
Integrating MCP Servers for Web Search

with Claude Code
By IntuitionLabs • 8/4/2025 • 30 min read

mcp model context protocol claude code ai agent tool use api integration

internet search anthropic

An explanation of the Model Context Protocol (MCP) and its integration with Claude Code. Learn how MCP servers enable AI

agents to perform internet searches. - IntuitionLabs - Custom AI Software Development for pharmaceutical companies.

Leading AI Consulting USA and North American Pharmaceutical AI specialists. Led by Adrien Laurent, top AI expert USA,

multiple exit founder, patent holder, and 20 year software veteran based in San Francisco Bay Area. Premier biotech

consultancy specializing in: Custom CRM Development, ERP Development, AI Chatbot Development, Private AI

Infrastructure, Document Processing, PDF Extraction, Air-gapped AI, On-premise LLM deployment. #1 Veeva AI partner for

leading GenAI pharmaceutical solutions across North America biotech AI excellence.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 1 of 14

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

Best MCP Servers for Internet Search with

Claude Code
Overview: The Model Context Protocol (MCP) is an open standard that connects AI assistants

with external tools and data sources in a uniform way. In essence, MCP acts like a “USB-C port”

for AI applications, allowing models like Anthropicʼs Claude to plug into various services

(databases, file systems, web APIs, etc.) through MCP servers. Claude Code – Anthropicʼs

agentic coding assistant that runs in your terminal – can function as an MCP client, connecting

to multiple MCP servers to extend its capabilities beyond code generation. By configuring MCP

servers in Claude Code, you enable Claude to perform actions such as searching the internet,

browsing files, querying databases, and more, all via a standardized interface. Claude Code

supports both streaming HTTP (Server-Sent Events) and local process (stdio) MCP connections

for real-time data flow, and includes user safeguards (e.g. requiring confirmation before file

changes) when using these powerful tools.

When it comes to internet search, several MCP servers – both open-source and commercial –

can equip Claude with browsing and information-retrieval powers. In this report, we examine the

leading MCP servers for web search, comparing their performance, features, extensibility, and

suitability for different use cases. We then provide recommendations tailored to individual

developers, researchers, and enterprise teams.

MCP and Claude Code Integration

What is MCP? The Model Context Protocol defines a client-server architecture for tool use. An

MCP server wraps an external service or data source behind a common protocol (with defined

actions, or “tools”), while an MCP client (like Claude Code or other AI agent frameworks)

connects to the server to invoke those tools. In practice, MCP servers expose resources (which

Claude can reference via an @server:resource syntax in prompts) and tools (operations

Claude can call, often via special “slash” commands). For example, a GitHub MCP server might

expose repository files as resources and provide tools like list_prs or open_issue . When

Claude Code is connected to such a server, you could ask: “Please analyze @github:issue://123

and suggest a fix,” and Claude will fetch the issue content via MCP.

Claude Codeʼs use of MCP: Claude Code simplifies integrating these servers. You can add

servers via the CLI (claude mcp add …) or config files. Claude Code then manages connecting

to each server in the background. It will automatically list available MCP tools and resources (e.g.

pressing @ shows MCP resources in auto-complete). When the model needs information (like to

answer a query about current events or to retrieve documentation), it can call the appropriate

MCP tool. In the case of web search, an MCP server provides a tool (often named “search”) that

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 2 of 14

https://intuitionlabs.ai/articles/conversational-ai-ui-comparison-2025
https://intuitionlabs.ai/articles/anthropic-claude-4-llm-evolution
https://intuitionlabs.ai/articles/ai-code-assistants-large-codebases
https://intuitionlabs.ai/articles/enterprise-ai-code-assistants-air-gapped-environments
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

Claude can invoke with a query; the server executes the search and returns results which Claude

can use to formulate an answer. This mechanism allows Claude to conduct internet searches

within its conversation, despite the core model being static. Anthropic explicitly cautions users

to trust but verify third-party MCP servers, especially those connecting to the internet, due to

the risk of malicious content or prompt-injection in retrieved data docs.anthropic.com. Proper

sandboxing and user confirmation (for actions like opening links or running code) mitigate these

risks.

With that context, we now turn to the MCP servers best suited for enabling Claudeʼs web

browsing. Weʼll assess both open-source solutions that you can self-host, and commercial

services offering managed search APIs, as summarized in Table 1 below.

Comparing Internet Search MCP Servers

MCP Server
Type &

Deployment

Search Data

Source
Auth & Cost Notable Features

Web Search

MCP (pskill9)

Open-source

(Node.js local

process)

Google Search

(HTML scraping)

No API key required

(free). Use responsibly to

avoid Google rate-limits.

Returns up to 10 results (title, URL,

snippet). Lightweight, easy setup.

Open-

WebSearch

MCP (Aas-ee)

Open-source

(Node.js;

HTTP/SSE server)

Multiple engines

(Bing,

DuckDuckGo,

Baidu, Brave,

etc.)

No API keys required

(free). Optional proxy

config for restricted

networks.

Multi-engine search with fallback – more

robust if one engine blocks. Supports

streaming results (SSE) for real-time

output. Can fetch full content for certain

sites (e.g. CSDN).

Brave Search

MCP (official)

Open-source

(Anthropicʼs

reference server;

runs locally)

Brave Search API

(independent

web index)

Brave API key required.

2,000 queries/month free;

~1 query/sec rate limit.

Paid: $3 per 1K queries

(up to 20M/mo at 20

QPS).

High-quality results from a private

search index (no Google dependency).

Fast API responses. Official

implementation by Claude team.

Supports advanced query filters via

Brave (e.g. “Goggles”).

Google CSE

MCP

(Community)

Open-source

(Node.js)

Google Custom

Search (official

API)

Google API key &

Programmable Search

Engine ID required. 100

queries/day free

(~3K/mo); $5 per 1K

beyond (up to 10K/day).

Requires Google Cloud

billing setup.

Uses Googleʼs results with full API

reliability (avoids scraping issues).

Superior search quality. Slightly more

complex setup (Google CSE

configuration). Community-maintained

server available (e.g. Limklister ʼs MCP

Google Custom Search).

Perplexity Ask

MCP (Sonar

API)

Open-source

connector

(Node.js; calls

cloud API)

Perplexity AI

“Sonar” (LLM +

web search)

Perplexity API key

required. Sonar API is a

paid service (affordable

plans available; Sonar Pro

for higher-tier features).

Requires Perplexity Pro

account or enterprise

plan.

LLM-powered search: sends query to

Perplexityʼs online QA system. Returns a

synthesized answer with citations.

Includes up-to-date info and “citation-

backed” responses. Can customize

source domains. Sonar Pro supports

multi-step queries and larger context if

needed. Excellent for natural language

questions where a summary is desired.

Bright Data

MCP

brightdata.com

Open-source

server (Node.js;

calls Bright Data

Bright Data

SERP API

(aggregated

Bright Data account

required. SERP API: $1.05

per 1,000 queries (no free

Enterprise-grade solution: “all-in-one”

web access – perform live search on

Google/Bing and others brightdata.com,

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 3 of 14

https://docs.anthropic.com/en/docs/claude-code/mcp#:~:text=Model%20Context%20Protocol%20,MCP%2C%20see%20the%20MCP%20documentation
https://intuitionlabs.ai/articles/meta-prompting-llm-self-optimization
https://brightdata.com/ai/mcp-server#:~:text=%2A%20Retrieve%20real,and%20snippets%20for%20further%20crawling
https://brightdata.com/ai/mcp-server#:~:text=%2A%20Retrieve%20real,and%20snippets%20for%20further%20crawling
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

MCP Server
Type &

Deployment

Search Data

Source
Auth & Cost Notable Features

cloud) or Fully

Managed via API

major engines) +

optional crawling

tier beyond trial). Scales

to high volume; includes

global proxy network to

avoid blocks.

then crawl pages or even interact with

web (headless browser) via additional

tools. Handles CAPTCHAs, geo-

localization, and heavy scraping

“without getting blocked”. High

throughput (designed for parallel

queries). Suitable for production use

cases.

Firecrawl MCP

(firecrawl.dev)

Closed-source

SaaS (Node.js

client via npx)

Firecrawl API

(web scraper +

search)

Firecrawl API key

required. Free trial

available; paid plans for

sustained use (pricing not

public, YC-backed

startup).

Focus on web scraping with AI. Can

perform search and then scrape result

pages for data. Aimed at developers

who need an easy way to get structured

web data. Provides templates and SDKs

firecrawl.dev firecrawl.dev. Offers

authenticated page scraping. Smaller

scale than Bright Data, but simpler

setup for agents.

Table 1: Key MCP Servers for Internet Search – features and requirements. These servers

enable Claude to perform web searches by interfacing with various search engines or services.

“Open-source” indicates you can self-host the connector; many open-source implementations

still require an API key for the third-party service.

Discussion of Comparison

From the table and sources above, we can draw several insights:

Open-Source Solutions (No API Key Required):Web Search MCP and Open-WebSearch

MCP allow immediate, free setup of internet search in Claude Code. They achieve this by

scraping search engine result pages. The Web Search MCP by “pskill9” targets Google and

returns clean JSON results (title, URL, description). Itʼs very simple to set up – essentially

running a Node script – and requires no credentials. However, because it scrapes Googleʼs

HTML, it is vulnerable to rate limiting and layout changes. Users have reported that heavy

use can trigger Googleʼs bot detection, causing the tool to fail until cooled down. This

limitation means the Google-scraping approach is best for light, interactive use (a few

queries at a time). You should avoid rapid-fire queries or incorporate delays to be safe.

Despite these caveats, many find the free Google results worth the trade-off – Googleʼs

search quality is still arguably unmatched.

The Open-WebSearch MCP extends the free approach by using multiple search engines in

tandem. According to its documentation, it supports Bing, DuckDuckGo, Brave, Baidu, and more,

cycling through them to retrieve results without relying on a single provider. This multi-engine

strategy improves robustness: if Google or one engine starts blocking or skewing results, others

can fill in. Open-WebSearch also supports an HTTP/SSE server mode, meaning you can run it as

a background service (including via Docker) and stream results to Claude as they arrive. In

practice, users </current_article_content>find that Open-WebSearch yields a decent blend of

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 4 of 14

https://brightdata.com/ai/mcp-server#:~:text=%2A%20Retrieve%20real,and%20snippets%20for%20further%20crawling
https://www.firecrawl.dev/mcp#:~:text=Enhance%20your%20AI%20agents%20with,extract%20data%20from%20any%20website
https://www.firecrawl.dev/mcp#:~:text=
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

results; for example, Bing and Brave might provide summaries or different coverage that

complements Google. It even has the ability to fetch full articles from certain sites (like CSDN, a

programming forum) when those appear in results – essentially combining search and scrape for

deeper context. The trade-off is that results might be less consistent than a single-engine

approach, and the setup is slightly more involved (running a local server on port 3000). Still, for

a completely free and extensible solution, Open-WebSearch MCP is a strong choice. Itʼs

maintained actively (supporting new engines via updates) and even allows configuring proxies,

which can help with geo-specific searches or avoiding IP blocks.

Official API-Based Search (Reliable, Moderate Cost): Using an official search engine API

tends to offer more stability and speed at the cost of API quotas. Brave Search MCP is an

example endorsed by Anthropic: itʼs part of the official modelcontextprotocol/servers

repository and was highlighted in early Claude Code demos. Brave Search operates its own

independent web index (privacy-focused), so it doesnʼt rely on Google or Bing results. This

makes it an attractive alternative for those who want high-quality results without scraping.

Setting it up involves obtaining a free API key from Brave (which requires registering an

account). Brave offers a generous 2,000 queries per month free, with one query per

second throughput on the free tier. In practice, thatʼs plenty for personal or development

use. If more capacity is needed, Braveʼs paid plans are fairly inexpensive ($3 per thousand

queries, scaling up to millions of queries). Performance-wise, Braveʼs API is fast – typically

sub-second to a couple seconds per query – since it returns JSON results directly from their

servers. The result quality is generally good for popular or factual queries, though some

users note that Googleʼs relevance is still higher in certain long-tail searches. Brave does

support advanced filters (called Goggles), and the MCP server may allow passing special

parameters to refine searches (e.g. code-related queries). Overall, using Brave via MCP is a

low-friction, safe way to give Claude current web search, especially if you prefer not to

worry about scraping issues or want to support a Google-alternative.

Another API option is Google Custom Search (CSE). Google offers an official JSON API for

search, but it requires you to set up a Custom Search Engine ID (which can be configured to

search the entire web) and enable the API in a Google Cloud project. This is more upfront work

(including adding a credit card for Google Cloud, even to use the free quota). The benefit is

direct access to Googleʼs results with high reliability and up to 100 queries per day at no cost.

Several community MCP servers have been created to use Google CSE – for example, one by

limklister on GitHub that the Claude user community cites. With CSE, after the free daily 100

queries, costs are $5 per 1000 queries (with Googleʼs 10k/day cap), which is reasonably

affordable. This path is recommended if you must have Google-quality results and are okay with

a bit of configuration. When comparing Googleʼs API to Braveʼs: Googleʼs results can be more

relevant for technical documentation or very recent news (Googleʼs index is extremely

comprehensive), whereas Brave is sufficient for many general purposes. Some users actually opt

to set up both and use Brave for most queries, falling back to Google API for tougher cases – but

within Claude Code, that would mean configuring two MCP servers and knowing when to invoke

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 5 of 14

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

each, which complicates the workflow. If simplicity is the goal, choose one: Brave API for hassle-

free setup vs. Google API for maximum search quality.

AI-Powered Search Engines: A new category of search, exemplified by Perplexityʼs Sonar

API, blends large language models with live web data. The Perplexity Ask MCP server

(developed by the Perplexity team and open-sourced) allows Claude to delegate a question

to Perplexityʼs backend. Perplexityʼs model will perform its own multi-step search on the

internet and return a synthesized answer with cited sources. Essentially, Claude can

leverage Perplexity as an agent to do research on its behalf. The upside is that the returned

information is already summarized and contextualized – often saving tokens and time. For

example, if you ask Claude (with the Perplexity MCP enabled) a question like “What were the

latest findings of the James Webb Telescope?”, Claude could call the Perplexity tool, which

might return a two-paragraph answer citing a NASA press release and a news article from

last week. Claude can then incorporate that answer into the conversation (with proper

attribution). This is powerful for question-answering use cases where the user wants a

quick, authoritative response with references. It also mitigates some prompt-injection risk,

since Perplexityʼs model will filter and interpret the raw web content, rather than dumping

potentially malicious text directly to Claude.

The downsides are that this approach is somewhat a black box – youʼre trusting Perplexityʼs

summaries – and it may not be suitable if you need to independently verify or analyze raw data.

Additionally, the Sonar API is a paid service. Perplexity advertises it as relatively affordable, and

indeed itʼs geared towards developers (with tiers like Sonar vs Sonar Pro). The exact pricing isnʼt

publicly listed in the docs we reviewed, but likely it involves a subscription or per-query fee

(Perplexity Pro accounts currently cost around $20/month for unlimited personal use, which

gives an idea). Enterprises can get custom plans for Sonar API. From a performance perspective,

Perplexity is quite fast considering itʼs doing on-the-fly reasoning – simple queries may return in

2-3 seconds, complex ones a bit longer. They also provide features like source customization

(you could ask it to focus on certain domains) and more citations in the higher-tier version. The

Sonar Pro tierʼs ability to handle multi-step queries and larger context is useful if you expect

Claude to ask broad or multifaceted questions via this tool (e.g. a market research query that

needs combining information from multiple articles). In summary, Perplexityʼs MCP server is

ideal for “research assistant” style interactions, where Claude essentially outsources web

research and gets back a digested answer. Itʼs less applicable if you need Claude to fetch a

specific piece of raw data or do step-by-step web navigation – those cases are better served by

the direct search + crawl solutions below.

Enterprise-Grade Web Access (Search + Crawl): For advanced use cases – such as

integrating Claude into business workflows that require extensive web data gathering,

competitive intelligence, or monitoring – services like Bright Data (and to a lesser extent,

Firecrawl or Apify) shine. Bright Dataʼs MCP server is an open-source project with nearly 1k

stars, reflecting the interest in a robust connector for their platform. Unlike the simpler

search-only tools, Bright Data MCP is more like a Swiss Army knife for web data: it provides

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 6 of 14

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

a Search tool (which queries major search engines through Bright Dataʼs SERP API), but

also Crawl and Browser tools to retrieve full page content, follow links, and even simulate

user interactions in a headless browser. In effect, Claude can use Bright Data to search for

relevant pages, then automatically crawl those pages for deeper information, all while

benefiting from Bright Dataʼs large proxy network to avoid IP blocking and geo-restrictions.

For example, if tasked with analyzing a competitor, Claude (via Bright Data MCP) could

search for the competitorʼs product, find news articles, then fetch those article pages, and

possibly even log into a web app or scrape a pricing table – tasks that go beyond a normal

search engine. Bright Dataʼs solution is high-performance and scalable. The SERP API can

retrieve results from Google, Bing, Yahoo, etc., in real-time and in parallel. The pricing of

$1.05 per 1,000 search requests is reasonable for enterprise volume (roughly $0.001 per

query), but keep in mind this does not include the additional data retrieval; crawling pages

has its own cost (they charge by data or requests for their other APIs). The service is pay-

as-you-go, so an organization can scale up usage as needed. Importantly, Bright Data is a

trusted vendor in the web scraping space, with compliance measures and a legal team

ensuring the data collection stays within acceptable use (they provide a SOC 2 Type II

certified platform, similar to Firecrawlʼs compliance badge). Enterprises concerned about

legality or security of scraping often prefer using such vetted services rather than rolling

their own scraper.

The Bright Data MCP server can be deployed in a cloud environment or alongside Claude Code.

A typical deployment might be to run the MCP server on an AWS EC2 or Docker container,

configured with your Bright Data API token, and then point Claude Code to that server (via its

URL). Since Claude Code supports remote HTTP/SSE servers, team members could share a

single Bright Data MCP endpoint as well. Security in this model is twofold: (1) You must secure

your Bright Data API key and endpoint (using HTTPS and possibly organizational proxies). (2)

You rely on Bright Dataʼs compliance – they handle CAPTCHAs and bot detection in a way that is

unlikely to inject malicious content, but theoretically any web page content fetched could

contain scripts or payloads. Claude Code will treat fetched text as data (not executing scripts),

and Bright Dataʼs API typically returns text or structured data (JSON), so the risk is mostly on

the prompt content side. As always, one should sanitize or have Claude summarize external text

before directly following any instructions from it.

Besides Bright Data, Firecrawl is an emerging alternative that also offers an MCP server for web

data. Firecrawl focuses on ease of use – the setup is a single claude mcp add command with an

NPM package and API key firecrawl.dev. It provides both search and scraping capabilities,

claiming to handle dynamic content (JavaScript-heavy sites) as well. Some developers prefer

Firecrawl for quick projects, as it has a friendly “playground” UI and templates for common tasks

firecrawl.dev firecrawl.dev. However, as a startup service, its search results quality and coverage

might not match Bright Data or Perplexity – itʼs likely using a combination of Bing for search and

its own crawlers for data extraction. Firecrawlʼs pricing is not openly listed, but presumably they

have a free tier or trial and then usage-based fees. For an enterprise, Firecrawl is less battle-

tested than Bright Data, but for a developer or small startup, it could be a convenient middle

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 7 of 14

https://www.firecrawl.dev/mcp#:~:text=
https://www.firecrawl.dev/mcp#:~:text=Enhance%20your%20AI%20agents%20with,extract%20data%20from%20any%20website
https://www.firecrawl.dev/mcp#:~:text=Copy%20paste%20the%20snippet%20below
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

ground: more capability than a free scraper, but simpler and possibly cheaper than Bright Data

for moderate use. Additionally, Apify (a web scraping platform) has an MCP integration which

can be extremely powerful if you need to run custom scraping workflows (Apify Actors) through

Claude. For instance, one could trigger an Apify actor that does a complex search & scrape job

and returns results to Claude. That said, using Apify via MCP is more specialized and would

appeal to those already invested in Apifyʼs ecosystem.

Technical Considerations

Enabling internet search in Claude Code via MCP requires attention to a few technical details:

Networking & Protocol Support: Claude Code can connect to MCP servers running locally (as

subprocesses) or remotely (over HTTP/SSE). Local servers (like the simple Node.js ones) use

stdin/stdout by default – the claude mcp add <name> <command> launches the server and pipes data.

This is straightforward for single-user setups. Remote servers (like a team-shared Bright Data

service) should be added with --transport http or --transport sse and a URL. SSE (Server-Sent

Events) is particularly useful for search: an engine can stream partial results or list items as it finds

them. Open-WebSearch, for example, opens an SSE stream at /sse for incremental result delivery.

Claude Code natively supports this, meaning Claude can start formulating an answer while more

results are still arriving, improving responsiveness. Not all servers implement SSE; most API-based

ones (Brave, Google, Perplexity) return a batch of results. If using an HTTP server without SSE,

Claude Code will wait for the full response before proceeding. In terms of networking, ensure your

firewall or environment allows the connections (Claude Code will need internet access to call the

search APIs or the MCP server needs internet). If operating in a corporate setting, you might route

traffic through a proxy – Claude Codeʼs docs note that it supports a corporate proxy configuration

for outgoing calls.

Language Bindings & Extensibility: Most of the MCP servers we discussed are written in Node.js

(JavaScript/TypeScript), often distributed via npm packages for easy install (npx -y <package> as

shown in many examples). This is convenient for Claude Code (which itself is Node-based). However,

MCP servers can be built in any language – what matters is they adhere to the protocol (usually

communicating JSON over stdin/stdout or HTTP). If your team prefers Python, for instance, you

could use the MCP specification to write a Python-based web search server. In fact, Context7, a tool

for fetching programming docs, is implemented in Python and integrates via MCP. For the servers in

this report, you will mostly use Node. Bright Dataʼs SDKs cover multiple languages for direct API use,

but their MCP server is in Node (they provide a Docker image as well). Perplexityʼs connector and

Braveʼs are in Node. The takeaway is that developers have flexibility – you can fork or modify open

MCP server code to add features (e.g. add a new search engine to Open-WebSearch, or add custom

filtering of results before returning to Claude). This extensibility is a key advantage of MCPʼs open

standard. Organizations can build internal MCP servers to interface with proprietary data or

specialized search tools, and use them alongside these public web search servers.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 8 of 14

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

Context Window and Data Limits: When Claude performs a search and gets back results, how

much can it take in? Claude 2 (Opus 4) has a very large context window (100K tokens), but Claude

Code might be using models like Claude 3.5/4 with 16K or 100K context depending on version. The

MCP server results count and content should be tuned with that in mind. For example, returning 10

full web pages of text would obviously overflow any context. Good practice (reflected in these

servers) is to return snippets or summaries. The Web Search MCP returns just title and snippet (a

few lines each). Perplexity returns a concise answer (maybe a couple hundred words). Bright Dataʼs

search tool returns just titles, URLs, and short excerpts by default; you would then explicitly use its

“crawl” tool if you want more from a particular URL. This two-step approach – search then selective

retrieval – is recommended to maximize relevance and avoid flooding Claude with too much data.

Claude Codeʼs interface also shows MCP fetched content as attachments or references, allowing you

to scroll through if needed, but Claude itself will only consider whatʼs included in the prompt it

constructs. Throughput is another aspect: if an agent loop triggers many searches or large fetches,

you could hit API limits or slow down responses. For instance, a chain-of-thought approach might

naively fire off 5 search queries in parallel; Braveʼs free tier would choke on >1 QPS. Sequential use

or batching within one query is safer. Some MCP servers (like Sequential Thinking tool) were created

to help LLMs reason step-by-step – Anthropic suggests using those instead of excessive internet

queries for complex tasks when using Claude 3.7 Extended mode. In short, the design of your

prompts/agent should be mindful of how and when to call the search tool, to stay within rate limits

and preserve latency.

Authentication & Security: Each API-based server needs a key or token, which you typically provide

via an environment variable in the MCP config (as shown in the config snippets above for Brave and

Firecrawl firecrawl.dev). Claude Code supports OAuth flows for MCP too, but for search APIs, a

simple API key header is usually used. Itʼs important to not hard-code secrets into any shared

project config; use user-level scope for these servers so that keys live in your local ~/.claude.json

(Claudeʼs global config) rather than in a project file under version control. Regarding security models,

using a managed API (Brave, Google, Perplexity) means your queries and possibly some user data

are sent to those third parties. If confidentiality is a concern, consider self-hosted solutions. A self-

hosted scraper like Open-WebSearch still sends queries to engines, but without disclosing the full

conversation context. Claude will only send the query string to the MCP server, not any private user

code or data around it, unless you explicitly include that in the search query. So leakage risk is low,

but not zero: e.g., if you ask “Search for companies similar to ”, you just exposed that project name to

the search engine. Policy tip: for enterprise settings, implement a filter that intercepts search

queries to prevent accidental inclusion of secrets. One could even modify an MCP server to ignore or

warn on queries that look like they contain a companyʼs internal code or IDs.

Finally, all retrieved data should be treated as untrusted content. Claudeʼs judgment is

generally good at not executing code from an answer or not taking malicious text as directives,

but prompt injection via a web page is a real possibility (a webpage could include hidden

instructions like “Ignore previous directions” in some HTML comment that a naive scraper might

capture). A defense-in-depth approach is advisable: have Claude request summaries of pages

rather than raw dumps when using these tools. The Claude Code UI also visually separates

fetched content and typically does not execute any HTML/JS, so the main risk is only if the

model is tricked by text. Anthropicʼs model has some safety training against that, and you as the

user/operator remain in control – you can always verify sources that Claude cites from its search.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 9 of 14

https://www.firecrawl.dev/mcp#:~:text=
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

Use Case Recommendations

Given the above analysis, here are our recommendations for the “best” MCP web search server,

recognizing that “best” depends on your specific needs:

For Individual Developers / Enthusiasts (budget-conscious): Open-WebSearch MCP is the best

starting point. Itʼs free, relatively easy to run, and its multi-engine approach offers a balance of

reliability and result diversity. You wonʼt need to sign up for any API keys, and you can tweak the

code if youʼre adventurous. If you prefer sticking to Google results and donʼt mind occasional

hiccups, the simpler Google-scraping Web Search MCP is also effective, but expect to occasionally

update it or deal with blocks. Both of these keep your costs at $0 and your setup local. If you do

have a bit of budget or prefer not to worry about scraping at all, Brave Search MCP with the free tier

API key is an excellent low-friction alternative – weʼd recommend this for most hobbyists who just

want a dependable way to ask Claude factual questions or do lightweight research on current events.

The result quality is usually sufficient, and you avoid the risk of getting shut out by Google for

scraping.

For Coding/Research Assistance: If your main use case is using Claude Code to assist in

programming or academic research, you likely want authoritative answers with citations. Here,

Perplexityʼs Ask MCP shines. It essentially gives Claude the superpower of an expert research

assistant that can pull in up-to-date information with sources. For example, when coding, you might

ask “Has this Python library fixed bug X in recent releases?” – Claude (via Perplexity) could return a

summary from release notes or GitHub issues. This saves you from manually opening browser tabs.

The caveat is cost and dependency on an external LLM service: ensure you have a Perplexity API

access (the Pro plan if needed) and monitor usage. If using Perplexity isnʼt feasible, an alternative is

Context7 MCP (if your searches are primarily for documentation/code examples) – Context7 is

designed to fetch latest documentation for APIs and libraries. Itʼs a specialized tool (e.g., pulling

official docs for Python, JavaScript, etc., without general web noise). In combination, one might use

Context7 for code-related “searches” and a general search for everything else. But if choosing one,

Perplexityʼs broader ability and quality make it the best for research-oriented queries.

For Enterprise / Production Applications: Bright Data MCP is our top recommendation. Its

comprehensive feature set (search + browse + scrape), scalability, and vendor support make it suited

for enterprise deployments. You can integrate Claude (or any AI agent built on Claudeʼs API) with

Bright Data to enable use cases like automated news monitoring, competitor website analysis, or

customer review aggregation – tasks where the AI regularly pulls lots of web data and distills

insights. Bright Dataʼs service model (API with strong uptime guarantees, compliance assurances,

and support) aligns with enterprise needs. While there is a cost, itʼs usage-based and can be

optimized (e.g., you might schedule certain queries during off-peak times, or reuse results via

caching on your side if the same info is needed repeatedly). The ease of handling edge cases

(CAPTCHA, IP blocks) is a major reason to choose Bright Data over trying to maintain your own

scraping infrastructure. Additionally, Bright Dataʼs MCP server is open-source; even if Bright Data as

a company were a concern, one could adapt the code to use a different proxy network or in-house

tools. This gives a level of future-proofing. For internal security, you can deploy the MCP server

within your network (calls from Claude to the server stay internal; the server then makes outbound

web requests). This isolation, plus options to restrict which URLs or domains the server may access,

form a solid security model.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 10 of 14

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

Itʼs worth noting that Firecrawl could be a fit for startups or teams that need web

search/scraping but find Bright Dataʼs scale or pricing overshooting their needs. Firecrawlʼs

integration is user-friendly and it emphasizes structured data extraction (they tout “no more

hallucinations – ground your AI with real web data” as a benefit, likely by providing clean

extracted facts) firecrawl.dev. If Bright Data is a heavyweight solution, Firecrawl is more

lightweight and might be more cost-effective at small scale. However, itʼs less proven, so for

mission-critical use we lean towards Bright Data or even a hybrid approach (e.g., use the Apify

MCP alongside Claude for specific scripted tasks that an AI alone might struggle with – Apify

could handle, say, logging into a site and retrieving data, then pass it to Claude for analysis).

Privacy-Sensitive or Offline Scenarios: There are cases where even hitting the public

internet is problematic (e.g., confidential projects where queries themselves are sensitive).

In such cases, obviously an “internet search” might be disallowed entirely. But one could

envision using MCP with a closed data source – for example, a local archive of web data or

an internal search engine. If that applies, the MCP framework still helps: you could

implement a custom MCP server that queries your internal knowledge base or a self-hosted

index (like an offline Wikipedia or Common Crawl subset). For anything truly offline, the

OpenMemory MCP or similar could be considered, but those are more for persistent agent

memory rather than search. Generally, if internet access is not permitted, youʼre outside the

scope of these specific tools. If limited access is allowed but privacy is key, using Brave

(self-hosted) or Google API with strict controls is advisable over using third-party LLM

services. With Google CSE, you at least know the queries are going to Googleʼs servers and

nowhere else, under terms of your enterprise agreement. With Perplexity or Bright Data, you

introduce another party. All the commercial providers in this space (Anthropic included)

have usage policies and data handling commitments, so it comes down to your risk

tolerance and possibly regulatory compliance.

Conclusion: To empower Claude Code with internet search, the “best” MCP server depends on

your context. For most users experimenting with Claude Code, Brave Search MCP offers a

sweet spot of reliability and zero-cost operation, essentially giving Claude a safe browsing

capability. Free open-source tools like Open-WebSearch MCP are fantastic and cost-free, but

require a bit more hands-on maintenance and have inherent limitations (due to scraping). In

professional settings where up-to-the-minute information is crucial, Perplexityʼs Sonar API

through the Ask MCP server can dramatically improve Claudeʼs usefulness by delivering verified,

cited answers. And for heavy-duty data gathering tasks or enterprise agents, Bright Dataʼs MCP

stands out as the comprehensive solution built to scale with your needs – effectively giving

Claude “eyes and hands” on the live web in a controlled, robust manner brightdata.com. By

carefully selecting and configuring the MCP server that fits your use case, you ensure that

Claude Code becomes not just a coding assistant but a window to the worldʼs knowledge, all

while maintaining the speed, context awareness, and security that professional applications

require.

Sources:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 11 of 14

https://www.firecrawl.dev/mcp#:~:text=Search%2C%20scrape%20with%20Firecrawl
https://brightdata.com/ai/mcp-server#:~:text=%2A%20Retrieve%20real,and%20snippets%20for%20further%20crawling
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

Anthropic (2024). Introducing the Model Context Protocol. (Definition of MCP and purpose)

Anthropic Developer Docs (2025). Claude Code – Model Context Protocol. (Claude Code integration

and server config)

pskill9 (2024). Web Search MCP – README. (Google search MCP server features and usage)

Aas-ee (2024). Open-WebSearch MCP – README. (Multi-engine search capabilities)

Reddit r/ClaudeAI (2025). “Alternative to Brave Search MCP: Google Custom Search”. (Brave vs

Google CSE free limits and quality)

Thurrott, P. (2023). Brave releases its Search API. (Brave Search API pricing and tiers)

Perplexity AI (2025). Sonar API Launch Announcement. (Sonar API features: citations, sources, tiers)

Bright Data (2025). Bright Data MCP – Product Page. (All-in-one web access, features and “no

blocking”) brightdata.com

Bright Data GitHub (2025). brightdata-mcp Repository. (Open-source MCP server by Bright Data)

Reddit r/ClaudeAI (2025). “Setting Up MCP Servers in Claude Code”. (List of available servers and

setup tips)

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 12 of 14

https://brightdata.com/ai/mcp-server#:~:text=%2A%20Retrieve%20real,and%20snippets%20for%20further%20crawling
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

IntuitionLabs - Industry Leadership & Services

North America's #1 AI Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs

leads the US market in custom AI software development and pharma implementations with proven

results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies including Scilex

Holding Company (SCLX) and leading CROs across North America.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11

compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years

in software development, multiple successful exits, and patent holder. Recognized as one of the top

AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs,

chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private

cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data

conversion, automated document analysis, and intelligent data extraction from clinical and regulatory

documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and

custom field force applications with advanced analytics and reporting capabilities.

AI Chatbot Development: Create intelligent medical information chatbots, GenAI sales assistants,

and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory

management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and

real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring,

and custom data visualization solutions for pharmaceutical insights.

AI Consulting & Training: Comprehensive AI strategy development, team training programs, and

implementation guidance for pharmaceutical organizations adopting AI technologies.

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 13 of 14

https://intuitionlabs.ai/contact?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only.

We make no representations or warranties of any kind, express or implied, about the completeness,

accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or

its representatives be liable for any loss or damage including without limitation, indirect or consequential

loss or damage, or any loss or damage whatsoever arising from the use of information presented in this

document.

This document may contain content generated with the assistance of artificial intelligence technologies.

AI-generated content may contain errors, omissions, or inaccuracies. Readers are advised to

independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are

the property of their respective owners. All company, product, and service names used in this document

are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply

endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading AI software development firm specializing exclusively in

pharmaceutical and biotech companies. As the premier US-based AI software development company for

drug development and commercialization, we deliver cutting-edge custom AI applications, private LLM

infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance

software. Founded in 2023 by Adrien Laurent, a top AI expert and multiple-exit founder with 20 years of

software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your

business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Integrating MCP Servers for Web Search with Claude Code

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 14 of 14

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://www.linkedin.com/in/adrienlaurent/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=integrating-mcp-servers-for-web-search-with-claude-code.pdf

