
Impact of Generative AI on Top

Programming Languages
By IntuitionLabs • 8/16/2025 • 80 min read

programming languages ai-assisted coding generative ai software development

github copilot code generation developer tools language trends stack overflow

Examines the top 10 programming languages by usage and popularity in the context of AI-assisted coding, analyzing AI tool

support and ecosystem maturity. - IntuitionLabs - Custom AI Software Development for pharmaceutical companies. Leading

AI Consulting USA and North American Pharmaceutical AI specialists. Led by Adrien Laurent, top AI expert USA, multiple

exit founder, patent holder, and 20 year software veteran based in San Francisco Bay Area. Premier biotech consultancy

specializing in: Custom CRM Development, ERP Development, AI Chatbot Development, Private AI Infrastructure, Document

Processing, PDF Extraction, Air-gapped AI, On-premise LLM deployment. #1 Veeva AI partner for leading GenAI

pharmaceutical solutions across North America biotech AI excellence.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 1 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Top 10 Programming Languages in the Era

of AI-Assisted “Vibe Coding”
Introduction: Software development is experiencing a paradigm shift with “vibe coding” – a

term capturing the rise of AI-assisted or generative coding practices. Tools like GitHub Copilot,

OpenAI’s ChatGPT, Amazon CodeWhisperer, and Replit Ghostwriter are becoming ubiquitous

coding partners, suggesting code and even generating entire functions from natural language

prompts. Adoption of these AI pair-programmers has skyrocketed: by late 2023, roughly 77% of

developers reported using ChatGPT and 46% were using GitHub Copilot in their workflows.

Stack Overflow’s 2023 survey similarly found 70% of respondents are already using or planning

to use AI coding tools. Moreover, these tools now contribute a substantial share of code in

projects – GitHub reported that in files where Copilot is enabled, on average 46% of the code is

generated by AI, and for Java developers this number is as high as 61%. This unprecedented AI

involvement in coding is influencing the landscape of programming language popularity and

usage.

In this report, we examine the top 10 most-used programming languages in the context of

vibe coding. These are the languages most prevalent in modern development and especially

relevant for AI-assisted coding workflows. We draw on usage statistics (from sources like the

Stack Overflow Developer Survey and GitHub’s Octoverse), popularity trends, and adoption

metrics to see how each language stands. We analyze how well each language is supported by

leading AI coding tools, the maturity of the ecosystem (libraries, frameworks, tooling) for

generative code, and practical use cases across industries where code generation is making an

impact. Figure 1 below provides a big-picture view of recent language trends, illustrating how

AI’s rise has even shifted language rankings.

Figure 1: Top programming languages by overall activity on GitHub (2014–2024), from GitHub’s

Octoverse 2024 report. Python surpassed JavaScript as the most-used language on GitHub in

2024, reflecting Python’s rapid growth amid the generative AI boom. JavaScript, though slightly

surpassed in total activity, remains #1 for direct code pushes and continues to have a massive

developer base, while TypeScript has climbed into the top three. Conventional languages like

Java and C# stay heavily used, and newer languages Go and Rust show rising trajectories.

Below, we delve into each of the ten languages likely to dominate AI-assisted development:

Python, JavaScript/TypeScript, Java, C#, Go, Rust, C++, Kotlin, Ruby, and PHP. For each,

we cover their popularity and trends, support in AI coding tools, ecosystem readiness for code

generation, and real-world examples of “vibe coding” in action.

1. Python – The AI Era’s Dominant Language

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 2 of 32

https://intuitionlabs.ai/articles/chatgpt-understanding-architecture-llm
https://intuitionlabs.ai/articles/ai-code-assistants-large-codebases
https://intuitionlabs.ai/articles/ai-code-assistants-large-codebases
https://intuitionlabs.ai/articles/pharmaceutical-software-tech-stacks
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Usage & Popularity: Python has seen surging popularity in recent years, coinciding with the rise

of data science and AI. It is often ranked at or near the top of developer surveys. In Stack

Overflow’s 2024 survey, Python was used by about 51% of developers (making it the second

most-used language after JavaScript). On GitHub, Python just overtook JavaScript as the #1

most active language in 2024 – a remarkable milestone after JavaScript’s decade-long run at

the top. This leap is directly tied to the generative AI boom, as Python is the lingua franca for AI

and machine learning development. Indeed, the Python Software Foundation notes Python’s

growth is “coupled with increased use of Jupyter notebooks, data analysis, and AI” on GitHub.

Python’s appeal spans from beginners (it ranks as the most desired language to learn) to

professionals, and it remains the top choice in academic settings and for data science research.

AI Tool Support: Python enjoys first-class support in all AI coding assistants. Its simple syntax

and huge presence in open-source mean models like OpenAI’s Codex and GPT have been

trained on vast amounts of Python code. “JavaScript is well-represented…and one of Copilot’s

best supported languages,” GitHub notes, but “languages with less representation…may

produce fewer suggestions” – and Python, like JavaScript, is one of the most represented.

ChatGPT often uses Python in examples by default, and even Meta’s Code Llama released a

special Python-tuned model to improve code generation in Python aws.amazon.com. In a

developer’s words, AI assistants have a “slight edge” with Python due to the abundance of

training data. GitHub Copilot, Amazon CodeWhisperer, and Replit Ghostwriter all list Python

among their top-supported languages. The outcome is that AI suggestions in Python tend to be

highly accurate for common tasks. For instance, Copilot can draft Python functions, data

analysis scripts, or unit tests with minimal prompt, often following PEP8 style and leveraging

popular libraries. Python is also the language of implementation for many AI tools (OpenAI’s API,

various ML frameworks), so there’s a symbiosis: developers use AI to write Python, and use

Python to build AI.

Ecosystem Maturity for Code Generation: Python’s ecosystem is extremely mature and rich.

The PyPI repository hosts over 300,000 packages covering everything from web development

to scientific computing. This vast library availability means AI has countless examples for how to

use Python APIs. Generative models can easily pull in common frameworks – e.g. Django or

Flask for web, Pandas for data – because documentation and usage patterns for these are well

represented in training data. Tooling around Python is very friendly to AI integration: dynamic

typing and an interactive REPL allow rapid iteration on AI-suggested code. There are also

growing AI-specific tools in Python’s ecosystem: for example, libraries like openai for using

LLM APIs or langchain for building AI workflows are themselves written in Python. Python’s

simple syntax makes it easy for AI to generate readable code, and easy for developers to inspect

or correct it. One caveat is that Python being dynamically typed means errors from AI-generated

code might only surface at runtime, but the community mitigates this with practices like writing

tests (which AI can help generate) and using linters. Overall, Python’s ecosystem – from

notebooks to frameworks – is highly conducive to generative coding.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 3 of 32

https://intuitionlabs.ai/articles/ai-drug-development-pipeline
https://intuitionlabs.ai/articles/ai-drug-development-pipeline
https://aws.amazon.com/blogs/machine-learning/code-llama-code-generation-models-from-meta-are-now-available-via-amazon-sagemaker-jumpstart/#:~:text=Code%20Llama%20code%20generation%20models,the%20Python%20specialized%20version
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

AI-Assisted Use Cases: In practice, Python is used with AI assistance in a wide array of

domains:

Data Science & ML: This is Python’s forte. Developers use ChatGPT or Copilot to generate data

cleaning scripts, visualization code (e.g. Matplotlib or Plotly snippets), or even boilerplate for training

machine learning models (Keras/PyTorch code). AI suggestions can save time writing routine tensor

operations or scikit-learn boilerplate. Python’s dominance in AI research means new models and

algorithms (from GPT-based chatbots to stable diffusion scripts) often come with Python reference

implementations that AI can draw upon.

Web Development: Python’s web frameworks benefit too. With Copilot, one can quickly scaffold a

Django model or Flask route handler. For example, given a prompt to “create a Flask endpoint for file

upload with size validation”, an AI assistant can produce a workable function using Flask’s idioms.

The AI is familiar with common patterns (like how to use request.files in Flask or Django ORM

queries) thanks to the large corpus of open-source web projects.

Automation/Scripting: Many use Python for writing automation scripts or DevOps tasks (think of a

quick script to parse logs, or a CI/CD deployment snippet). AI tools shine here by generating script

templates. Amazon CodeWhisperer, for instance, is often demonstrated generating AWS automation

scripts in Python, leveraging Boto3 library calls.

Education and Prototyping: Python’s readability makes it popular for learning and prototyping.

Students use ChatGPT to get help on coding exercises (with caution for correctness). In prototyping,

one can describe a desired function in plain English and Copilot will draft a Python implementation,

which can then be iterated on. This significantly speeds up the “experiment” phase of development.

In summary, Python is arguably the biggest beneficiary of the vibe coding trend. Its massive

community and wealth of examples give AI models a strong foundation, which in turn accelerates

Python development. It’s a virtuous cycle: more Python code means better AI suggestions,

which means even more Python being written. Little wonder that Python has “continued its rise…

especially coupled with generative AI’s growth” and is considered the de facto language of AI-

assisted coding.

2. JavaScript / TypeScript – AI for the Web’s Workhorse

Usage & Popularity: JavaScript (and its typed superset TypeScript) collectively represent the

powerhouse of web development, and they remain extremely widely used. JavaScript has been

the most popular language in Stack Overflow surveys for eleven years running. In 2024,

JavaScript was used by ~62% of developers, making it the #1 language, with HTML/CSS

(53%) and Python (51%) following behind. TypeScript’s star has been rising quickly: it is often

listed among the top 5–10 languages and is rapidly closing the gap with its parent. On GitHub,

TypeScript became the #3 language by overall activity (just behind JS and Python), reflecting

how many projects have adopted it. RedMonk’s language rankings (which correlate GitHub and

Stack Overflow data) now consistently place JavaScript at or near #1, with TypeScript climbing

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 4 of 32

https://intuitionlabs.ai/articles/active-learning-hitl-llms
https://intuitionlabs.ai/articles/active-learning-hitl-llms
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

into the top tier as well. In essence, JavaScript/TypeScript dominate front-end and increasingly

back-end development, so their prevalence in AI coding is a given.

AI Tool Support: Both JavaScript and TypeScript are very well-supported by AI coding

assistants – in fact, these were priority languages during the training of models like OpenAI

Codex. GitHub Copilot’s documentation notes JavaScript is one of the best-supported

languages due to its huge representation in public repos. CodeWhisperer also explicitly supports

JS and TS (adding TypeScript support soon after launch). Replit Ghostwriter, which is geared

towards web and beginner projects, “performs best with JavaScript and Python” according to

Replit, and supports dozens of JS frameworks. AI models have seen countless JavaScript

snippets – everything from basic algorithms to full-stack apps – thanks to JS being the lingua

franca of the web. This means tools like ChatGPT can generate browser code (DOM

manipulation, event handling) or Node.js code (Express.js endpoints, database queries) with

ease. TypeScript adds static typing, but AI models handle it well by leveraging type definitions

from DefinitelyTyped and common patterns. In fact, TypeScript’s rise may improve AI-generated

code quality, since the AI’s suggestions must satisfy the compiler. An anecdotal example: when

generating a React component in TypeScript, Copilot will often include the appropriate prop

types or interfaces, reducing errors. Major AI coding tools also integrate with popular JS/TS

development environments: e.g. Copilot in VS Code will suggest code as you write a React

component, and test-generation tools can create Jest tests for your JS functions automatically.

Ecosystem Maturity: The JavaScript/TypeScript ecosystem is arguably the largest in the world.

The npm package registry surpassed 2.5 million packages by 2023 – by far the biggest

collection of libraries for any language. This means for nearly any task, there’s an existing

package or snippet, and AI has likely seen it. From frameworks like React, Angular, and Vue

(which dominate frontend development medium.com) to backend frameworks like Express or

Next.js, the ecosystem’s patterns are well-established. AI assistants can draw on this: e.g.

generating a React component that uses state and effect hooks, or an Express route handler

with proper error handling, because these appear frequently in open-source. The maturity is

such that even framework-specific code generation is viable. For instance, one can prompt

ChatGPT, “Create a React component with a form that uses Material-UI”, and it will produce

code using Material-UI’s <TextField> and <Button> components with proper props –

essentially synthesizing documentation and typical usage. TypeScript’s ecosystem, being

intertwined with JavaScript’s, benefits from the same wealth of resources. TypeScript itself adds

tools like TSLint/ESLint and compilers that catch mistakes; interestingly, AI often uses these

idioms to produce cleaner code (e.g. using interfaces, generics, etc., which it has learned from

community best practices). With Node.js as the dominant server runtime for JavaScript, there’s

also a huge body of server-side code – AI can help generate database queries, API endpoint

code, or even configuration files (JSON/YAML) often used in JS projects. Finally, the web nature

of JS means AI can assist with not just pure code but also related markup: Copilot can complete

an HTML snippet or a CSS style block when working in a web project, based on context.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 5 of 32

https://medium.com/@alinaqishaheen/top-programming-languages-for-ai-coding-assistance-ranked-9d69ff03e082#:~:text=scripts%20to%20Node,AI%20suggestions%20for%20common%20tasks
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

AI-Assisted Use Cases: JavaScript and TypeScript span front-end, back-end, and everything in

between, so use cases for AI generation are broad:

Front-End UI Generation: One of the most common vibe coding scenarios is generating UI

components. Developers can write a comment describing a UI element (e.g. “// A responsive

navigation bar with a logo on the left and links on the right”) and Copilot will suggest the JSX/TSX for

a React component implementing it. It often even includes basic styling with CSS or a framework like

Tailwind. AI has “seen” many implementations of navbars, modals, forms, etc., so it can regurgitate

the general structure quickly. This accelerates prototyping of user interfaces. AI can also generate

event-handling logic (for example, form validation functions or onClick handlers) in a React or

Angular component, saving time on boilerplate.

Back-End Services: In Node.js or Deno (JS runtime) development, AI helps with creating REST API

routes, database interactions, and middleware. A prompt like “Express.js route to register a new user,

validate input, hash password, save to MongoDB” can produce a starting implementation using

common libraries (Express for routing, Joi or validator for input, bcrypt for hashing, Mongoose for

DB). This is possible because such patterns (user registration endpoints) are ubiquitous in tutorials

and open source. CodeWhisperer, oriented towards cloud developers, can even generate snippets

for AWS SDK in Node.js (for example, uploading files to S3 using the AWS SDK for JavaScript) based

on learned patterns.

Full-Stack Integration: Modern applications often require coordinating front-end and back-end

code. AI assistants can aid in generating interfaces or DTOs used on both sides, especially with

TypeScript. For example, if you describe an object shape for a JSON API response, Copilot might

generate the TS interface and also how to use it in a fetch call on the client side. This ensures

consistency and saves repetitive typing. Some developers use GPT-based tools to even generate

entire CRUD applications given a data schema – the AI will produce both the front-end TS types and

the server-side validation code.

Testing and QA: JavaScript’s dominance extends to testing (with frameworks like Jest, Mocha,

Cypress). AI can write unit tests by analyzing a function’s code and creating assertions. For instance,

if you have a pure function in JS, Copilot can suggest a Jest test suite with multiple cases. This “test

generation” is a huge time-saver for ensuring code quality. It’s notable enough that research found

GitHub Copilot could increase project productivity partly by increasing test coverage. AI is also used

to generate end-to-end test scripts (e.g. a Playwright script to simulate a user clicking through a

web page), which again is feasible due to patterns in how these tests are written.

Configuration and Build Files: A subtle but valuable use: Generative tools can help configure the

myriad of toolchains in JS projects. Setting up a complex webpack config or ESLint ruleset can be

done by prompting an AI with requirements. Similarly, writing a GitHub Actions YAML to build and

deploy a Node.js app is a tedious task that AI can handle by synthesizing known configs.

Overall, JavaScript with TypeScript is exceedingly well-served by AI coding tools. The

synergy between the language’s popularity and the AI training data means even complex

framework code can often be generated correctly. One survey of Copilot discussions noted

“JavaScript and Python are the most commonly used languages \ [with Copilot], and UI

generation is a common use”. TypeScript’s static analysis complements AI by catching mistakes

the model might make, and developers report that AI suggestions in TS usually type-check,

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 6 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

demonstrating the maturity of its support. With the continued growth of web and mobile (React

Native, etc.), JS/TS will remain at the heart of vibe coding practices for the foreseeable future.

3. Java – Enterprise Staple Embracing AI Generation

Usage & Popularity: Java is a long-established leader in programming language rankings,

particularly in enterprise and backend systems. It has consistently placed in the top 3

languages worldwide for many years. Even as newer languages emerge, Java’s footprint

remains massive: roughly 24-25% of developers use Java according to various surveys. In Stack

Overflow’s 2024 results, Java was just slightly behind Python in overall usage (around 24% of

respondents). On GitHub, Java ranks as the 4th most active language by repository

contributions. It’s telling that over 9 million developers are estimated to use Java, given its role in

Android development and large-scale server applications. The language’s usage has plateaued

compared to Python/JavaScript surges, but it’s incredibly stable – Java is entrenched in big tech

stacks (banks, telecoms, government systems, etc.). Notably, Java remains hugely present in

open-source (think of Apache projects, Spring Framework, etc.), providing a deep well of code

for AI models to learn from. It also continues to evolve (with modern Java versions adding

features like streams, lambdas, records) which have kept it relevant and interesting for

developers.

AI Tool Support: Java is very well-supported by AI coding assistants, and indeed has been a

focus area especially for enterprise-oriented tools. GitHub Copilot was trained on a wealth of

Java code, and it shows – Copilot can autocomplete typical Java code constructs (for example,

suggesting the rest of a method after seeing the signature and a comment). One striking

statistic from GitHub: among developers who use Java with Copilot, 61% of their code on

average is generated by Copilot – the highest share among major languages, suggesting that

Java developers heavily leverage AI for boilerplate. Amazon’s CodeWhisperer also targeted Java

from the start, since a lot of AWS enterprise development is in Java (the tool supports Java and

even provides code examples for AWS SDK usage in Java). JetBrains, maker of IntelliJ IDEA (a

popular Java IDE), introduced an AI Assistant plugin that supports Java and Kotlin in code

completion and documentation lookup, indicating first-class support for Java in the IDE world as

well. One reason AI tools do well in Java is the language’s verbosity and strict syntax – it lends

itself to predictive completion. Models can “close” parentheses, braces, and boilerplate reliably.

Also, Java coding has many repetitive patterns (getters/setters, factory classes, DAO layers) that

AI can generate quickly. For example, given a Java class with fields, Copilot will happily generate

all the getters and setters or even a builder pattern implementation. This kind of rote coding was

historically done by IDE generators or Lombok annotations, but now AI can do it on the fly from a

simple comment prompt.

Ecosystem and Libraries: The Java ecosystem is enormous and mature, spanning decades.

Maven Central, the primary repository for Java libraries, hosts millions of artifacts (versions of

libraries) medium.com. Practically every conceivable functionality – from logging to machine

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 7 of 32

https://medium.com/@alinaqishaheen/top-programming-languages-for-ai-coding-assistance-ranked-9d69ff03e082#:~:text=source%20ecosystem%20,syntax%20is%20more%20rigid%20than
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

learning – has a Java library. This is a boon for generative AI because it has a huge corpus of

examples on how certain libraries are used. For instance, the Spring Boot framework (extremely

popular for building web and microservice apps) appears in countless public GitHub repos.

Copilot, having seen many @RestController classes and SpringApplication.run() calls, can

automatically write a basic Spring Boot REST controller class when prompted. Similarly, for data

access, Java’s JDBC or JPA usage patterns (annotating entity classes, writing repository

interfaces) are very standard – AI can fill those out once it recognizes the context. The Java

community also relies on conventions and standard project structures (Maven archetypes, etc.),

which helps AI infer what you might need. Another strong point is that Java’s static typing and

explicitness mean AI-generated code either compiles or gives clear errors. Many developers use

AI suggestions together with the compiler: accept the suggestion, then see if it compiles/tests

pass. The compiler will catch any API misuse (e.g. wrong type being passed), and often the AI

suggestion is correct or only slightly off, requiring minor tweaks. This feedback loop is fast with

modern IDEs.

AI in Practice – Use Cases:

Boilerplate and Repetitive Code: Java is infamous for boilerplate, and that’s where AI shines.

Common tasks like implementing an equals() and hashCode() method, or serializing objects to

JSON using Jackson, are now often done by Copilot. For example, a developer can write a comment

“// toString method” in a class, and Copilot will generate a toString implementation listing all fields –

essentially doing what IDE generators do, but without explicit invocation. Another example is

constructors: in a class with many fields, Copilot can suggest a full constructor with all parameters,

or a builder class, etc., based on context. These are tedious to write manually but trivial for an AI

trained on thousands of similar classes.

Enterprise Integration Code: Java is heavily used in enterprise integration (web services, database

connectivity, messaging). AI coding assistants help by writing glue code: e.g., using JDBC to connect

to a database, or using JMS to send a message. A prompt might be “create JDBC code to query for

users where age > 30” and the AI will produce a snippet with try-with-resources, proper handling of

ResultSet , etc., drawn from best practices. In one Microsoft DevBlog example, developers used

Copilot to help convert an old EJB application to Spring Boot by prompting it for setup and

dependency code. It could generate pom.xml entries, Spring annotations, etc., accelerating what

would otherwise be a manual, laborious rewrite.

Spring Boot and Framework Usage: Spring Boot has become the de facto framework for modern

Java services. Copilot and others are adept at Spring because the framework’s patterns are

consistent. If you start typing a Spring @Controller class, Copilot will suggest method stubs for

common HTTP endpoints. If you write an interface that extends JpaRepository<YourEntity, Long> ,

it can even suggest method names following Spring Data conventions (like findByUsername(String

username) automatically). This is extremely useful, as these method names turn into queries via

Spring magic – Copilot has effectively learned the convention and helps apply it. Amazon

CodeWhisperer similarly is tuned to help with AWS-related Java code (for example, generating code

to publish a message to an SNS topic using the AWS SDK for Java). All of this reduces the need to

constantly search documentation for framework usage.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 8 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Android Development: Java (along with Kotlin) is used for Android apps. While Kotlin is now the

preferred language, a huge amount of Android code is still Java. AI assistants can generate Android

UI code (XML layouts or Jetpack Compose code in Kotlin, though for Java it might do older XML-

based patterns), event handlers, or even entire Activity classes. For instance, describing an Android

activity that fetches an API and updates the UI, an AI can produce the network call (perhaps using

OkHttp or Retrofit) and stub out the UI update logic. Android has many boilerplate callbacks (like

dealing with permissions, lifecycle), and AI can fill those in since they’re well-documented on forums

like Stack Overflow.

Debugging and Explanations: Another angle of AI assistance is using tools like ChatGPT to explain

Java errors or suggest fixes. While not code generation per se, it’s part of the “vibe coding”

experience: e.g. a developer pastes a stack trace or an error message, and the AI explains the likely

cause (null pointer, classpath issue, etc.) and how to fix it. This accelerates the development loop

and helps with language-specific nuances (like remembering to close resources or handle exceptions

in Java).

Ecosystem Considerations: Java’s ecosystem also includes build tools (Maven/Gradle) and

testing frameworks (JUnit, TestNG). AI can help write build scripts (e.g., a Maven POM snippet

for a new dependency) or unit tests. Some studies have examined Copilot for test generation in

Java; one found that Copilot could generate tests but many failed without human context,

showing it’s not a silver bullet arxiv.org. However, even a failing generated test can be a helpful

starting point for a developer to then adjust.

In summary, Java’s long history and structured nature make it a prime candidate for AI-

assisted development. Developers are leveraging generative AI to avoid writing boilerplate by

hand and to ensure consistency across large codebases. The combination of powerful static

analysis (Java compiler) with AI suggestions yields a high productivity environment. Java is no

longer seen as a “no-frills” verbose language – with AI, much of the verbosity is handled

automatically, letting developers focus on business logic. As one research report noted, “Python,

Java, and TypeScript are the most common languages for code generation, especially for data

processing and transformation” – Java’s inclusion in that list underscores that even in the AI era,

it remains central to building robust applications.

4. C# – .NET Development with AI Assistance

Usage & Popularity: C# (C-Sharp) is Microsoft’s flagship language for the .NET platform and

enjoys a broad user base in enterprise, desktop, and game development. It frequently ranks in

the top 5-6 languages on indexes like TIOBE and RedMonk. In Stack Overflow’s surveys, about

21-23% of professional developers use C#, putting it on par with C++ and slightly below Java.

C# is especially dominant in certain domains: for example, it’s the primary language for Unity

game engine scripting (which gives it a strong following among game developers), and it’s

widely used for Windows applications and tools. Microsoft’s ecosystem and large open-source

projects (like Roslyn, ASP.NET Core, etc.) have generated a rich set of C# repositories that AI

models have trained on. Over the last decade, C# has also expanded to cross-platform

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 9 of 32

https://arxiv.org/html/2501.13282v1#:~:text=,of%20generated%20tests%20fail
http://asp.net/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

development with .NET Core/.NET 6+, meaning its usage is not limited to Windows. This ubiquity

ensures that C# code and questions are plentiful on GitHub and Stack Overflow, feeding the AI

knowledge base. JetBrains reported that C# is among the highest-paid language skills,

reflecting its enterprise demand, and indeed C# is entrenched in many corporate IT departments

for internal tools and web services.

AI Tool Support: As a major language, C# is fully supported by AI coding assistants. GitHub

Copilot works seamlessly in Visual Studio and VS Code for C#, leveraging the wealth of .NET

code on GitHub. In fact, Microsoft has integrated AI features (rebranded as “IntelliCode” in some

contexts) directly into Visual Studio, such as whole-line completions and AI-assisted code

reviews. Copilot’s code review feature, for example, recently added support for C# (and C++,

Kotlin, etc.) to generate review suggestions and explanations. Amazon CodeWhisperer also

supports C#, given that a lot of AWS SDK usage is from C# applications. Replit Ghostwriter

supports C# as well, though C# developers typically work in IDEs like Visual Studio more than in

lightweight editors. The bottom line: all major tools treat C# as a first-class citizen, similar to

Java. The training data for these models included a lot of C# (thanks to open-source .NET Core

projects and Unity scripts), so models can generate idiomatic C#. For example, Copilot can write

LINQ queries, implement an interface with required methods, or use async/await correctly,

because these patterns appear frequently in code. One advantage C# has is its strong IDE

metadata – with Roslyn, the compiler platform, IDEs have deep knowledge of code structure.

This potentially allows AI assistants to hook into that (though current Copilot mostly uses text

context, some IDEs like IntelliJ’s AI Assistant for Rider may leverage AST info). The result is

suggestions that often feel like super-powered IntelliSense, completing not just a word but an

entire snippet (e.g. generating a property with backing field, or a foreach loop iterating over a

collection, with correct types).

Ecosystem & Libraries: The C#/.NET ecosystem is vast and modern. NuGet, the package

manager for .NET, has over 435,000 packages available nuget.org, spanning web, desktop,

cloud, and game development. For AI models, this means recognition of common library usage:

e.g. generating code that uses HttpClient for web requests, or Entity Framework Core for

database operations, or Azure SDKs for cloud services. .NET’s extensive official documentation

and coding conventions likely influenced training data – many developers follow Microsoft’s

examples closely. As a result, if you ask ChatGPT how to do something in ASP.NET Core (say,

“upload a file in an ASP.NET Core controller”), it will produce code very similar to Microsoft’s

docs, using the prescribed services and model binding attributes. This consistency is an

advantage. The ecosystem has also embraced modern C# features (like async streams,

records, pattern matching), and AI can utilize them because open-source projects have adopted

them. For instance, Copilot might suggest using a record for a simple DTO class rather than a

traditional class with properties, reflecting the community trend.

AI-Assisted Use Cases in C#:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 10 of 32

https://www.nuget.org/PACKAGES#:~:text=NuGet%20Gallery%20,0
http://asp.net/
http://asp.net/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Web Development (ASP.NET Core): C# is widely used for web APIs and web apps via ASP.NET

Core. AI assistants help by generating controller methods, DTO classes, and even configuration in

JSON files. A typical scenario: a developer adds a new API endpoint; Copilot might suggest the entire

method implementation (querying the database via Entity Framework, mapping to a response model,

etc.) after seeing the method name or a few comment lines. It can also write the corresponding C#

data model or ViewModel if you hint at it. Moreover, tasks like setting up dependency injection

(registering services in Startup.cs or the newer Program.cs minimal hosting) can be done by

prompting the AI, which knows the boilerplate (e.g. services.AddScoped<IMyService, MyService>

();). This reduces the friction of remembering exact API names.

Cloud and AWS/Azure Integration: Many C# applications integrate with cloud services.

CodeWhisperer, for instance, can auto-generate code to interact with AWS from C# (like uploading

to S3 using the AWS SDK for .NET). Similarly, Copilot can help with Azure SDK usage (writing code to

put a message on an Azure Queue, for example). These SDK calls tend to be verbose and require

correct configuration objects – AI suggestions often correctly populate those based on what it’s

seen. Microsoft has been infusing AI into Azure development too (like Azure Functions AI prompts).

Essentially, for any cloud API in C#, chances are the AI has seen an example of it.

Desktop Application Code: C# remains popular for desktop GUI apps (via WPF, WinForms, or the

newer MAUI for cross-platform). Copilot can assist with typical desktop patterns, such as data-

binding in WPF or setting up UI event handlers. If you write XAML markup, it may even suggest

property values or child elements. In code-behind, typing a button click handler stub could prompt

Copilot to fill in a generic implementation or at least a log message. While desktop GUI code is often

visual, having AI write the boilerplate (like background worker setup or property changed event

raising) is a timesaver.

Game Development (Unity): One unique domain for C# is Unity 3D engine scripting. Unity

developers have started using Copilot to generate common MonoBehaviour scripts. For example, if

you write a Unity script with methods like Start() or Update() , Copilot can suggest code inside

them. A prompt like “// move the object forward continuously” in a Unity script will yield a snippet

using transform.Translate with Time.deltaTime – indicative that it has learned from typical Unity

Q&A forums. It can also help with calculating physics or responding to collisions (writing the

OnCollisionEnter method etc.). Unity has a lot of repetitive patterns (check for input, spawn

objects, etc.), all of which the AI has likely seen.

Tooling and Scripting: C# is often used for scripting build tasks or small tools (akin to how Python

might be used elsewhere). For instance, many teams use C# in build pipelines or to write LINQPad

scripts. AI can generate these snippets as well, like writing a small script to parse an XML file or to

call a web API and save results. It’s straightforward for the AI given the consistency of .NET’s

libraries.

Maturity & Best Practices: The C# community puts emphasis on best practices (e.g.

IDisposable patterns, async practices, SOLID principles in design). AI suggestions tend to mirror

these since they are prevalent in public code. There’s even anecdotal evidence that Copilot can

sometimes warn of common mistakes (for example, not awaiting a Task, or forgetting to dispose

something) by virtue of how it completes code with the proper patterns. Microsoft’s Copilot

documentation notes that it filters out certain insecure patterns in languages – for C#, it can

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 11 of 32

http://asp.net/
http://asp.net/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

block suggestions that include hardcoded credentials or known vulnerable code patterns. This

security awareness is crucial in enterprise settings. It means AI isn’t just generating code blindly;

there’s some guardrails for obvious issues.

In essence, C# development with an AI assistant feels like having an expert pair

programmer who has read all of Microsoft’s docs and GitHub issues. It accelerates the

routine parts of coding, whether it’s in a web controller or game logic or a background service.

As one developer survey noted, a majority using Copilot felt more productive and were able to

focus on more satisfying work – in C# this translates to spending less time on monotonous code

and more on core logic. Given Microsoft’s heavy investment in both C# and AI (with things like

GitHub Copilot and the upcoming “Copilot X” in Visual Studio), we can expect even deeper

integration, making vibe coding an integral part of the .NET developer’s toolbox.

5. Go – Cloud-Native Coding with Generative Help

Usage & Popularity: Go (Golang) is a newer language (first released in 2009) that has rapidly

gained popularity, particularly for cloud-native and DevOps tooling. It was designed by Google

for simplicity and concurrency, and it’s used heavily in modern infrastructure software (Docker,

Kubernetes, Terraform, etc. are written in Go). In surveys, Go often ranks just outside the top 5 in

usage – around 10-15% of developers use Go, depending on the demographic. For example,

Stack Overflow’s 2023 survey showed Go usage around 11% overall, but among certain

segments (e.g. developers in DevOps roles) it’s higher. JetBrains’ 2023 report highlighted Go as

one of the top 3 highest-paid language skills, reflecting its demand in industry. On GitHub, Go is

consistently in the top 10 languages (it was #10 by repository activity in 2024) and is one of the

fastest-growing languages by contributions. The Go community tends to be very open-source-

oriented, meaning a lot of Go code is available in public repos for AI training. Go’s ethos of clarity

and “production-readiness” (no unused imports, standardized formatting) means that AI

generating Go code often produces clean, standardized results (since most Go code follows

gofmt and effective Go guidelines).

AI Tool Support: All major AI coding tools include Go in their supported languages. GitHub

Copilot was used by many developers to write Go as soon as it launched – in fact, Copilot can be

quite adept at completing repetitive Go code like error handling. Amazon CodeWhisperer lists Go

among the languages it can generate code for (reflecting AWS’s use of Go for some Lambda

functions, etc.). Replit Ghostwriter also supports Go, although Go developers often prefer local

development. The support quality is generally good: Go’s syntax is relatively simple (no complex

templates or generics until recently), which makes it easier for the AI to generate correct code.

One interesting note: because Go is strongly opinionated about error handling (explicit if err

!= nil checks everywhere), Copilot often inserts those automatically in its suggestions – which

is great, because it means the AI isn’t ignoring errors. It has “learned” from countless Go

examples that after calling a function returning (result, err) , the next lines should check

err . This kind of idiomatic insertion is a huge boon to productivity and code quality. Similarly,

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 12 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Go’s recent addition of generics (type parameters) is something AI has started to handle by

following how open-source projects use them. In practice, if you’re writing a Go function that

could be generic, Copilot might suggest a generic version if it’s beneficial.

Ecosystem and Libraries: Go’s ecosystem, while younger, is quite rich in the areas it specializes

in (cloud, networking, etc.). The Go module proxy and repositories like pkg.go.dev list over

100,000 modules (as of early 2023, ~190k modules indexed per Lib.Hunt stats). Not as large as

JavaScript or Python, but very focused. A lot of Go libraries are for things like web servers (Gin,

Echo), databases (SQL drivers, ORMs), distributed systems, and so on. AI has likely seen many

popular ones. For example, Gin Web Framework is widely used – an AI might generate a snippet

of a Gin route handler with the correct context JSON binding because it’s common in examples.

Another example: Go’s HTTP client and server usage is very standardized (net/http package). If

you ask for an HTTP server in Go, ChatGPT will pretty much quote the Go by Example snippet:

creating a http.HandleFunc and calling http.ListenAndServe , etc., because that’s the

canonical way. This consistency across the ecosystem helps AI produce useful code. Moreover,

Go’s tooling (like go fmt , go vet) ensures a uniform style in codebases; AI outputs tend to

conform to that style (no surprise, since non-conforming code likely wouldn’t appear in popular

repos).

AI-Assisted Use Cases:

CLI and DevOps Tools: Go is heavily used for command-line tools and DevOps utilities. AI assistants

can accelerate writing these by generating argument parsing code (using libraries like Cobra or the

standard flag package) and common routines. For instance, you could prompt, “Write a Go CLI that

takes a filename and prints the number of lines”, and get a structured program with flag.String()

for the filename and code to open the file, scan lines, count them, etc. This is great for quickly

prototyping tools. Copilot often suggests code using efficient patterns (like bufio scanner for reading

files) because that’s idiomatic Go.

Concurrent Programming: One of Go’s strengths is concurrency via goroutines and channels.

Developers might ask an AI to “perform concurrent HTTP requests and collect the results”, and the

AI can output a pattern with launching multiple goroutines and using a WaitGroup or channel to

synchronize – patterns it’s seen in many Go tutorials. It lowers the entry barrier for writing correct

concurrent code. Additionally, AI can help with tricky parts like channel selection (select

statements) by completing the typical cases.

Web Services and APIs: Writing a REST API in Go often involves boilerplate: defining

request/response structs, writing handlers, error handling. AI tools can generate a significant portion

of this. For example, if you define a struct for a JSON response, Copilot can fill the JSON tags for you

automatically (because it sees field names and likely knows you’ll want \ json:“fieldName”`` tags). It

can also set up router paths. A study found that for “algorithm, data structure, and user interface

implementations”, languages like C/C++ and JavaScript were common, whereas for “data processing

and transformation” tasks, languages like Go appear as well. This implies that Go is often used with

AI for back-end data handling and service logic.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 13 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Cloud SDKs and Infra-as-Code: Many cloud infrastructure tools (Terraform, Kubernetes operators,

etc.) are written in Go. While writing actual Terraform code is more HCL than Go, developers building

custom tooling or operators in Go can benefit from AI suggestions. For example, using the

Kubernetes Go client library involves a lot of boilerplate to set up informers or watchers – an AI can

generate a template for that after seeing the resource type. Amazon’s CodeWhisperer can also

output Go code for AWS tasks (like creating an EC2 instance via the AWS Go SDK). These SDK calls

often require constructing config objects; AI can fill those in with plausible defaults.

Error Handling Patterns: As mentioned, Go’s explicit error handling is something AI has learned

well. When you call a function in Go, Copilot will nearly always append an if err != nil { return

err } block after it if the context suggests it’s needed. This not only saves keystrokes but also

ensures no error path is forgotten – a common bug source. Similarly, for resource cleanup, AI might

suggest defer file.Close() right after opening a file, mirroring best practice. These small things

greatly enhance code quality and developer experience.

Ecosystem Maturity for Generation: Go’s culture emphasizes simplicity and avoiding “magic,”

which means most code is straightforward. This actually helps AI generation because there’s

less context-specific trickery. Even without deep understanding, an AI can brute-force a correct

solution by regurgitating common patterns. The ecosystem has also developed tools like go

generate for code generation (at compile time) and templating systems, but AI takes this further

by generating at edit time. For instance, instead of writing a code generation template, a

developer can just ask Copilot to produce repetitive code (like a bunch of struct definitions) and

then maintain it manually as needed – sometimes quicker for one-off tasks.

In conclusion, Go has become a go-to language for AI-assisted development in systems

programming and cloud infrastructure. It’s highly compatible with generative coding due to its

clarity and convention. Developers using vibe coding in Go report that it helps in writing

boilerplate and encourages idiomatic practices (since the AI tends to propose the standard

approaches). Given Go’s ongoing popularity in microservices and tools (and its strong growth on

GitHub), we can expect AI tools to continue honing their Go knowledge, perhaps even fine-

tuning on Go repositories to provide more semantic insight (e.g. suggesting performance

improvements or warning of pitfalls, as those appear in commit histories).

6. Rust – Safe Systems Programming with AI on Board

Usage & Popularity: Rust is a systems programming language that has garnered a ton of

enthusiasm, though its user base is smaller compared to the giants. It is often cited as the

“most admired” language by developers – Stack Overflow surveys have shown Rust at the top

of the “want to continue using” list for multiple years (83% of Rust developers want to keep

using it). This passion has led to a vibrant community and many open-source contributions. In

terms of usage, Rust is still emerging: roughly 8-12% of developers have used Rust in the past

year. It’s not yet a top 10 language by volume (on GitHub, Rust was not in the top 10 in 2024, but

it is in the top 10 fastest growing). However, interest in Rust is surging in domains like systems

software, cryptography, blockchain, and parts of industry (e.g. Rust is being adopted at

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 14 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Microsoft for Windows components, and at AWS for infrastructure services). The key selling

points of Rust – memory safety, performance, and zero-cost abstractions – have made it a

favorite for those looking to replace C/C++ code with something safer. This context means AI

tools are beginning to see more Rust code, and the Rust community’s openness (crates are often

on GitHub, discussions on users.rust-lang forum, etc.) feeds data into LLM training sets.

AI Tool Support: Rust is supported by GitHub Copilot and Amazon CodeWhisperer (which

added Rust support upon general availability). It’s also available in Replit Ghostwriter’s set

(Ghostwriter reportedly supports 16+ languages including Rust). That said, Rust poses a unique

challenge for AI generation: the compiler’s strict rules (borrow checker) and complex type

system mean that an AI-suggested snippet might look correct but fail to compile due to subtle

lifetime or mutability issues. Early Copilot users in Rust noted that suggestions often needed

adjustments to satisfy the compiler. However, this is improving as models see more valid Rust

code. The presence of Rust in open-source (e.g., projects like Servo, TiKV, etc.) and its

consistent style (Rustfmt ensures a uniform style) help the AI produce more correct code.

There’s also the fact that Rust has a steep learning curve; ironically, this makes AI assistance

more valuable, as it can help newbies by writing code that adheres to Rust’s rules. An example: if

you prompt Copilot to sort a vector of custom structs, it will suggest implementing Ord or using

sort_by with a comparator closure – tasks that require knowledge of Rust traits that a newbie

might need to look up. AI just gives it directly. Microsoft’s AI and Research teams have interest in

Rust too (given Rust’s role at MS), so it wouldn’t be surprising if future AI models give special

attention to Rust patterns.

Ecosystem and Libraries: The Rust ecosystem, centered around crates.io, has grown

tremendously – over 100,000 crates are available (the 100k milestone was reached in 2023).

Rust’s libraries cover everything from low-level kernel development to web services (e.g., Actix

and Rocket web frameworks) to CLI tools (Clap for argument parsing). Because Rust often

replaces C/C++, many crates wrap or bind to C libraries (OpenSSL, etc.) but with safe

abstractions. AI models likely have been trained on a subset of popular crates (or at least their

usage). For instance, usage of Serde (the de-facto serialization library) is so widespread that an

AI can easily produce code with # [derive(Serialize, Deserialize)] attributes on structs –

the common way to make a struct serializable in Rust. Similarly, error handling with Result and

the ? operator is something Copilot has learned; it frequently suggests adding ? to propagate

errors, which is idiomatic. Rust has a very active question/answer culture (e.g., a lot of Q&A on

Stack Overflow and the Rust users forum), so there is a wealth of explanation that models like

GPT have likely ingested. This means not only code generation, but AI explanations for Rust

code might be better – a user can ask “why won’t this code compile?” and get a helpful answer

about lifetimes or mutability.

AI-Assisted Use Cases:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 15 of 32

http://crates.io/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Systems Programming Tasks: Rust is often used for systems-level components – things like writing

a file system, network protocol implementation, or an OS subsystem. AI can help by generating low-

level code templates. For example, one could ask ChatGPT to “implement a basic TCP echo server in

Rust” and get code using Rust’s async I/O (Tokio library) or even using the standard library

TcpListener . The AI might include proper error handling and even comments. Another scenario:

writing FFI (calling C from Rust) – the AI could provide the unsafe { } block with libc calls

properly, because it has seen how Rust deals with FFI.

Algorithmic Coding: Rust has been increasingly used in competitive programming and algorithm

development due to its performance. An interesting observation from research: “C/C++ and

JavaScript are the most common for algorithm and data structure code generation tasks”, likely

because those communities are bigger. But Rust is making inroads in that space as well. If you ask an

AI to implement, say, Dijkstra’s algorithm in Rust, it can do so with the typical patterns (using a

BinaryHeap , etc.). The generative AI can save time by recalling the exact syntax for these things,

which might be less familiar to someone new to Rust (like implementing trait PartialEq or using

std::collections). Essentially, AI can serve as a mentor showing the Rust way of doing standard

algorithms.

Memory Safety and Borrow Checker Help: One unique use of AI in Rust is as an assistant to work

through borrow checker errors. Rust’s compiler errors are famously detailed, but sometimes you

need a bit of guidance to redesign code to satisfy lifetimes. A developer can describe the problem to

ChatGPT (e.g., “I have a mutable reference in a loop and I get a borrow error”) and it can suggest

refactoring (maybe using indices instead of references, or cloning, or reordering code) to fix it. While

this is more Q&A than code generation, it’s part of the vibe coding workflow in Rust – the AI helps

you navigate the strict rules. Over time, if models ingest enough Rust code and compiler outputs,

they might even directly suggest code that compiles without needing such refactoring.

Metaprogramming and Macros: Rust has a powerful macro system (for code generation at compile

time). It’s not trivial to write macros, but generative AI might assist there too. For instance, writing a

macro_rules! macro to generate repetitive code – a user can prompt, and the AI might produce a

working macro pattern. There have been experiments using GPT-4 to write Rust macros based on

intention description. This is a niche but useful capability because even experienced Rustaceans

sometimes struggle with macro syntax.

Embedded and WASM: Rust is used for embedded programming and WebAssembly. AI can

generate boilerplate for an Arduino/embedded setup (like initializing peripherals with the embedded-

hal traits) or for compiling to WASM (like setting up wasm-bindgen externs). The ecosystem in these

areas is smaller, but the patterns are usually documented in a few canonical examples which the AI

likely knows.

Ecosystem Maturity for AI: Rust’s ecosystem is considered quite young but robust. One sign of

maturity is how specific the AI’s recommendations can be. For example, if you mention needing

asynchronous runtime, Copilot might start writing code with tokio::main attribute, since Tokio

is the standard. Or if you deal with JSON, it’ll go straight to Serde. This indicates it has aligned

on the community’s main tools. Rust also strongly emphasizes tests and documentation;

interestingly, AI can write Rust doc comments or tests as well. It might generate a /// #

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 16 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Examples section in documentation comments with an example usage of a function if prompted,

following Rust’s convention.

A challenge remains that AI-suggested Rust code might not compile on first try. But developers

treat that as part of the interactive process: Copilot gives a starting point, the compiler points

out an issue, and either the developer or the AI (with another prompt) fixes it. This iterative loop

is essentially how humans code in Rust too, just sped up. As the models improve and incorporate

more semantic understanding (perhaps via tools that let the AI query the compiler during

suggestion), we can expect more first-try correct Rust suggestions.

In summary, Rust is carving out a strong niche in AI-assisted development, especially for

systems programming where safety and correctness are paramount. The combination of a

strict compiler and an AI helper is almost like having a tutor—Copilot writes some code, the

compiler educates on what’s wrong, and together they converge on a solution. Rust’s rise

alongside the generative AI boom is noteworthy (Rust was the only “popular language” to hit a

new usage record in JetBrains’ data), and many attribute Rust’s accessibility to its excellent

tools and community. AI is becoming one of those tools: lowering the learning curve and

speeding up development in a language that many see as the future of safe systems code.

7. C++ – Augmenting the Workhorse of Native Code with

AI

Usage & Popularity: C++ is a venerable giant in programming, powering everything from

operating systems to game engines for decades. It remains one of the most widely used

languages in performance-critical domains. Surveys typically place C++ in the top tier of usage;

for instance, Stack Overflow’s 2024 survey showed C++ usage around 20-25% of

respondents. This is significant given the variety of domains included – essentially, a quarter of

developers still work with C++ in some capacity. On GitHub, C++ was the 6th most active

language in 2024, reflecting its continued relevance in open source (think of projects like LLVM,

various database engines, etc.). While languages like Rust and Go have emerged as alternatives,

C++ has an enormous existing codebase (spanning decades) that isn’t going anywhere. It’s also

evolving (with C++17, C++20, and beyond introducing new features), making it somewhat of a

moving target for developers. The sheer volume of legacy and modern C++ code on the internet

makes it a rich dataset for AI training. C++ is known for being powerful but complex – managing

memory, templates, undefined behaviors, etc., can be tricky – which sets the stage for AI

assistants to be quite useful.

AI Tool Support: Generative AI supports C++ well: GitHub Copilot works in C++ files to suggest

code, and it recently added support for C++ in its code review capabilities. Amazon

CodeWhisperer also includes C++ in the languages it can generate. That said, C++ is one of the

more challenging languages for AI assistance due to its complexity. Models must handle not just

syntax but also semantics like types and memory. Early experiences with Copilot in C++ show it

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 17 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

can autocomplete typical code (like loops, standard library usage) very effectively – e.g., it can

suggest the rest of a for loop iterating over a container. For boilerplate tasks (like

implementing constructors, operators, etc.), it’s very handy. There is a risk, however, that an AI

might suggest code that appears fine but has subtle issues (like not handling memory correctly

or using outdated practices). To mitigate that, Copilot’s vulnerability filter tries to prevent

suggestions with known dangerous patterns (e.g., functions notorious for buffer overflows).

Also, Copilot’s training would have included many modern C++ best practices since those are

prevalent in open source – for example, using smart pointers (std::unique_ptr etc.) rather

than raw pointers, or range-based loops instead of index loops. So often, Copilot will naturally

lean towards safer modern C++ idioms in its suggestions.

Ecosystem and Libraries: The C++ ecosystem is vast but not centralized (no single package

manager is universal, though vcpkg, Conan, etc., exist). Still, there are many widely used

libraries: STL (part of the language), Boost, Qt for GUI, Eigen for math, etc. AI models likely know

pieces of these from their documentation and usage in open code. For instance, if you start

writing a Qt application and add a QPushButton , Copilot might suggest connecting signals and

slots, because it has seen Qt code in GitHub repos. Similarly, if you include <algorithm> and

start writing a sort call, it might complete with a lambda comparator if needed. A notable aspect:

many C++ projects historically have had less online Q&A (compared to something like Python)

for deep issues, but they do have a lot of source code available (for AI to learn from). Another

aspect is that C++ code can be vey domain-specific (embedded vs. game dev vs. financial, each

with their patterns). AI’s usefulness can vary by domain – for example, in game dev using Unreal

Engine C++, Copilot can help with common Unreal API usage (like creating a new Actor and

overriding BeginPlay), because it has seen the Unreal headers and typical usage patterns. For

low-level embedded C++ (where often a subset of C++ is used), Copilot might sometimes

suggest more generic patterns not applicable to the hardware constraints, so developers have to

guide it with more specific prompts.

AI-Assisted Use Cases:

Routine Algorithms and Data Structures: C++ is often used for high-performance algorithms. AI

can readily generate implementations for things like sorting algorithms, tree traversals, etc., in C++

upon request. In fact, one study evaluated Copilot on competitive programming-style tasks in C++,

and it could generate correct solutions a good portion of the time. For example, ask for “binary

search in C++” and you’ll get a template that is likely correct (and uses std::lower_bound or manual

loop based on typical answers). This speeds up writing boilerplate solutions.

Modern C++ Features Usage: Many C++ developers haven’t memorized all modern features (like

fold expressions, constexpr intricacies, etc.). AI can assist by providing examples. If a developer

comments “// use std::variant for a simple state machine”, the AI might generate a snippet using

std::variant with std::visit – a combination that shows how to use a modern feature that might

otherwise require looking up. This accelerates learning-by-example. It effectively surfaces patterns

from C++20 that an average developer might not use daily.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 18 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Refactoring and Legacy Code Migration: An interesting use of generative AI is to help upgrade old

C++ code to modern standards. For instance, converting raw pointer code to use smart pointers or

converting C-style arrays to std::array / std::vector . One could paste an old function and prompt

the AI to modernize it; it might replace manual memory management with RAII patterns. The AI,

having seen both old and new C++ code, can act as a translator. Microsoft’s research has looked into

AI-assisted refactoring, and although it’s early, such use cases are promising for large C++

codebases that need modernization.

Game Development Patterns: C++ is huge in game dev (Unreal Engine uses C++, as do many

custom engines). AI can help with typical patterns like entity-component systems, game loop

structures, or even writing shader code (though shaders are often HLSL/GLSL, which some models

might know superficially). Within Unreal, a developer can benefit from Copilot by generating class

boilerplate with UCLASS macros correctly set up, or typical gameplay code (for instance, an AI might

know that in Unreal, you often call UE_LOG for logging or use FVector for positions). It reduces the

time needed to remember API details.

Embedded and Performance-Critical Code: In embedded systems where C++ might be used with

certain restrictions (no exceptions maybe, limited heap), the AI can still be useful for generating low-

level bit manipulation code or state machines. For example, describing an interrupt service routine

logic in a comment might lead the AI to propose a structure for it in C++. It’s essentially doing what a

firmware engineer would do but faster. Of course, one must carefully verify AI output in such

contexts for efficiency and correctness, but as a starting point it’s often fine.

Code Explanation and Debugging: Another facet: using ChatGPT to explain complex C++ error

messages or template meta-programming gone wrong. C++ errors can be notoriously verbose

(particularly template instantiation errors). An AI that can parse and explain “why does this template

deduction fail” is extremely helpful. While this is ancillary to code generation, it complements it: the

AI might generate some template code and if it doesn’t compile, the same or another AI can help

figure out why.

Ecosystem Maturity and AI: C++ has a mature, albeit fragmented, ecosystem. Tools like

compilers and static analyzers (e.g. clang-tidy) help maintain quality. We may see AI integrate

with those – for example, an AI might incorporate common clang-tidy fixes into its suggestions.

Already, models probably picked up on common warnings and their solutions (like “prefer

std::shared_ptr over raw pointers” style advice). As a result, AI suggestions in C++ often

encourage better practices. For instance, one might notice Copilot tends to include override

on virtual function overrides, which is a good practice that older code might omit – it likely does

this because in many high-quality codebases, that’s what is done, so the pattern got reinforced.

One challenge is that C++ is so powerful that multiple approaches exist for a task (e.g., raw loop

vs STL algorithm vs Boost library). The AI might choose one arbitrarily. If the developer has a

preference, they may need to nudge it. For example, if Copilot gives a raw loop but you prefer an

STL algorithm, you might edit the code toward that style and then the AI will follow that lead next

suggestions.

In summary, C++ stands to benefit significantly from AI assistance by reducing its

notorious complexity and helping developers navigate its vast feature set. While an AI won’t

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 19 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

magically simplify C++’s memory model or concurrency issues, it serves as a powerful ally for

writing correct C++ more quickly. It’s almost like having an encyclopedia and tutor at your side:

need to use a certain library or feature? – the AI provides a template. Stuck on an error? – the AI

explains it or even fixes it. Given the huge existing codebase, AI’s role in maintenance (reading

and refactoring C++ code) will be as important as generation of new code. And with companies

like OpenAI/Microsoft focusing on languages with many enterprise users (C++ certainly among

them), we can expect continual improvements in how well AI understands and produces C++.

8. Kotlin – Android and Beyond with Smarter Code

Generation

Usage & Popularity: Kotlin is a modern, pragmatic language that started on the JVM and has

become the go-to language for Android app development. Its usage has grown steadily since

Google announced Kotlin as an official Android language in 2017. While Kotlin’s overall share

among developers is moderate (around 5-8% use Kotlin according to surveys), within the

mobile development world it’s very prominent. JetBrains (the creator of Kotlin) reported that

66% of Kotlin developers use it for Android apps. Kotlin also sees use in server-side

development (Spring supports Kotlin, etc.) and multiplatform projects (Kotlin Multiplatform for

sharing code between mobile, web, etc., is rising). In RedMonk’s rankings, Kotlin has climbed

into the top 20 (it’s often near Swift and Go in popularity). One reason for Kotlin’s popularity,

aside from Android, is that it’s seen as a cleaner, safer alternative to Java on the JVM – it

reduces boilerplate and adds features like null-safety. This makes it quite amenable to AI-

assisted coding, as many patterns are simplified in Kotlin.

AI Tool Support: GitHub Copilot supports Kotlin in all major IDEs (especially JetBrains’ IntelliJ

IDEA/Android Studio, which is where most Kotlin devs live). In fact, GitHub recently extended

Copilot’s code review and explanation feature to Kotlin as well, acknowledging its importance.

Amazon CodeWhisperer also supports Kotlin, which makes sense since Kotlin can be used on

AWS Lambda (JVM) and for backend services too. Replit Ghostwriter likely supports it, though

mobile dev isn’t its primary focus. Kotlin being similar to Java means the AI models that know

Java well also have a good starting point for Kotlin, plus they likely ingested Kotlin-specific

content (like open-source Android apps, or the Kotlin Koans examples). Anecdotally, Copilot

does a great job when writing typical Android code in Kotlin – for example, if you start an

Activity subclass and override onCreate , it can fill in the method with a call to

setContentView and even suggest setting up ViewBinding or synthetic views, based on

context. It also understands Kotlin-specific idioms: it will use val/var correctly, prefer high-order

functions and stdlib functions (like apply{} blocks or filter/map instead of loops) in many

cases. Since JetBrains has its own AI initiatives, Kotlin devs might see AI both from GitHub and

directly integrated in IntelliJ (JetBrains AI Assistant also works for Kotlin, given their demo

videos).

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 20 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Ecosystem and Libraries: Kotlin’s ecosystem overlaps heavily with Java’s due to

interoperability, but it also has its own extensions and libraries. For Android, the Android SDK is

massive and well-documented online – AI has certainly been trained on Android dev samples,

many of which are now in Kotlin. Also, Google’s Android documentation often provides both Java

and Kotlin snippets side by side; an AI likely has “read” those and learned the Kotlin patterns for

typical tasks (like how to request permissions or how to start an Activity for result). Outside

Android, Kotlin is used with frameworks like Spring Boot (there are Kotlin DSLs for Spring

configuration), Ktor (a Kotlin-native web framework by JetBrains), Coroutines for async, and so

on. AI suggestions reflect this: for instance, if you hint at making a network call in Kotlin, Copilot

might propose using Kotlin Coroutines (suspend fun and withContext(IO) etc.), because

that’s idiomatic rather than using, say, raw threads. Another example: if you write an extension

function signature, Copilot can implement a plausible extension based on similar ones it has

seen. Or when working with collections, it will often reach for Kotlin’s rich stdlib (like

list.filter { it.property > 0 }.map { ... }) instead of writing loops – showing that it has

picked up Kotlin’s idiomatic style.

AI-Assisted Use Cases:

Android UI and Components: One of the biggest wins is generating Android UI code. With Jetpack

Compose (Android’s modern UI toolkit using Kotlin), an AI can be very helpful. A developer can

comment “// Compose a button that says ‘Login’ and calls viewModel.login() when clicked”, and

Copilot might output a Button(onClick = { viewModel.login() }) { Text("Login") } . Similarly,

for XML-based layouts or older Android APIs, if you begin typing code to, say, create a RecyclerView

adapter, Copilot will suggest the outline of the adapter class with onCreateViewHolder ,

onBindViewHolder , etc., because these patterns are extremely common in Android apps. It basically

saves time on the boilerplate of writing adapters, ViewModels, Activities, and the like. Furthermore,

Kotlin’s concise syntax amplifies this effect: a lot of Android ceremony (findViewById calls, etc.) has

been reduced with synthetics or ViewBinding, which the AI knows. It might, for example,

automatically use synthetic binding properties in an Activity if it sees that’s set up.

Kotlin Coroutines and Async: Concurrency on Android used to be via AsyncTask or RxJava, but with

Kotlin, coroutines are the standard. AI tools help by generating coroutine scopes and async calls

properly. For instance, a prompt “load data in background then update LiveData” might lead to code

using viewModelScope.launch { val data = withContext(Dispatchers.IO) { repo.getData() };

_liveData.value = data } . That’s a pattern straight from many Android samples. The AI not only

saves typing but ensures the developer uses the correct context and updates LiveData on the main

thread, which is crucial in Android. It’s learned these things from sample code and documentation.

Server-side Kotlin: Outside mobile, Kotlin is also used on the server. AI can generate code for a Ktor

route or a Spring Boot controller written in Kotlin. For example, a Spring MVC controller in Kotlin is a

bit less boilerplate than Java but similar – Copilot will readily output it with annotations and fun

syntax. If using Kotlin-specific frameworks, an AI might have less data (Ktor is popular but not as

ubiquitous as Spring), yet general knowledge still helps (knowing how HTTP handling works, etc.).

We might see suggestions to use idiomatic null handling (Elvis operator ?: etc.) or data classes for

JSON payloads (because Kotlin data classes are perfect for that).

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 21 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Kotlin DSLs and Gradle: Kotlin is used in build scripts (Gradle has Kotlin DSL support). AI can assist

with writing Gradle build files in Kotlin (which can be verbose). For instance, configuring an Android

build with specific flavor or signing settings can be partly autocompleted by AI from examples. Also,

many JetBrains libraries use type-safe builders (DSLs) in Kotlin – the AI can fill those out once it

recognizes the context (like building an HTML with Kotlinx.html DSL, it might produce nested tags

correctly).

Cross-platform Code: With Kotlin Multiplatform, some code can be shared across JVM, JS, and

Native. While AI might not directly know about platform restrictions, it can still generate common

logic in multiplatform projects. It might not be a primary use case yet, but as multiplatform adoption

grows, AI could help generate expect/actual declarations or platform-specific shims by looking at

patterns.

Ecosystem Maturity for Code Gen: Kotlin’s community embraces brevity and clarity, which

usually means less boilerplate to generate than in Java. However, AI still finds useful things to

do: it often suggests the clever one-liner where a more verbose solution might be written by a

beginner. For example, a novice might use if to check something and set a value; Copilot

might instead suggest val x = someNullable ?: defaultValue using the Elvis operator – a

more idiomatic Kotlin approach. Thus, AI acts as a guide into idiomatic Kotlin, not just a

completion engine.

Kotlin is backed by JetBrains, and they are weaving AI into their tools: the JetBrains AI

Assistant can explain code, suggest code, and even chat about project context. Since they have

deep context of the project’s structure in the IDE, it can complement Copilot. A professional

Kotlin developer might use both: Copilot for quick inline suggestions, and JetBrains AI for

higher-level queries or refactoring suggestions. We should note that JetBrains found Kotlin devs

to be among the top earners, indicating they’re often experienced and could benefit from

productivity tools to manage large codebases.

In essence, Kotlin stands to benefit from AI assistance particularly in the realm of Android

development and code quality improvements. It is a language built for developer productivity,

and AI is like a turbocharger for that productivity. By handling the remaining ceremony (even if

less than Java’s) and offering smart suggestions, AI lets Kotlin developers focus more on app

logic and less on writing repetitive code. It also helps newcomers adopt best practices quickly,

which is valuable given many Android devs transitioned from Java to Kotlin in recent years. As AI

coding tools become as standard as an IDE’s autocompletion, Kotlin – being designed for

concise and expressive code – might reach a point where entire common modules (like an

Android Room database setup or an API client) can be spun up by just confirming AI

suggestions.

9. Ruby – Productive Web Development with AI Pair

Programming

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 22 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Usage & Popularity: Ruby is a dynamic language known for its elegance and for powering the

Ruby on Rails web framework. While Ruby’s popularity has peaked compared to a decade ago

(when Rails was the hottest web tech), it still has an established community and codebase. In

recent surveys, about 4-6% of developers report using Ruby, which is lower than languages like

PHP or JavaScript, reflecting a niche but solid user group. Ruby has seen less growth in recent

years as some web development moved to JavaScript stacks or other frameworks, but it remains

heavily used in certain sectors – many startups and legacy systems are built on Rails, and Ruby

is common in DevOps tooling (Chef, Vagrant, etc., were Ruby-based). Interestingly, Ruby

continues to rank high in pay scales; it’s often listed among top-paying technologies. This

suggests that while fewer in number, Ruby developers (and jobs) are in demand for maintaining

and building critical web applications. There’s also a strong culture around the language (it was

often touted for developer happiness and expressiveness), which means lots of gems (libraries)

and open-source code to learn from. Ruby’s influence on later frameworks and languages has

been significant (for example, Python’s Django and even JavaScript’s Rails-inspired

frameworks), so it’s an important language historically and practically.

AI Tool Support: Ruby is supported by the major AI coding assistants. GitHub Copilot handles

Ruby/Rails code quite well – many early Copilot demos included generating a Ruby function or

two. Amazon CodeWhisperer’s GA list included Ruby, reflecting that some AWS users script in

Ruby (though not as common as Python). Replit Ghostwriter supports Ruby and even mentions it

explicitly. Given Ruby’s dynamic nature, AI suggestions can be a mixed bag – the syntax is easy

to generate, but capturing Ruby’s subtle conventions (like idiomatic blocks, or symbol vs string

usage) relies on model training quality. Fortunately, there is a ton of Ruby on Rails code on

GitHub (Rails has been around since 2005, and many GitHub projects are Rails apps). This

means Copilot and others have likely absorbed patterns for things like Rails models, controllers,

migrations, etc. In practice, Copilot can speed up Rails development significantly: e.g., you start

writing a Rails model with has_many :orders and it might suggest the corresponding

belongs_to :customer on the other side if it sees both models. It can also fill in typical Rails

validations or callback method stubs by just a short trigger.

Notably, there are community efforts to fine-tune AI on Rails best practices. For instance,

someone created “Canonical Rails Instructions” for Copilot – special prompts to guide it to

modern Rails 7 patterns. This indicates the interest in aligning AI with the latest conventions (like

importmaps, Hotwire, etc., in Rails). Also, GitHub’s own team has many Rails developers (since

GitHub was built on Rails originally), and they even introduced Copilot for Pull Requests which

can propose Rails code improvements. So support is strong and likely to get stronger.

Ecosystem and Libraries: Ruby’s ecosystem is anchored by RubyGems (the package

manager). Over 175,000 gems exist, covering everything from authentication (Devise) to

payment APIs. The king of Ruby libraries is Rails (technically a collection of gems). AI’s

knowledge of Rails is crucial because that’s where Ruby sees most use. When generating Ruby

code, Copilot tends to assume a Rails context unless told otherwise, because so much Ruby

code online is Rails code. This means if you write class UsersController <

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 23 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

ApplicationController , Copilot knows exactly you’re in a Rails MVC pattern and can suggest

RESTful actions (index, show, new, create, ...) skeleton automatically. It also might know

about routes – if you have a route file and start typing resources :users , it could fill options or

understand nested routes. Outside of Rails, Ruby is used for scripting and DevOps. For example,

writing a Capistrano deployment script or a Chef recipe in Ruby are tasks AI can assist with,

since these have somewhat standard structures. Another area is testing: Ruby has RSpec (a very

popular testing DSL) and Cucumber. Copilot can write RSpec tests given a description – it’s seen

the “it ‘does something’ do … end” format many times. There’s even potential to use AI to catch

Rails-specific issues; an example is an AI catching an N+1 query issue in a Rails codebase by

analyzing usage of ActiveRecord (GitHub blog mentioned using Copilot’s instructions to detect

N+1 queries).

AI-Assisted Use Cases:

Rails MVC Boilerplate: Rails is known for “convention over configuration,” which means a lot of

boilerplate is predictable. AI tools amplify this by generating that boilerplate instantly. For example, if

you create a new Rails model, you might also need a corresponding controller and views. Copilot,

seeing context, might help fill in a basic controller with CRUD actions. It can also draft a migration

file for new database columns if you write a migration class name. Or if you write a unit test for a

model, it might even predict common validations or method names to test. Essentially, the AI acts

like Rails’ own scaffolding generators but more flexible and context-aware (and possibly writing

better code because it can integrate custom logic that the generic generator wouldn’t know).

Ruby Methods and Metaprogramming: Ruby is very dynamic, which lends itself to some magical

patterns. AI can assist by recalling these patterns. For instance, meta-programming using

define_method or method_missing : if you hint you need such dynamic behavior, it might suggest a

pattern that Rails or other gems use. Consider that in Rails, something like has_many is actually a

macro that defines methods – an AI might not create that macro, but if you implement a mini-DSL, it

can try to mimic how it’s done in known libraries. Another scenario: converting a block-based

iteration into using Ruby’s enumerable methods – Copilot often suggests using .map , .select ,

etc., encouraging a more functional style, which many Rubyists prefer.

Scripting and Automation: Ruby was often the go-to for scripting tasks (though Python has

surpassed it in general). Still, if someone is writing a quick script to, say, parse a CSV and produce

some output, Copilot can do that. It may even leverage gems (like FasterCSV or now the built-in CSV

library) automatically. Ruby’s syntax allows writing tasks in a very human-readable way, and AI can

piece together those one-liners or short sequences elegantly. For example, “read a JSON file and

print keys” – it might use JSON.parse(File.read("file.json")).keys.each { |k| puts k } in one

go.

Web Development Outside Rails: Ruby has other frameworks (Sinatra for small apps, Jekyll for

static sites, etc.). Copilot is aware of Sinatra patterns – e.g., get '/hi' do "Hello World" end

might be suggested if it sees a Sinatra context. For Jekyll or static site generation, it could help with

templating code. Also, a lot of Ruby is used in command-line tools (many gem projects are CLI

utilities). If writing a CLI with OptionParser or Thor (gem), AI can fill those out since it has likely seen

usage of those classes in documentation.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 24 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Debugging and Code Improvement: Ruby errors (like NoMethodError or NameError) are not as

cryptic as C++ errors, but sometimes performance issues or memory leaks can be tricky. AI might

help by suggesting more efficient approaches if asked. For instance, if a developer notes an array

operation is slow, ChatGPT might suggest using Array#concat instead of += in a loop, etc., based

on common knowledge. Or it might foresee a potential problem like an N+1 query if it sees code like

@users.each { |u| u.orders.each {...} } without preloading – as mentioned, Copilot’s

instruction following can detect these patterns.

Ecosystem Maturity: Ruby’s ecosystem is mature in that the common patterns are well-

established. However, with maturity came a slowdown in innovation relative to other languages.

That means AI won’t have to chase rapidly moving targets but can rely on tried-and-true

methods. Rails, for example, has been on v6/v7 with incremental improvements but similar

structure. So the AI suggestions for Rails 5 likely still apply and just need minor tweaks for Rails

7. There is a lot of community guideline material (like the Ruby Style Guide, Rails Best Practices)

which presumably filters into model training indirectly. As a result, Copilot often follows

community style: e.g., use snake_case, avoid semicolons, etc., which Rubyists expect.

One interesting interplay: since Ruby is flexible, there are often multiple ways to do something

(TIMTOWTDI – “there is more than one way to do it”, a Perl motto that also fits Ruby). AI might

choose a non-idiomatic way occasionally. For example, using for loops (less idiomatic in Ruby)

vs .each – but in practice, it seems to lean towards .each because that’s what’s mostly in

code. The developer should still review suggestions to ensure they meet their team’s style and

conventions.

In conclusion, Ruby (and Rails) development gets a nice productivity boost from AI assistance.

It’s akin to having an expert Rails developer pair-programming who remembers all the

conventions and can type them out at lightning speed. Routine tasks like setting up models,

controllers, routes, or writing tests can be largely automated by prompting or by just starting a

few lines and letting the AI complete them. Given Ruby’s philosophy of making programmers

happy, integrating AI feels like a natural next step – offloading boring parts so developers can

focus on the creative and complex aspects of their application. While Ruby’s usage isn’t as high

as it once was, it remains a critical language for many businesses, and AI will likely become a

standard part of the tooling for Rubyists maintaining those large Rails codebases in the years to

come.

10. PHP – Revitalizing Web Scripting with Generative AI

Usage & Popularity: PHP is a server-side scripting language that at one point ran the majority

of the web, thanks to platforms like WordPress, Drupal, and countless custom sites. While the

rise of JavaScript (Node.js) and other languages have eaten into its mindshare, PHP is still

tremendously prevalent. It’s estimated that around 77% of websites with known server-side

technology use PHP (primarily via WordPress) – an astounding figure, though that doesn’t

directly translate to developer survey percentages. In Stack Overflow’s surveys, PHP usage

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 25 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

among developers tends to hover around 17-20%, reflecting that many devs have done some

PHP (especially web developers maintaining sites). On GitHub’s Octoverse 2024, PHP ranked #7

in overall activity, showing it’s still very much in play. PHP’s reputation historically suffered from

being easy to pick up but with a lot of badly written legacy code (the “wild west” of early 2000s

web). However, modern PHP (v7 and v8) has improved performance and added more robust

language features. Frameworks like Laravel have brought structure and joy to PHP development

in the last decade. So, there’s a large, active PHP community, and an even larger body of PHP

code out in the world – both prime conditions for generative AI impact.

AI Tool Support: GitHub Copilot supports PHP and common frameworks. It can work in VS Code

or PHPStorm (with GitHub’s extension) to autocomplete PHP code. Amazon CodeWhisperer

supports PHP too, likely acknowledging PHP’s role in web dev (though AWS usage of PHP is

maybe mostly in the context of Lambda or running websites on Lightsail). Ghostwriter includes

PHP and mentions it in examples. With PHP’s simple C-style syntax and dynamic typing,

generating syntactically correct PHP isn’t hard for AI. The nuance is generating secure and up-

to-date patterns. There were concerns early on that Copilot could regurgitate insecure code (like

old PHP patterns prone to SQL injection or XSS). GitHub addressed some by filtering out

obvious vulnerable code patterns. Moreover, the training data likely includes a mix of old and

new code – but with frameworks like Laravel, modern best practices (like using parameterized

queries, or Laravel’s Query Builder which avoids injections by design) might dominate. So

Copilot often naturally uses safer constructs. For example, if you ask for a DB query in PHP, it

might suggest using PDO with prepared statements or Laravel’s Eloquent ORM, rather than raw

mysql_* functions (which were deprecated long ago). This indicates AI is reflecting the current

state of the community (which has learned security lessons).

Ecosystem and Libraries: PHP’s ecosystem is massive in terms of user-facing applications

(WordPress plugin/theme ecosystem, etc.) and quite large in terms of packages via Packagist

(over 430k packages). Key frameworks: Laravel, Symfony, CodeIgniter, etc. Many new PHP

projects use Laravel, which has a very well-defined structure (MVC, artisan commands, etc.). AI

can exploit that: if it sees you in a Laravel Controller class, it can guess you might return a view

or JSON from a method and suggest accordingly. If you start using a Symfony component, it

might recall configuration array keys, etc. For WordPress, a lot of code is procedural (functions

to add hooks, etc.), and Copilot can help by suggesting those hook function templates. In fact,

WordPress being such a huge part of PHP usage, Copilot was even shown to do things like

generate a snippet to register a new shortcode or custom post type by just a comment prompt

(because there are many examples of those online). Another part of the ecosystem is CMS

platforms like Drupal or frameworks like Magento for e-commerce; these have their own patterns

which an AI might pick up if context is clear.

AI-Assisted Use Cases:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 26 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Web Development (Laravel/Symfony): In a Laravel project, say you’re writing a controller for an e-

commerce order. If you write the method signature public function store(Request $request) ,

Copilot might suggest inside: validating the request ($request->validate([...]) with some rules),

then creating a new Order model (Order::create($request->all()) or better, specifying fields),

and returning a redirect or JSON. It does this because these patterns are extremely common in

Laravel apps. Similarly, for Symfony, if you define a controller action, it might suggest using $this-

>render('template.html.twig', [...]) with variables, because that’s how Symfony works. It might

also help with writing route annotations or config. In short, it handles the glue code.

WordPress and CMS Scripting: Many developers still have to write plugins or themes in WordPress

(which is mostly procedural PHP). If you type function my_plugin_init() { , Copilot could suggest

using add_action('init', 'my_plugin_init'); or common WordPress API calls inside. It has likely

seen lots of WordPress plugin boilerplate. This can be a huge timesaver, as WordPress functions

often have specific names and parameters (like add_shortcode($tag, $callback) or

wp_enqueue_script(...) for assets). Instead of checking documentation, the AI just recalls the

usage. There was a mention of a Replit Ghostwriter usage that “Ghostwriter can explain programs to

you—or help write them” with an example of Ruby; for WordPress, I wouldn’t be surprised if

Ghostwriter or ChatGPT can explain what a given PHP snippet does and suggest improvements (like

escaping output properly to prevent XSS).

Database Queries and Security: PHP is often paired with MySQL/MariaDB. AI can help form SQL

queries correctly, but more importantly it can do so securely. For instance, using Laravel’s Query

Builder or PDO prepared statements as mentioned. If a developer writes a raw SQL string

concatenation (which is insecure if user data is in it), Copilot might not do that unless it’s imitating

something legacy. More likely, it will suggest parameter binding usage. This is one area where AI plus

built-in filters can actively improve code security by nudging devs to safer patterns by default. In

general, Copilot’s training on millions of PHP code lines including good and bad means it often

presents the better approach, especially since obvious bad ones might be filtered. (OpenAI’s newer

model training also aims to incorporate human feedback which likely downranks insecure or

deprecated practices.)

Testing and Tooling: PHP has testing frameworks (PHPUnit, Behat). AI can write unit tests for a

given PHP class method if asked, setting up expectations. For example, for a simple function, it

might generate a PHPUnit TestCase with some assertEquals calls. It’s similar to how it helps in

other languages: by speeding the creation of test scaffolds. Another area is configuration files (like

composer.json or CI config). Copilot can fill out a Travis CI or GitHub Actions YAML for PHP based on

common templates (like matrix of PHP versions, running composer install , then phpunit).

Refactoring Legacy Code: Many PHP codebases still have legacy patterns (like mixture of HTML

and PHP, or old array syntax). AI could assist in modernizing them. For instance, turning an old

mysql_query code into PDO statements, or replacing deprecated functions. A developer could even

paste a chunk and ask ChatGPT to “modernize this PHP code,” and it often will apply newer best

practices (this crosses into AI as a code consultant role).

Documentation and Comments: PHPDoc comments (for static analysis) can be generated by AI. If

you want docblocks for functions, Copilot can produce them with @param and @return tags guessed

from context. This is more of a minor convenience but helpful in larger codebases.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 27 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

Ecosystem Considerations: One must recall that a huge portion of PHP usage is in contexts

that don’t involve developers writing much custom code (like using WordPress as-is). But for

those who do code in PHP, AI can help mitigate some pitfalls. For example, one notorious issue

in PHP was forgetting to escape output in templates, leading to XSS. Modern template engines

autoescape, but if writing manual echo statements, an AI could remind to use

htmlspecialchars() or similar if it detects output of potentially unsafe data. It might not always

know what’s tainted, but common phrases like “escape” or knowledge of output functions could

come into play.

Also, PHP has a lot of internal functions (the joke is PHP has a function for everything). AI is

adept at recalling those. Instead of Googling the exact function name to, say, parse a URL

(parse_url ?), Copilot might just complete parse_url($str) if you type “parse_”. It’s like

supercharged autocomplete that knows semantics. This reduces cognitive load in PHP where

remembering exact function names/parameters can be burdensome due to the language’s vast

standard library.

In summary, PHP stands to gain a “second wind” in developer experience through AI. Many

PHP developers have historically been beginners or non-specialist programmers (think of

someone managing a WordPress site). AI assistants can act as on-demand experts to guide

them to write better PHP code, with fewer security mistakes, and using modern features. And for

seasoned PHP developers, AI can expedite routine tasks (like scaffolding a Laravel controller or

writing repetitive form-handling code). As a large portion of the web still runs on PHP, improving

the quality and speed of PHP development via AI could have a significant real-world impact –

from more secure websites to faster implementation of features in legacy systems.

Conclusion: The rise of AI-assisted “vibe coding” is reshaping how developers approach

programming across all major languages. We’ve examined the top 10 languages — each popular

in its domain — and seen that generative AI tools are boosting productivity in all of them, albeit in

different ways:

In Python, AI taps into an enormous repository of examples to streamline scripting, data science,

and ML tasks, cementing Python’s leading role in the AI era.

For JavaScript/TypeScript, AI handles boilerplate for the vast web ecosystem, from front-end UI

generation to Node.js backend code, leveraging the huge npm package knowledge base.

Java and C# benefit by having AI produce their verbose patterns and enterprise integration code,

with studies showing Copilot can generate roughly half of a Java developer’s code in enabled files,

accelerating enterprise software development.

Go and Rust, as newer systems languages, see AI assisting with proper idioms (like Go’s error

handling, Rust’s ownership rules), effectively mentoring developers in these fast-growing

communities.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 28 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

C++, the classic performance language, gets help managing its complexity — AI suggestions provide

quick recall of STL usage and modern C++ features, allowing developers to write safer and more

standardized code in a language known for pitfalls.

Kotlin, spearheading Android development, finds AI completing repetitive Android components and

helping adopt best practices (coroutines, safe calls) seamlessly, making mobile development more

efficient.

Ruby, powering Rails, is aided by AI generating conventional code (Rails scaffolding, RSpec tests) so

developers can rapidly build web features, effectively having an AI “pair programmer” well-versed in

Rails conventions.

PHP, the backbone of much of the web, sees AI offering to modernize legacy patterns and enforce

security (prepared statements, escaping) by default, potentially elevating the quality of countless

PHP applications.

Across the board, we observe common themes: usage trends indicate these languages remain

widely used (many retaining top spots in surveys and GitHub activity), and AI tools are keeping

pace by learning the dominant frameworks and libraries in each ecosystem. Adoption metrics

show that developers are eagerly embracing AI assistance — with over 75% using some AI tool,

and even large codebases seeing ~46% of code coming from AI suggestions. This is

transforming workflows: tedious coding tasks are reduced, and developers act more as

architects and reviewers of AI-suggested code.

The ecosystem maturity for code generation varies: languages with strong conventions (e.g.

Rails in Ruby, Spring in Java) allow AI to slot in easily by following those patterns, whereas

languages with more free-form (like early PHP or low-level C++) rely on AI’s extensive training to

guide toward better patterns. But in all cases, the tooling around these languages (IDEs,

package managers, CI pipelines) are quickly adapting to integrate AI – from JetBrains IDEs to VS

Code extensions – creating a virtuous cycle of AI learning from developer feedback and

developers trusting AI with more tasks.

Practical examples we explored—from generating a Python data analysis script to scaffolding a

new Laravel web page—show that industries of all kinds are leveraging these languages with AI

co-pilots. In finance and enterprise (Java/C#), AI helps handle voluminous boilerplate, in tech

startups (JavaScript/Python/Ruby) it speeds up prototyping, in systems and infrastructure

(Go/Rust/C++), it assists with correctness and optimization, and in mobile (Kotlin) and web

(PHP), it democratizes best practices. Even specialized fields like game development (C# in

Unity, C++ in Unreal) are tapping AI for routine coding.

Moving forward, we can anticipate even more advanced AI integrations: AI agents that can

navigate documentation for you, tools that do whole-codebase refactorings, and deeply

integrated code generation in repositories (like GitHub’s vision of Copilot for Pull Requests

doing AI code reviews). The trend is clear: developers of these top languages are not working

alone. AI coding assistants have become ubiquitous partners, elevating the abstraction level at

which we code. As one survey respondent put it, “developers are not threatened by AI, but

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 29 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

empowered by it” – using it to handle the mundane while they tackle higher-level design and

problem-solving.

In conclusion, each of the top 10 languages retains a strong foothold in the software landscape,

and in the context of vibe coding, they are all amply supported and enhanced by AI tools.

Usage data confirms their importance, and case studies confirm AI’s compatibility and benefits

in each environment. Professionals should leverage these tools to remain competitive and

productive, while also continuing to apply their domain knowledge to guide AI (since

understanding requirements and verifying AI output remains crucial). By combining the strengths

of these languages, their ecosystems, and the generative power of AI, developers can achieve

results faster and with possibly fewer errors – heralding a new era of software development

where creativity and automation go hand in hand.

Sources: The insights and data in this report were drawn from a range of up-to-date industry

surveys, official reports, and research. Key sources include the Stack Overflow Developer Survey

2023-2024 results, GitHub’s Octoverse 2024 analysis, JetBrains’ State of Developer Ecosystem

2023 report, and academic/commercial studies on AI coding tools. We also referenced

documentation and community discussions for specifics on tool support and best practices in

each language (for example, GitHub’s Copilot docs on language support, and Medium articles

analyzing AI’s performance per language). These sources, cited throughout the text, collectively

paint the picture of how “vibe coding” is being adopted across the programming world and

provide the hard numbers and examples backing our analysis. By staying informed through such

resources, professionals can better navigate the rapidly evolving landscape of AI-assisted

development.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 30 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

IntuitionLabs - Industry Leadership & Services

North America's #1 AI Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs

leads the US market in custom AI software development and pharma implementations with proven

results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies including Scilex

Holding Company (SCLX) and leading CROs across North America.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11

compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years

in software development, multiple successful exits, and patent holder. Recognized as one of the top

AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs,

chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private

cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data

conversion, automated document analysis, and intelligent data extraction from clinical and regulatory

documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and

custom field force applications with advanced analytics and reporting capabilities.

AI Chatbot Development: Create intelligent medical information chatbots, GenAI sales assistants,

and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory

management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and

real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring,

and custom data visualization solutions for pharmaceutical insights.

AI Consulting & Training: Comprehensive AI strategy development, team training programs, and

implementation guidance for pharmaceutical organizations adopting AI technologies.

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 31 of 32

https://intuitionlabs.ai/contact?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only.

We make no representations or warranties of any kind, express or implied, about the completeness,

accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or

its representatives be liable for any loss or damage including without limitation, indirect or consequential

loss or damage, or any loss or damage whatsoever arising from the use of information presented in this

document.

This document may contain content generated with the assistance of artificial intelligence technologies.

AI-generated content may contain errors, omissions, or inaccuracies. Readers are advised to

independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are

the property of their respective owners. All company, product, and service names used in this document

are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply

endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading AI software development firm specializing exclusively in

pharmaceutical and biotech companies. As the premier US-based AI software development company for

drug development and commercialization, we deliver cutting-edge custom AI applications, private LLM

infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance

software. Founded in 2023 by Adrien Laurent, a top AI expert and multiple-exit founder with 20 years of

software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your

business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Impact of Generative AI on Top Programming Languages

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 32 of 32

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://www.linkedin.com/in/adrienlaurent/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/articles/ai-assisted-coding-language-trends?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=impact-of-generative-ai-on-top-programming-languages.pdf

