
- [28] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~:Table...>
- [29] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~:Anoth...>
- [30] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~:One%2...>
- [31] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~:In%20...>
- [32] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~:A%20r...>

- [33] <https://www.ajmc.com/view/aetna-merck-reach-value-based-reimbursement-deal-on-diabetes-drugs-to-collaborate-on-wellness-initiative#:~:Text%20...>
- [34] <https://www.ajmc.com/view/aetna-merck-reach-value-based-reimbursement-deal-on-diabetes-drugs-to-collaborate-on-wellness-initiative#:~:Text%20...>
- [35] <https://www.ajmc.com/view/aetna-merck-reach-value-based-reimbursement-deal-on-diabetes-drugs-to-collaborate-on-wellness-initiative#:~:Text%20...>
- [36] <https://pmc.ncbi.nlm.nih.gov/articles/PMC10398222#:~:Text%20...>
- [37] <https://www.techtarget.com/healthcarepayers/news/366603585/58-of-Payers-Use-Outcomes-Based-Contracts-for-Prescription-Drugs#:~:Text%20...>
- [38] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [39] <https://www.ajmc.com/view/aetna-merck-reach-value-based-reimbursement-deal-on-diabetes-drugs-to-collaborate-on-wellness-initiative#:~:Text%20...>
- [40] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [41] <https://build.fhir.org/g/HL7davinci-vbpr/usecase.html#:~:Text%20...>
- [42] <https://build.fhir.org/valueset-payment-outcome.json.html#:~:Text%20...>
- [43] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [44] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [45] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [46] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [47] <https://www.forbes.com/sites/joshuacohen/2020/12/11/though-promising-gene-therapies-face-durability-and-reimbursement-headwinds#:~:Text%20...>
- [48] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [49] <https://www.commonwealthfund.org/publications/issue-briefs/2017/sep/outcomes-based-pharmaceutical-contracts-answer-high-us-drug#:~:Text%20...>
- [50] <https://pmc.ncbi.nlm.nih.gov/articles/PMC9299639#:~:Text%20...>
- [51] <https://pmc.ncbi.nlm.nih.gov/articles/PMC9299639#:~:Text%20...>
- [52] <https://pmc.ncbi.nlm.nih.gov/articles/PMC9299639#:~:Text%20...>
- [53] <https://pmc.ncbi.nlm.nih.gov/articles/PMC8738500#:~:Text%20...>
- [54] <https://pmc.ncbi.nlm.nih.gov/articles/PMC9299639#:~:Text%20...>
- [55] <https://pmc.ncbi.nlm.nih.gov/articles/PMC10398222#:~:Text%20...>

IntuitionLabs - Industry Leadership & Services

North America's #1 AI Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs leads the US market in custom AI software development and pharma implementations with proven results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11 compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years in software development, multiple successful exits, and patent holder. Recognized as one of the top AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs, chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data conversion, automated document analysis, and intelligent data extraction from clinical and regulatory documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and custom field force applications with advanced analytics and reporting capabilities.

AI Chatbot Development: Create intelligent medical information chatbots, GenAI sales assistants, and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring, and custom data visualization solutions for pharmaceutical insights.

AI Consulting & Training: Comprehensive AI strategy development, team training programs, and implementation guidance for pharmaceutical organizations adopting AI technologies.

Contact founder Adrien Laurent and team at <https://intuitionlabs.ai/contact> for a consultation.

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or its representatives be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from the use of information presented in this document.

This document may contain content generated with the assistance of artificial intelligence technologies. AI-generated content may contain errors, omissions, or inaccuracies. Readers are advised to independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are the property of their respective owners. All company, product, and service names used in this document are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading AI software development firm specializing exclusively in pharmaceutical and biotech companies. As the premier US-based AI software development company for drug development and commercialization, we deliver cutting-edge custom AI applications, private LLM infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance software. Founded in 2023 by [Adrien Laurent](#), a top AI expert and multiple-exit founder with 20 years of software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.