
IEC 62304: Medical Device Software Life

Cycle Processes
By IntuitionLabs • 8/24/2025 • 100 min read

iec 62304 medical device software software life cycle samd regulatory compliance

risk management software safety

An overview of the IEC 62304 standard for medical device software. This guide explains its purpose, scope, and required

life cycle processes for safety. - IntuitionLabs - Custom AI Software Development for pharmaceutical companies. Leading AI

Consulting USA and North American Pharmaceutical AI specialists. Led by Adrien Laurent, top AI expert USA, multiple exit

founder, patent holder, and 20 year software veteran based in San Francisco Bay Area. Premier biotech consultancy

specializing in: Custom CRM Development, ERP Development, AI Chatbot Development, Private AI Infrastructure, Document

Processing, PDF Extraction, Air-gapped AI, On-premise LLM deployment. #1 Veeva AI partner for leading GenAI

pharmaceutical solutions across North America biotech AI excellence.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 1 of 44

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

IEC 62304: Medical Device Software Life

Cycle Processes – A Comprehensive Guide

What is IEC 62304? Purpose and Scope

IEC 62304 is an international standard that defines requirements for the life cycle processes

of medical device software ketryx.com. In essence, it provides a framework for the safe

design, development, and maintenance of software used in medical devices. The standard

applies both to standalone software (Software as a Medical Device, SaMD) and to software

that is embedded in or integral to a medical device greenlight.guru. The primary goal of

IEC 62304 is to ensure that medical device software is developed with a systematic, risk-driven

approach that prioritizes safety and effectiveness ketryx.com ketryx.com.

Scope: IEC 62304’s scope (Clause 1 of the standard) makes clear that it is intended for

manufacturers developing or maintaining medical device software, whether the software

itself is the device or part of a device system extrahorizon.com. It covers software life cycle

processes from planning and requirements through design, implementation, verification,

release, and maintenance. Notably, compliance requires implementing all applicable processes,

activities, and tasks identified by the standard, in accordance with the software’s safety class

extrahorizon.com. The standard does not directly address final system validation or clinical

evaluation of the device; those aspects are covered by other standards and regulations (for

example, device validation is addressed in ISO 13485 and IEC 82304-1) extrahorizon.com.

IEC 62304 focuses on the engineering processes for software development and maintenance as

a subset of overall medical device development. Manufacturers are expected to use IEC 62304

in conjunction with a quality management system (like ISO 13485) and risk management

process (ISO 14971) to fully meet regulatory requirements extrahorizon.com extrahorizon.com.

Purpose: The overarching purpose of IEC 62304 is to establish a common framework for

medical software life cycle activities that reduces software-related risks. It is often referred to as

the “gold standard” for medical device software development processes extrahorizon.com. By

adhering to IEC 62304, manufacturers can demonstrate that they follow state-of-the-art

development practices for safety, which in turn facilitates regulatory compliance and market

access extrahorizon.com extrahorizon.com. Regulators worldwide (including the U.S. FDA, EU

authorities, etc.) recognize IEC 62304 as an authoritative benchmark for medical software

processes greenlight.guru extrahorizon.com. In practical terms, implementing IEC 62304 helps

manufacturers avoid software defects that could potentially harm patients, ensures thorough

documentation and traceability, and integrates risk management throughout the software’s life

cycle.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 2 of 44

https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=IEC%2062304%20is%20an%20international,that%20prioritizes%20safety%20and%20effectiveness
https://intuitionlabs.ai/articles/samd-definition-and-scope
https://www.greenlight.guru/glossary/iec-62304#:~:text=IEC%2062304%20applies%20to%20medical,production%20of%20a%20medical%20device
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=IEC%2062304%20is%20an%20international,that%20prioritizes%20safety%20and%20effectiveness
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=The%20IEC%2062304%20standard%20defines,with%20due%20regard%20for%20safety
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20scope
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20scope
https://intuitionlabs.ai/articles/csv-pharmaceutical-biotech-compliance
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Normative%20references
https://intuitionlabs.ai/articles/gmp-pharmaceutical-quality-compliance
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Although%20the%20use%20of%20harmonised,ISO%2013485%20and%20ISO%2014971
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,at%20our%20blog%20post%20here
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,to%20adhere%20to%20IEC%2062304
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Also%2C%20as%20IEC%2062304%20is,easier%20to%20enter%20international%20markets
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Harmonisation
https://www.greenlight.guru/glossary/iec-62304#:~:text=IEC%2062304%20is%20an%20internationally,compliance%20with%20both%20%2058
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Harmonisation
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Structure of IEC 62304: Clause-by-Clause Breakdown

IEC 62304 is organized into nine clauses (numbered 1 through 9), plus informative annexes.

Clauses 1–3 cover the basics (scope, references, definitions), Clause 4 defines general

requirements, and Clauses 5–9 specify the key processes that must be implemented

greenlight.guru greenlight.guru. Below is a breakdown of each clause and its content:

Clause 1: Scope

Clause 1 defines the scope of the standard. It states that IEC 62304 applies to all medical

device software development and maintenance – whether the software is itself a medical

device or part of one extrahorizon.com. It emphasizes that to claim compliance, manufacturers

must implement all required processes, activities, and tasks commensurate with the

software’s safety class extrahorizon.com. In other words, the standard is comprehensive: it

expects the full software life cycle to be managed according to its requirements. Clause 1 also

clarifies that IEC 62304 assumes the existence of a quality management system and risk

management process. It does not cover system-level validation of the device or regulatory

activities beyond software engineering. (Those are handled by other standards/regulations, e.g.

ISO 13485 for quality systems, ISO 14971 for overall risk management, and IEC 82304-1 for

health software product validation extrahorizon.com.)

Clause 2: Normative References

Clause 2 lists documents that are indispensable for the application of IEC 62304. Notably, the

only normative reference in IEC 62304 is ISO 14971 (the standard for medical device risk

management) extrahorizon.com. This means IEC 62304 explicitly requires manufacturers to

perform risk management in accordance with ISO 14971 accessdata.fda.gov. The tight linkage

reflects that software safety cannot be ensured without a solid risk management process.

Clause 2’s reference implies that compliance with IEC 62304 inherently includes compliance

with ISO 14971’s process for identifying hazards, estimating and evaluating risks, controlling

risks, and monitoring effectiveness of those controls accessdata.fda.gov. (We will discuss risk

management integration in more detail later.) Aside from ISO 14971, no other normative

documents are required by Clause 2 of IEC 62304.

It’s important to note that IEC 62304 by itself does not define how to validate the final

medical device or its clinical safety – it focuses on software engineering. Validation of the

device (making sure “the right product was built” for its intended use) is left to other standards

and regulations extrahorizon.com. In practice, manufacturers use IEC 62304 alongside

ISO 13485 (quality systems), ISO 14971 (risk management), and domain-specific standards to

cover all aspects of device development.

Clause 3: Terms and Definitions

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 3 of 44

https://www.greenlight.guru/glossary/iec-62304#:~:text=What%20are%20the%20components%20of,IEC%2062304
https://www.greenlight.guru/glossary/iec-62304#:~:text=,address%20issues%20as%20they%20arise
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20scope
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20scope
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Normative%20references
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Normative%20references
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,It%20should%20be
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,It%20should%20be
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Normative%20references
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Clause 3 provides the definitions of key terms used in the standard. This includes general

terms like medical device, manufacturer, software life cycle, and specific terms critical to

IEC 62304 such as:

Medical Device Software – software that is itself a medical device or an embedded part of one

extrahorizon.com extrahorizon.com. (IEC 62304 draws a distinction between a physical medical

device versus medical device software; the standard only addresses the latter, assuming the

software is developed for medical purposes extrahorizon.com.)

Software System, Software Item, Software Unit – hierarchical terms describing the entire

software and its partitioning. A software system is the overall software; it may be composed

ofsoftware items, which can be further divided into software units (the smallest testable

components) extrahorizon.com.

SOUP (Software of Unknown Provenance) – an important concept in IEC 62304, SOUP is

“software item that has not been developed for the purpose of being incorporated into the medical

device (or for which adequate development records are not available)” extrahorizon.com. In plain

terms, SOUP refers to third-party or legacy software components (like operating systems, libraries,

algorithms) that you use but did not create under your own software process. IEC 62304 imposes

special considerations for SOUP because its development might not have followed this standard’s

rigor.

Hazard, Hazardous Situation, Harm, Risk – the standard aligns with ISO 14971’s risk terminology.

Risk is defined as the combination of the probability of harm occurring and the severity of that harm

extrahorizon.com. These terms underpin the risk management aspects of IEC 62304.

Manufacturers and developers must adhere to these definitions when interpreting the

requirements. For example, understanding what counts as SOUP or a software item is essential

for correctly scoping your risk analysis and configuration management. (Many other terms are

defined in Clause 3, but these are some of the most pivotal in applying IEC 62304.)

Clause 4: General Requirements

Clause 4 lays out three fundamental, general requirements that apply before delving into specific

development process activities extrahorizon.com:

1. Quality Management System (QMS): The manufacturer shall have a QMS in place for medical

device software development extrahorizon.com. IEC 62304 expects software development to occur

within the framework of an overall quality system. While it doesn’t mandate a particular QMS

standard, it suggests that compliance with ISO 13485 (the medical device QMS standard) is a good

way to fulfill this extrahorizon.com extrahorizon.com. In practice, most companies use ISO 13485-

certified quality systems. This ensures there are controlled procedures for document management,

training, design controls, etc., which complement IEC 62304’s software-specific processes. (It’s

noteworthy that a QMS is a company-wide requirement, not just for the software team

extrahorizon.com. The entire organization must support quality processes.)

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 4 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20scope
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Two%20very%20important%20definitions%20to,the%20figure%20on%20the%20right
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Two%20very%20important%20definitions%20to,the%20figure%20on%20the%20right
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=A%20software%20unit%20is%20a,not%20subdivided%20into%20other%20items
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=SOUP
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20manufacturer%20of%20the%20medical,that%20complies%20with%20ISO%2014971
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=In%20order%20to%20be%20compliant,will%20need%20to%20adhere%20to
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=requirements%20that%20you%20will%20need,to%20adhere%20to
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,at%20our%20blog%20post%20here
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,System
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,at%20our%20blog%20post%20here
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

2. Risk Management: The manufacturer shall implement risk management for the software, and it

must comply with ISO 14971 extrahorizon.com extrahorizon.com. This means all software hazards

(situations in which software failure could contribute to harm) need to be identified, evaluated, and

controlled following the risk management process. Clause 4.2 essentially ties IEC 62304 to the full

ISO 14971 process: you perform risk analysis, risk control, and risk acceptance decisions as per

ISO 14971, and maintain a Risk Management File for the software extrahorizon.com. We will later see

Clause 7 elaborates some additional software-specific risk activities. The key point is risk

management is integral and mandatory – you cannot comply with IEC 62304 without also doing

compliant risk management accessdata.fda.gov.

3. Software Safety Classification: The manufacturer shall assign a safety class (A, B, or C) to the

software system based on severity of potential harm that could result from a software failure

aligned.ch greenlight.guru. Clause 4.3 defines the three classes:

Class A: No injury or damage to health is possible if the software fails aligned.ch.

Class B: A failure could cause injury (either to patient or user), but not serious injury aligned.ch

greenlight.guru.

Class C: A failure could lead to death or serious injury to a patient or user aligned.ch greenlight.guru.

This classification is a cornerstone of IEC 62304: it determines the rigor of processes to apply.

Higher classes (especially Class C) require more stringent documentation, testing, and

risk control measures compared to Class A extrahorizon.com. For example, Class C software

must have a fully documented software architecture and detailed design, whereas those may not

be required for Class A in the base standard extrahorizon.com extrahorizon.com. We discuss

how to determine the classification and its implications in the next section. In Clause 4, one

crucial rule is stated: if a hazardous situation could arise from a failure of the software, the

probability of that failure is assumed to be 100% aligned.ch. In other words, you classify based

on worst-case severity, not likelihood, because software fault probability is not easily

quantifiable. This conservative approach ensures that even extremely unlikely but serious failure

modes push the software into a higher safety class (unless mitigated by external controls).

(Note: An Amendment in 2015 refined the classification approach to consider risk more

holistically – this will be explained shortly.)

In summary, Clause 4 sets the stage: have a QMS, integrate risk management (ISO 14971),

and classify the software. With those prerequisites in place, the standard then details the life

cycle processes (Clauses 5–9) that must be carried out according to the software’s safety class.

Clause 5: Software Development Process

Clause 5 is the largest clause – it describes the software development life cycle activities

from planning through release greenlight.guru. The standard doesn’t dictate a specific

development methodology (waterfall, agile, etc.), but it defines eight specific process

elements (5.1 through 5.8) that must be addressed. These sub-clauses essentially form a

typical V-model of development:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 5 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,to%20adhere%20to%20ISO%2014971
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20manufacturer%20of%20the%20medical,that%20complies%20with%20ISO%2014971
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=When%20a%20hazard%20can%20arise,the%20failure%20to%20be%20100
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,It%20should%20be
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20A%3A%20No%20injury%20or,damage%20to%20health%20is%20possible
https://www.greenlight.guru/glossary/iec-62304#:~:text=IEC%2062304%20identifies%20three%20safety,classes%20for%20medical%20device%20software
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20A%3A%20No%20injury%20or,damage%20to%20health%20is%20possible
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20A%3A%20No%20injury%20or,damage%20to%20health%20is%20possible
https://www.greenlight.guru/glossary/iec-62304#:~:text=,or%20serious%20injury%20is%20possible
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20B%3A%20Non,possible
https://www.greenlight.guru/glossary/iec-62304#:~:text=,or%20serious%20injury%20is%20possible
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=If%20the%20HAZARD%20%28i,assumed%20to%20be%20100%20percent
https://www.greenlight.guru/glossary/iec-62304#:~:text=IEC%2062304%20for%20medical%20device,clauses%2C%20numbered%205%20through%209
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

5.1 Software Development Planning: Before writing any code, manufacturers must create a

Software Development Plan extrahorizon.com. This plan should describe the processes, methods,

and tasks to be used for this software project extrahorizon.com. It includes identifying deliverables

(like specifications, code, test reports), defining verification activities, and listing the life cycle model

to be followed extrahorizon.com. The plan must also cover traceability (how requirements will be

traced to design, code, tests, and risk controls) extrahorizon.com, configuration management and

change control procedures, and problem resolution processes to handle anomalies

extrahorizon.com. Essentially, the plan is the roadmap for how you will implement all of Clause 5 (and

related) requirements. IEC 62304 expects the plan to be in place before development starts

extrahorizon.com and to be kept updated as the project evolves extrahorizon.com. A well-crafted

plan gives assessors confidence that the team has considered risks, resources, and the development

environment upfront extrahorizon.com. Skipping this can lead to inconsistencies and audit findings

extrahorizon.com. Key contents of the plan (per IEC 62304) include: development processes to

use, list of deliverables/documentation, how traceability will be maintained, how configuration

(including SOUP components) will be controlled, how problem reports will be handled, and what

software life cycle model is being followed extrahorizon.com. (For example, if using an iterative

model, the plan should state that and explain how the activities map to iterations.)

5.2 Software Requirements Analysis: In this phase, the manufacturer defines and documents the

software requirements for the system extrahorizon.com. Good software requirements specify what

the software will do (functions, inputs/outputs, algorithms, interfaces, performance criteria, etc.) and

are traceable to system requirements. IEC 62304 emphasizes that requirements analysis is crucial

for traceability and early error detection extrahorizon.com. By having clear, testable requirements,

you reduce downstream defects (finding errors in requirements early is cheaper than after coding)

extrahorizon.com. The standard expects a Software Requirements Specification (SRS) or equivalent

documentation covering all needed requirements. This includes not only functional requirements but

also requirements related to risk controls – any risk control measures that need to be

implemented in software (to mitigate hazards) must be captured as requirements extrahorizon.com.

For example, if a hardware sensor failure could harm a patient, a software requirement might be to

detect sensor faults and trigger an alarm (a risk control). IEC 62304 (Clause 5.2.2) provides a list of

topics to consider, ranging from functional capabilities and user interface needs to security

requirements (authorization, authentication) and environmental constraints extrahorizon.com. All

such requirements must be documented. Moreover, each requirement must be verified –

Clause 5.2.6 outlines that you need to ensure requirements are correct, unambiguous, and testable

extrahorizon.com, and you’ll later verify that the final software meets them. In practice, this means

establishing a requirements traceability matrix linking every requirement to design elements and test

cases. As the standard notes, traceability makes it easier to show auditors how each risk is

addressed in the software and to pinpoint the source of errors extrahorizon.com extrahorizon.com.

Auditors often focus on whether all safety-related requirements are tested and whether tests trace

back to requirements extrahorizon.com. So, thorough requirements analysis and documentation is

both a best practice and a compliance requirement.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 6 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=First%2C%20you%20must%20produce%20your,systems%20in%20the%20medical%20device
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,in%20your%20software%20plan
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,in%20your%20software%20plan
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,of%20the%20activities%20and%20tasks
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,of%20the%20activities%20and%20tasks
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=It%20is%20important%20that%20you,before%20you%20develop%20any%20software
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Remember%2C%20it%20is%20important%20to,plan%20updated%20as%20development%20proceeds
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=If%20you%20do%20not%20have,you%20have%20considered%20these%20things
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Another%20consequence%20of%20not%20having,one%20and%20redevelop%20your%20software
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,in%20your%20software%20plan
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=For%20each%20software%20system%20of,evaluated%20and%20updated%20as%20appropriate
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20software%20requirements%20analysis%20is,significant%20benefits%20to%20your%20company
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20software%20requirements%20analysis%20is,significant%20benefits%20to%20your%20company
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20full%20list%20of%20requirements,of%20the%20IEC%2062304%20standard
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=These%20range%20from%2C%20for%20example%2C,requirements%20like%20authorisation%20and%20authentication
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Additionally%2C%20there%20must%20be%20risk,software%20defects%2C%20or%20human%20errors
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=This%20traceability%20element%20also%20comes,passing%20audits%20a%20lot%20easier
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=influence%20the%20risk%20to%20patients,passing%20audits%20a%20lot%20easier
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=This%20traceability%20element%20also%20comes,passing%20audits%20a%20lot%20easier
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

5.3 Software Architectural Design: Using the software requirements as input, the team creates the

software architecture. The architecture is essentially the high-level design: the division of the

software system into software items, the relationships and interfaces between those items, and the

mapping of requirements to the major components extrahorizon.com. IEC 62304 defines software

architecture as the “organization and structure of the software system,” encompassing the

software components and their interactions, as well as the context (hardware, other software, users)

in which they operate extrahorizon.com. Interfaces must be defined – both interfaces between

software items and interfaces between the software and any external elements (e.g. hardware

devices, user, network) extrahorizon.com. One critical aspect here is handling of SOUP

components: if your architecture includes any SOUP (third-party or legacy software), the standard

requires you to specify the functional and performance requirements for each SOUP item and the

supporting hardware/software environment needed for it extrahorizon.com. Essentially, you must

clearly understand and document what each SOUP component is supposed to do in your system and

any constraints. (For example, if using an off-the-shelf database engine, you’d document what role it

plays and what OS or drivers it needs.)

Safety consideration: The architecture stage is also where you can implement segregation of

software items of different safety criticality. IEC 62304 allows partitioning the system such that

some components can be assigned a lower class if they cannot influence higher-class

components. However, the standard (especially as amended in 2015) clarifies that segregation

does not have to be physical (hardware separation) – logical segregation (with sufficient

independence) is acceptable, as long as one item cannot adversely affect the other aligned.ch.

This is important for complex systems: for instance, an informational logging module might

remain Class A if you can show it cannot cause or contribute to hazards in a Class C therapy

control module, perhaps through robust isolation. The 2015 amendment explicitly made this

clear to dispel the misconception that only physical separation counted aligned.ch.

It’s worth noting that software architecture design is required for Class B and C software in

the original 2006 edition, but not for Class A extrahorizon.com. (The rationale was that simple

Class A software might not need a formal architecture document.) However, many experts

recommend performing at least a basic architectural design even for Class A, as it’s good

practice. In fact, future revisions of the standard are leaning toward requiring architecture for all

classes assets.iec.ch. So, manufacturers typically do an architecture even for low-risk software.

The output of this phase is usually a Software Architecture Document or design description,

including diagrams that visualize the structure. Architecture diagrams (e.g. layered diagrams,

flow charts, state machines) are commonly used to communicate how the software is organized

extrahorizon.com. This documentation will later support impact analysis for changes and is

crucial for understanding how risk controls are implemented and isolated.

5.4 Software Detailed Design: In this step, each software item (or in many cases, each

software unit) is designed in detail. The architectural design (high-level) is now refined into

detailed design specifications for each unit extrahorizon.com. A software unit is defined

as the lowest level of software that is not broken down further – often corresponding to a

single source code module or class extrahorizon.com. The detailed design should describe

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 7 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=In%20the%20IEC62304%20standard%20itself%2C,environment%20in%20which%20they%20operate
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=In%20the%20IEC62304%20standard%20itself%2C,environment%20in%20which%20they%20operate
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=transform%20these%20into%20a%20thoroughly,software%20architecture
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=transform%20these%20into%20a%20thoroughly,software%20architecture
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://assets.iec.ch/public/sc62a/IEC%2062304%20Ed.%202.0%20Design%20Specification.pdf?2025030348#:~:text=c%29%20Clause%205,should%20reference%20cyber%20security%20standards
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,architecture
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%2C%20the%20manufacturer%20must%20refine,unit%20should%20be%20properly%20documented
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=also%20between%20other%20software%20units
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

how each unit will fulfill its requirements. This includes specifying algorithms, data

structures, and internal logic, as well as the interfaces of each unit (how units interact with

other units or with hardware) in detail extrahorizon.com extrahorizon.com.

The standard expects that the detailed design implements the architecture and is consistent

with it extrahorizon.com. In other words, you must ensure no contradictions: if the architecture

said there are modules A, B, C with certain interfaces, the detailed design shouldn’t introduce a

conflicting structure. IEC 62304 requires documentation (or other evidence) to verify that the

detailed design realizes the architecture correctly extrahorizon.com. For Class C software, the

detailed design needs to be thoroughly documented to allow correct implementation of

each unit extrahorizon.com. This often takes the form of a written description or pseudo-code

for each module, sometimes with reference to specific functions or methods that will be coded.

Class differentiation: The 2006 version mandates detailed design documentation for Class B and

C, while Class A can forgo some of this formality extrahorizon.com. But again, even if not

required, some level of internal design thinking is beneficial for any software. The 2015

amendment hints that detailed design (perhaps under the term “design”) might become

applicable to all classes with flexibility in rigor assets.iec.ch. For now, if you have Class A, you

document design as needed to ensure good practice; for Class C, you document sufficiently so

that a knowledgeable engineer could read the design spec and understand how to implement

and test the code correctly extrahorizon.com.

At the end of this phase, you should have a clear blueprint for coding each unit. Some

organizations merge architecture and detailed design into one document if the system isn’t too

complex; others maintain separate high-level and low-level design docs.

5.5 Software Unit Implementation and Verification: This is where coding happens. Each

software unit is implemented (programmed) according to the detailed design, and then

verified to ensure it meets its specification. IEC 62304 requires manufacturers to establish

procedures and criteria for unit verification extrahorizon.com. Unit verification can

include a combination of methods: code reviews, static analysis, and unit testing are

typical. The standard doesn’t dictate testing every unit if some are trivial, but in practice,

safety-critical software usually has unit tests for at least all Class C units.

A crucial part of this sub-clause is defining acceptance criteria for each software unit

extrahorizon.com. Before a unit is “done,” you must have criteria that the unit’s implementation

needs to satisfy extrahorizon.com. IEC 62304 gives examples of such acceptance criteria

extrahorizon.com, for instance:

Does the code correctly implement the intended requirements, including all risk control measures?

extrahorizon.com

Is the code free of contradictions with the interfaces and design (i.e., does it adhere to the design

spec)? extrahorizon.com

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 8 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%2C%20the%20manufacturer%20must%20refine,unit%20should%20be%20properly%20documented
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Another%20thing%20that%20must%20be,also%20between%20other%20software%20units
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=To%20summarise%2C%20your%20documentation%20must,the%20IEC%2062304%20standard%20itself
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=To%20summarise%2C%20your%20documentation%20must,the%20IEC%2062304%20standard%20itself
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://assets.iec.ch/public/sc62a/IEC%2062304%20Ed.%202.0%20Design%20Specification.pdf?2025030348#:~:text=d%29%20Clause%205,titles%20of%20the%20subclauses%20from
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%2C%20it%E2%80%99s%20time%20to%20ensure,code%20reviews%20and%20unit%20tests
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Here%20are%203%20examples%20of,the%20IEC%2062304%20standard%20itself
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,requirements%2C%20including%20risk%20control%20measures
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=control%20measures%3F
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Does the code comply with coding standards or guidelines (e.g. MISRA C for C code)?

extrahorizon.com

Depending on the nature of the unit, you might also need criteria for proper sequencing of

events, resource usage, exception handling, etc. The standard specifically lists additional topics

that must be considered if applicable, such as event sequences, memory management, fault

handling, initialization, and boundary conditions extrahorizon.com extrahorizon.com. For

example, if your software uses interrupts or multi-threading, you’d ensure the unit handles these

sequences correctly; if it manages memory, you check for leaks or buffer overflows, etc.

Once criteria are defined, the unit verification is performed. If using testing, test cases are

executed to show the criteria are met. If using static analysis or code review, those are done to

check criteria like coding standard compliance, absence of dead code, etc. The results must be

documented – you produce unit test reports or review records as evidence extrahorizon.com.

Any bugs found at this stage should be recorded in the problem resolution system (Clause 9) for

tracking.

By enforcing thorough unit implementation and verification, the process leads to higher code

quality and early bug catching. As noted in one industry commentary, having well-documented

and verified units results in fewer bugs and a clearer guidance for engineers, and it makes later

phases (integration, system test) more effective extrahorizon.com. It also helps meet regulatory

expectations: for instance, the FDA generally expects to see evidence of code reviews and unit

tests for higher-risk software as part of validation accessdata.fda.gov.

5.6 Software Integration and Integration Testing: After individual units are verified, they

are integrated to form higher-level software items and ultimately the complete

software system. Clause 5.6 requires an Integration Plan to guide this process

extrahorizon.com. The integration plan should specify the order and manner in which units

will be combined, and how integration testing will be performed at each step

extrahorizon.com. Integration isn’t a haphazard “throw it all together” – it should be

systematic, e.g., integrate modules incrementally and test as you go (which helps isolate

issues).

The plan must ensure that: “The software units have been integrated into software items and the

software system” correctly extrahorizon.com. In the original text, it also mentioned integrating

with hardware and manual operations, but that particular point was removed in the 2015

amendment to keep IEC 62304 focused strictly on software integration extrahorizon.com. Still, in

practice, you will eventually integrate the software with the target hardware as part of system

testing (or earlier if needed to verify interactions).

During integration, integration testing is performed to verify that combined components work

together as intended extrahorizon.com. IEC 62304 outlines considerations for integration test

cases, which should cover:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 9 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=in%20the%20detailed%20design%20of,the%20software%20unit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Additionally%2C%20you%20must%20add%20additional,4
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,Boundary%20conditions
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Finally%2C%20you%20must%20perform%20the,evidence%20must%20be%20thoroughly%20documented
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,verification%20has%20many%20advantages%2C%20including
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=Relevant%20FDA%20Guidance%20and%2For%20Supportive,and%20FDA%20Staff%2C%20May%202005
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Next%20up%2C%20you%20will%20need,these%20into%20your%20integration%20plan
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Your%20integration%20plan%20must%20verify,2
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,items%20and%20the%20software%20system
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,items
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Required functionality of the integrated software (do the features work when pieces are combined?)

extrahorizon.com

Timing and performance behavior (e.g., data throughput, real-time constraints) extrahorizon.com

Implementation of risk control measures (ensuring that hazard mitigations are effective when units

are assembled) extrahorizon.com

Correct functioning of internal and external interfaces in the integrated configuration

extrahorizon.com

Behavior under abnormal conditions, including foreseeable misuse (for example, simulate error

conditions or invalid inputs to see if the system handles them gracefully) extrahorizon.com.

Essentially, integration testing should stress how modules interact – many software defects

occur at interfaces, so this is a vital test stage. All integration test results must be documented,

and any anomalies (bugs, integration issues) encountered are fed into the problem resolution

process (Clause 9) extrahorizon.com.

Another key requirement is regression testing: whenever changes are made or new units

integrated, tests should be re-run to ensure no new faults are introduced extrahorizon.com.

IEC 62304 reminds us that testing can show the presence of bugs, not their absence; hence one

must retest after fixes or changes to detect any unintended side effects extrahorizon.com. If an

anomaly is found during integration testing, it triggers the problem resolution process (where

you analyze, fix, and track the issue) extrahorizon.com.

5.7 Software System Testing: Once the software has been fully integrated, system-level

testing is performed on the complete software in isolation (i.e., testing the software system

against the software requirements, usually on the target hardware or an equivalent

environment). The purpose is to verify that all software requirements are fulfilled by the

integrated software extrahorizon.com.

Test plans must be established defining test cases with input stimuli, expected results, and

pass/fail criteria for each software requirement or scenario extrahorizon.com. Essentially, this is

the verification that “we built the software right” according to the SRS. For example, if a

requirement is “display heart rate alarm within 1 second if heart rate > X,” the system test will

simulate that condition and verify the alarm appears within the specified time.

IEC 62304 allows that during software system testing, external dependencies can be

simulated or “mocked.” You can test the software with dummy inputs in place of real hardware

or other components not yet available extrahorizon.com. For instance, if the software is

supposed to connect to a cloud server, and that server is not ready, you might use a local

simulation. This flexibility is useful to complete software testing even if some parts of the overall

device aren’t finished.

All anomalies found in system testing must also go into the problem resolution process

extrahorizon.com. The standard emphasizes retesting after any change – when a bug is fixed,

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 10 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=taken%20directly%20from%20the%20standard,4
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=taken%20directly%20from%20the%20standard,4
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,foreseeable%20misuse
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=taken%20directly%20from%20the%20standard,4
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,foreseeable%20misuse
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Testing%20can%20never%20prove%20the,later%20on%20in%20section%209
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Just%20like%20in%20the%20last,of%20testing%20called%20regression%20testing
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Testing%20can%20never%20prove%20the,later%20on%20in%20section%209
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Testing%20can%20never%20prove%20the,later%20on%20in%20section%209
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20must%20establish%20and%20perform,into%20account%20the%20following%20factors
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=yourself%20and%20use%20that%20data,place%20of%20the%20final%20data
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

you must re-run system tests (and possibly relevant integration and unit tests) to confirm the fix

and ensure no new issues extrahorizon.com. Also, test procedures themselves need

verification – you should confirm that your tests actually verify what they are intended to (no

errors in test scripts, etc.) extrahorizon.com.

Keeping detailed test records is mandated: test protocols and results, including objective

evidence of pass/fail for each requirement, should be archived extrahorizon.com. These records

are critical during regulatory submissions or audits to demonstrate that the software was

thoroughly verified.

5.8 Software Release: This final sub-clause deals with the activities before delivering the

software (for production or deployment). Before release, all required verification

activities must be completed with acceptable results, and any known residual problems

must be assessed for risk extrahorizon.com. IEC 62304 insists that you cannot release

software with unresolved issues that would result in unacceptable risk extrahorizon.com. If

there are known minor bugs, they should be documented and evaluated to ensure they do

not pose safety risks.

Additionally, the manufacturer must document the specific version of the software being

released (configuration identification) extrahorizon.com, along with the build and release

environment used to compile it extrahorizon.com. Releasing software in a controlled manner is

important for traceability – you should be able to later reproduce the exact released build if

needed (for example, if investigating a field issue).

Clause 5.8 also requires that certain items be archived: specifically, the released software and

its configuration items, and all associated documentation must be archived and retained for

as long as necessary extrahorizon.com. The retention duration often depends on regulatory

requirements and the device’s expected lifetime. For example, FDA and EU regulations might

require keeping design records at least for the lifespan of the device (and often some years

beyond).

Another consideration is ensuring the software can be delivered to the end user without

corruption or unauthorized changes extrahorizon.com. This implies setting up secure

distribution methods (checksums, digital signatures, etc.) so that what you tested is exactly

what the customer receives.

In summary, the release phase is about making sure “everything is complete and under

control.” All documents and approvals should be in order, and the software is baselined for

transition to maintenance.

Clause 6: Software Maintenance Process

IEC 62304 recognizes that once software is released, the work isn’t done – you enter the

maintenance phase, where issues are fixed and updates are made throughout the software’s

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 11 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Any%20anomalies%20identified%20during%20the,6
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=It%20is%20incredibly%20important%20that,sure%20the%20changes%20were%20effective
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=It%20is%20incredibly%20important%20that,sure%20the%20changes%20were%20effective
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Before%20your%20software%20is%20officially,contribute%20to%20an%20unacceptable%20risk
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Before%20your%20software%20is%20officially,contribute%20to%20an%20unacceptable%20risk
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,complete%2C%20including%20the%20associated%20documentation
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,complete%2C%20including%20the%20associated%20documentation
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documentation
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

life. Clause 6 outlines requirements for maintaining software after initial development:

Maintenance Planning (6.1): Manufacturers must have a Software Maintenance Plan covering how

updates and problem fixes will be handled extrahorizon.com. This plan should define roles,

procedures for collecting and evaluating problem reports, making modifications, re-verification, and

re-release. Essentially, you plan how to treat post-market software changes with the same rigor as

initial development.

Problem and Modification Analysis (6.2 & 6.3): After release, the company needs to actively

monitor feedback (from users, service personnel, internal testing, etc.) for any indications of

software problems extrahorizon.com. Problem reports are created for any discovered issue (or any

behavior that might be unsafe or not per specs) extrahorizon.com. Each problem report is essentially

a record (could be a ticket in a tracking system) that includes a description of the issue, its

severity/criticality, and any available information to investigate it extrahorizon.com extrahorizon.com.

IEC 62304 originally suggested classifying problem reports by type, scope, and criticality; although

the 2015 amendment dropped the formal requirement for classification, it’s still good practice to

triage issues (e.g., safety-critical vs. minor enhancement) extrahorizon.com extrahorizon.com.

Every problem report must be evaluated to determine its impact on safety extrahorizon.com.

This is where the risk management process comes back into play: you assess if the problem

could lead to a hazardous situation. If it does (or potentially does), it likely warrants prompt

corrective action. IEC 62304 mandates documenting the investigation of the problem and any

root cause analysis performed extrahorizon.com.

If the analysis determines that a software change is needed to fix the problem, a formal change

request is initiated extrahorizon.com. A Change Request is a specification of the required

change(s) to resolve an issue extrahorizon.com. The standard ties this closely to the configuration

management process: only approved change requests can lead to changes in controlled items

extrahorizon.com.

If it’s determined that no action will be taken (perhaps the problem is acceptable or will be

addressed later), the manufacturer must document a rationale for not acting extrahorizon.com.

Regulators will want to see justification for deferring or ignoring a known problem, especially if

there’s any safety relevance.

Importantly, if a software problem affects safety or regulatory compliance, users and regulators

may need to be informed extrahorizon.com. IEC 62304 specifically states that the

manufacturer must inform users (and regulatory authorities, as appropriate) about:

“any problems in the released software and the consequences of continued use without the

change,” and

“the availability of a fix or update and instructions on how to obtain and install it” extrahorizon.com.

This aligns with field safety corrective action practices – if a serious bug is found, companies

often need to issue notifications or recalls.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 12 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Software%20Maintenance%20Process
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,report
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=A%20problem%20report%20is%20a,use%2C%20or%20contrary%20to%20specification
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=inappropriate%20for%20the%20intended%20use%2C,or%20contrary%20to%20specification
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=inappropriate%20for%20the%20intended%20use%2C,or%20contrary%20to%20specification
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=investigated%2C%20and%20if%20possible%2C%20the,causes%20need%20to%20be%20identified
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Then%2C%20using%20your%20software%20risk,to%20scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Then%2C%20using%20your%20software%20risk,to%20scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Then%2C%20using%20your%20software%20risk,to%20scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20also%20have%20some%20obligations,your%20device%20and%20regulators%20about
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20also%20have%20some%20obligations,your%20device%20and%20regulators%20about
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Change Implementation (6.4 & 6.5): Once a change request is approved, the software

goes through a mini-development cycle to implement the modification. Clause 6 expects

manufacturers to analyze the impact of the change before implementation

extrahorizon.com. For instance, determine what parts of the software and what

documentation will be affected. This impact analysis guides which activities (from Clause 5)

need to be repeated. If you change a requirement, you may need to revisit design, update

tests, etc. The maintenance process plan should help identify what needs to be redone.

After making the changes, verification and regression testing must be performed to ensure

the change solved the problem and introduced no new issues extrahorizon.com

extrahorizon.com. All changed configuration items remain under strict version control, and

traceability must link the change back to the originating problem report and forward to the

implementation and tests extrahorizon.com. IEC 62304 requires maintaining a history of all

changes to configuration items and the system configuration extrahorizon.com – in practice,

this means keeping good version archives (e.g., in a version control system) and change logs.

Once verified, the modified software is re-released, either as a full new version or as a patch kit

to update existing installations extrahorizon.com. And again, users may need to be notified to

deploy the update especially if it fixes safety issues extrahorizon.com.

Throughout maintenance, Clause 6 essentially ensures that the rigor of development

(Clause 5) continues to be applied for updates. Many regulatory failures occur in patch

management, so IEC 62304’s maintenance process aims to prevent uncontrolled fixes. An

example expectation: if you fix a bug in a Class C software, you should perform unit tests,

integration tests, and system tests relevant to that fix and any impacted areas (regression), just

as you would have during initial development – and document all of it. Maintenance is not an

afterthought; it’s a continuation of the life cycle with equivalent discipline.

Clause 7: Software Risk Management Process

Clause 7 details the integration of risk management activities specific to software. As noted,

IEC 62304 leans on ISO 14971 for the overall process, but Clause 7 adds requirements to ensure

that software contributions to risk are properly addressed during development.

Key tasks in Clause 7 include:

Identifying Software Contributory Hazards: The manufacturer must identify any potential

causes of hazardous situations that could arise from software extrahorizon.com

extrahorizon.com. The standard suggests examining each software item (from the architecture) and

asking: “what could go wrong with this item that would lead to a hazard?” promenadesoftware.com

promenadesoftware.com. This is akin to a Failure Mode and Effects Analysis (FMEA) at the software

level promenadesoftware.com. Potential causes to consider, explicitly listed in IEC 62304, include:

Incorrect or incomplete software requirements (specification errors) extrahorizon.com

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 13 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=If%20the%20medical%20device%20software,interfaces%20with%20the%20released%20product
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Changes%20must%20then%20be%20verified,been%20invalidated%20by%20the%20change
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=With%20changes%2C%20there%20must%20always,changes%2C%20including%20the%20following%20information
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,approval%20of%20the%20change%20request
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%2C%20you%20must%20make%20the,what%20activities%20can%20be%20skipped
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20also%20have%20some%20obligations,your%20device%20and%20regulators%20about
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20should%20consider%20potential%20causes,directly%20from%20the%20standard%20itself
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=Instead%2C%20of%20a%20top,bug%20in%20a%20critical%20point
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=%2A%20Probability%20of%20Failure%20,the%20implementation%20of%20code%20files
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=Instead%2C%20of%20a%20top,bug%20in%20a%20critical%20point
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20should%20consider%20potential%20causes,directly%20from%20the%20standard%20itself
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Software defects or malfunctions in an implemented feature extrahorizon.com

Failures or bugs in SOUP components extrahorizon.com

Hardware failures or other software anomalies that could result in software misbehavior

extrahorizon.com

Reasonably foreseeable misuse of the software (e.g., user might use the software in an unintended

but predictable way that causes a hazard) extrahorizon.com.

For each such cause, you also consider the sequence of events that could lead from the

software fault to a hazardous situation (though the 2015 amendment removed the explicit need

to document “sequence of events,” focusing more simply on the hazardous situation and risk

acceptability) extrahorizon.com.

Risk Control Measures: For each identified cause of a hazard, the manufacturer must

identify risk control measures to eliminate or reduce the risk extrahorizon.com. Many risk

controls will become software requirements (for instance, an alarm, a redundancy, an

interlock). Some risk controls might be external to software (like a hardware guard or

labeling to warn the user). Clause 4 already told us if a hazard could occur from software

failure, we assume probability 100%, so typically a safety-related software hazard must be

controlled by some measure, often with software itself as part of the solution.

IEC 62304 requires that when a risk control measure is implemented in software, you must

evaluate whether that implementation introduces any new hazards or failure modes

extrahorizon.com. This is important: sometimes a fix or safety feature can have side effects. For

example, adding an automatic shutdown to prevent harm could create a new hazard if the

shutdown occurs at the wrong time. The standard urges you to analyze if the risk control (as

designed in software) itself could fail in a dangerous way extrahorizon.com. Any such new

potential hazardous sequences must be added to the risk analysis documentation

extrahorizon.com.

All identified hazards, causes, and controls must be documented in the Risk Management File

(RMF) for the device extrahorizon.com. There should be clear traceability from each software

hazard to the risk control implemented and further to the verification of that control

promenadesoftware.com. In practice, manufacturers maintain a hazard-traceability matrix linking

hazards ↔ mitigations (often mitigations map to specific software requirements and test cases)

promenadesoftware.com. IEC 62304 expects this traceability as evidence that all software risks

are accounted for.

Verification of Risk Controls: Clause 7 also requires that all risk control measures implemented in

software are verified for effectiveness extrahorizon.com. This means test cases or analyses must

confirm that each safety measure indeed mitigates the risk as intended and does not fail

dangerously. For example, if a control is “monitor temperature and shut down if overheated,” there

should be a test where the software is given an overheated condition and it correctly performs the

shutdown within specified time, and perhaps also tests that it doesn’t false-trigger in normal range.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 14 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20should%20consider%20potential%20causes,directly%20from%20the%20standard%20itself
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,reasonably%20foreseeable%20misuse
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,reasonably%20foreseeable%20misuse
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,reasonably%20foreseeable%20misuse
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Any%20potential%20cause%20of%20a,in%20your%20risk%20management%20file
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,measures
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,control%20measures
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,control%20measures
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=When%20a%20risk%20control%20measure,in%20your%20risk%20management%20file
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Information%20regarding%20the%20software%20safety,during%20the%20risk%20management%20process
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,control%20measures
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

SOUP Risk Management: For any SOUP components used, the standard mandates a specific

analysis: you must review the supplier’s published anomaly lists or known issues for the SOUP

and evaluate if any of those could lead to hazardous situations in your device extrahorizon.com. If

yes, you need risk controls for those (or choose a different component). For instance, if using a

third-party OS and the vendor discloses a bug that could cause random resets, you’d assess if that

affects safety and how to mitigate it (maybe by using a watchdog or waiting for a patch). Ensuring

you have the correct version of the SOUP anomaly list for the exact version you’re using is also

highlighted extrahorizon.com.

In essence, Clause 7 ensures that software risk management is an ongoing, documented

effort throughout development. It dovetails with ISO 14971: whereas ISO 14971 looks at risks

at the system level (top-down), IEC 62304’s Clause 7 has you examine risk bottom-up from the

software perspective promenadesoftware.com. A common source of confusion is aligning

these two views promenadesoftware.com – but the idea is: you feed software hazard

considerations into the overall risk management process. ISO 14971 might identify a hazard like

“overdose of drug delivered”; IEC 62304 Clause 7 would ask, “could a software bug in module X

cause an overdose, and how do we prevent or detect that?” All of that analysis becomes part of

the device’s risk management file.

The outcome is that by the end of development, you should have no uncontrolled software

risks: every hazard involving software has been mitigated to an acceptable level (or the device

deemed unacceptable if not). Clause 7 demands that this be demonstrable via documentation

and testing. As a final note, risk management is continuous – even during maintenance, new

hazards might be identified as the software changes, so Clause 7 activities loop back whenever

Clause 6 (maintenance) triggers changes (the risk of changes must be assessed too

extrahorizon.com).

Clause 8: Software Configuration Management Process

Clause 8 covers Configuration Management (CM) for the software. Configuration management

ensures that all items of the software (code, documents, etc.) are uniquely identified, version

controlled, and changes are made in a controlled fashion – a critical aspect for quality and

compliance.

Key requirements of Clause 8 include:

Establishing a configuration identification scheme: You need to identify all configuration items

(CIs) in the project extrahorizon.com. CIs typically include source code files, software executables,

documents like requirements and design specs, test scripts, etc. Each must have a unique identifier

and version. For example, you might use a version control system (like Git) to manage code and give

each commit or release a version number.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 15 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,your%20SOUP%20items
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20must%20also%20apply%20this,items%20you%20may%20have%20used
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=standard,the%20ISO%2014971%20hazard%20analysis
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=standard,the%20ISO%2014971%20hazard%20analysis
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20should%20do%20an%20initial,risk%20assessment%20of%20the%20change
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=As%20a%20manufacturer%2C%20you%20will,well%20as%20controlling%20their%20versions
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

SOUP item documentation: For each SOUP component used, you must record certain details: the

component’s name/title, the manufacturer (supplier), and a unique identifier (like version or build

number) extrahorizon.com. This ensures traceability of third-party software in your configuration. If

tomorrow a vulnerability is found in a library you used, you can quickly identify if your device uses

the affected version.

Change control procedures: A controlled process must be in place such that configuration items

are only changed pursuant to an approved change request extrahorizon.com (as mentioned in

maintenance). This means no ad-hoc changes; everything goes through review and approval. The

change made should exactly correspond to what was specified in the change request

extrahorizon.com. If the change request says “update algorithm X to improve precision,” developers

implement that specific change and nothing more. Unrelated “sneak in” changes are not allowed, as

they haven’t been reviewed for impact.

Version integrity and build control: When changes occur, you must maintain an audit trail linking

the change back to its origin and approvals extrahorizon.com. IEC 62304 expects you to be able to

answer: Who made this change? Why (problem report reference)? Who approved it? Was it verified?

For example, in a commit log or change log, include references to the problem report ID and change

request ID, and maintain records of code reviews/tests for that change. The standard explicitly calls

for keeping records of: the change request, the associated problem report, and the approval of the

change request extrahorizon.com. Together, these create a traceable thread for each modification.

Baseline and release management: You should preserve a history of all released configurations of

the software extrahorizon.com. That means if version 1.0 and 1.1 were released, you keep copies of

both and the knowledge of what each contains. This is vital if you ever need to investigate an issue

on an older version still in the field or prove to an auditor exactly what code was in a given release.

In practice, compliance with Clause 8 usually involves using a version control system (for code)

and document control system (for specs and manuals) with formal release procedures. The FDA

and other regulators often ask for a “configuration item index” or bill of materials for software,

which lists all software components and versions – maintaining that is part of this clause’s intent.

Good configuration management under IEC 62304 ensures that the software you tested and

approved is exactly what gets delivered and that you can reproduce past states of the software.

It also ensures that if two people are working on the software, they don’t accidentally overwrite

each other’s work and that changes don’t slip in unreviewed. For safety-critical systems, CM is

absolutely essential, as it prevents the scenario where a “fixed” bug reappears because an old

version of code was mistakenly used or a fix wasn’t merged properly. Clause 8’s controls help

maintain software integrity throughout the lifecycle.

Clause 9: Software Problem Resolution Process

Finally, Clause 9 describes the Problem Resolution Process, which is tightly linked with both

risk management and maintenance. This clause formalizes how you track and resolve problems

(anomalies) discovered in the software, from initial discovery through verification of the solution.

Major elements of Clause 9 include:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 16 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=When%20it%20comes%20to%20SOUP%2C,have%20the%20following%20information%20documented
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=With%20changes%2C%20there%20must%20always,changes%2C%20including%20the%20following%20information
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=With%20changes%2C%20there%20must%20always,changes%2C%20including%20the%20following%20information
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,request
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Initiation of Problem Reports: As soon as a problem (issue, bug, anomaly) is identified

(during any phase – development, testing, or post-release), a problem report must be

created extrahorizon.com. We touched on this in maintenance: a problem report is a record

of any software behavior that is unsafe, not meeting requirements, or otherwise deviant

from expected extrahorizon.com. It can be initiated by testers, developers, users, etc.

The problem report should contain a description and be classified in terms of

severity/criticality and scope extrahorizon.com. For example, one might classify issues as

Critical, Major, Minor depending on impact (IEC 62304:2006 had this, though it’s optional after

2015) extrahorizon.com. The classification helps prioritize the resolution process.

Investigation and Risk Assessment: Before jumping to a fix, the problem needs to be investigated

to determine root cause if possible extrahorizon.com, and importantly, evaluated for safety

impact via the risk management process extrahorizon.com. Using the ISO 14971 process, you’d

assess: Does this problem represent a hazardous situation? Does it introduce new risks or affect

existing risk controls? The outcome of this evaluation must be documented. If it’s concluded that the

problem has no safety impact and is purely cosmetic, that’s recorded. If it does have a safety

implication, that likely escalates the urgency and may require notifying regulators.

Planning of Resolution (Change Requests): Based on the investigation, a decision is made to

either take action or not. If action is needed, a change request is created specifying the required

correction or change extrahorizon.com. (This interfaces with Clause 8’s change control.) If no action

is to be taken (perhaps the issue is acceptable or will be fixed in a later version), Clause 9 requires

documenting the rationale for no action extrahorizon.com – e.g., “Bug causes a slight UI glitch,

which does not affect patient use; will not fix in current version.” This justification is critical in an

audit or regulator review to show you didn’t simply overlook the issue.

Also, relevant parties (e.g., the product owner, safety officer, regulatory) should be informed of

the problem if needed extrahorizon.com. In a company, that might mean the quality unit is

alerted for potential reporting or the service team is alerted to be aware of customer complaints,

etc.

Implementing and Verifying the Resolution: The change requests then go through the normal

change implementation process (Clause 6). All approved changes are implemented and tested to

fix the problem extrahorizon.com. After the fixes, you must verify not only that the specific problem

is resolved (problem report can be closed), but also check for regression – ensure the fix didn’t

introduce any new problems extrahorizon.com. IEC 62304 lists specific questions to answer after

problem resolution:

Is the original problem truly resolved and the report closed?

Have any adverse trends (if this was one instance of a trend) been reversed?

Have all change requests been implemented in the relevant configuration(s)?

And did the changes introduce any new problems? extrahorizon.com.

These essentially form an acceptance review for the fix.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 17 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,report
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=A%20problem%20report%20is%20a,use%2C%20or%20contrary%20to%20specification
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=inappropriate%20for%20the%20intended%20use%2C,or%20contrary%20to%20specification
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Before%20you%20tackle%20the%20problem,causes%20need%20to%20be%20identified
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Before%20you%20tackle%20the%20problem,causes%20need%20to%20be%20identified
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Then%2C%20using%20your%20software%20risk,to%20scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=right%2C%20you%20might%20have%20to,scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=right%2C%20you%20might%20have%20to,scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=It%20is%20essential%20that%20relevant,the%20problem%20with%20the%20software
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Taking%20into%20account%20the%20change,and%20implement%20all%20change%20requests
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%20that%20the%20change%20requests,from%20the%20standard%20itself
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%20that%20the%20change%20requests,from%20the%20standard%20itself
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Moreover, test documentation needs to be updated accordingly. If new tests were added for

the fix or existing tests modified, those need to be documented. Clause 9.8 (as referenced in the

standard) specifies that test records after a change should include all elements like test

procedures, test results, who performed the testing, etc., to the same level as original

verification extrahorizon.com.

Trend Analysis: The standard recommends analyzing problem reports collectively to see if

there are trends extrahorizon.com extrahorizon.com. For instance, multiple minor issues in

one module might indicate a deeper quality problem. While not heavily detailed in the text,

this is a quality improvement practice: periodically review all problem reports to identify

systemic issues or areas for preventive action.

Clause 9 essentially ties together many earlier processes: it draws input from testing (Clause 5),

uses risk management (Clause 7) to evaluate significance, uses configuration control (Clause 8)

to implement changes, and feeds back into maintenance (Clause 6) to deliver updates. Following

Clause 9 ensures no problem gets ignored and every problem is handled in a controlled,

traceable way. For regulatory purposes, it also proves that the manufacturer has an effective

CAPA (Corrective and Preventive Action) process for software issues – something both FDA

and ISO 13485 expect.

To illustrate, suppose during system testing you find that “under a rare sequence of inputs, the

device reboots.” Under IEC 62304: you log a problem report, assess that this could cause a

hazardous situation (maybe therapy interruption – risk analysis), assign it a high criticality,

create a change request to fix the bug, implement the fix (maybe in code and also add a

watchdog), test that the reboot no longer happens and that no new issues arise, then close the

report with evidence. If similar reboot issues are found across different tests, you might analyze

trend and realize a broader redesign is needed. This structured approach significantly improves

software reliability and safety over time.

That concludes the clause-by-clause breakdown of IEC 62304. In summary, Clauses 5–9

describe a closed-loop life cycle: plan → specify → design → implement → verify → release →

monitor/fix → update, all under configuration and risk control. The depth of formality and

documentation required scales with the software safety class (A, B, C), which we will explore

next.

Software Safety Classification (Class A, B, C) and

Determining the Class

IEC 62304 introduces software safety classes as a mechanism to scale the rigor of the life

cycle processes according to risk greenlight.guru extrahorizon.com. As noted under

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 18 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Finally%2C%20you%20must%20pay%20close,included%20in%20your%20test%20documentation
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20must%20keep%20detailed%20records,risk%20management%20file%20as%20appropriate
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=appropriate
https://www.greenlight.guru/glossary/iec-62304#:~:text=IEC%2062304%20identifies%20three%20safety,classes%20for%20medical%20device%20software
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Clause 4.3, the classes are defined by the severity of harm that could result from a software

failure in the worst-case scenario:

Class A: No injury or damage to health is possible if the software fails aligned.ch. In other words, the

software cannot contribute to any hazardous situation leading to harm.

Class B: A software failure could result in injury to a patient or user, but the injury is not serious (not

life-threatening or disabling) aligned.ch greenlight.guru.

Class C: A software failure could lead to serious injury or death of a patient or user aligned.ch

greenlight.guru.

These definitions align closely with the risk severity levels in ISO 14971 (where “serious injury”

typically means permanent impairment or life-threatening harm). The manufacturer is

responsible for assigning the correct class to each software system early in development

aligned.ch, as the class dictates which IEC 62304 requirements apply. For instance, Class C

software must implement all requirements of the standard, whereas Class A can omit

certain steps (like formal architecture and detailed design documents) as we discussed

extrahorizon.com. Class B is intermediate.

How to determine the class? IEC 62304 (2006 edition) provided a straightforward method:

perform a hazard analysis of the software’s contribution to harm, and assign the class based on

the maximum foreseeable severity of harm if the software were to fail in the worst-case

hazardous situation aligned.ch aligned.ch. Crucially, the standard says to assume the software

will fail when assessing this – effectively assuming probability of failure = 1 (100%) aligned.ch.

This means you ignore how reliable you think the software will be; you only look at severity. For

example, if a infusion pump’s software could theoretically overdose a patient (which could cause

death), it’s Class C – even if you believe the chance of that failure is extremely low, you must

assume it could happen aligned.ch aligned.ch.

The rationale was that quantifying software failure probability is very difficult (software doesn’t

have random failure modes in the traditional sense – it either has bugs or not, and complex

conditions can trigger them unpredictably) aligned.ch. Therefore, classification by severity

alone was chosen so that high-consequence software is always treated with the highest process

rigor.

However, this strict severity-only approach sometimes led to overestimation of risk in cases

where real-world mitigating factors made harm unlikely aligned.ch aligned.ch. For instance,

software might have a theoretical path to serious harm, but perhaps another layer of protection

(external to software) would normally prevent that harm. Under 2006 rules, it would still be

Class C.

2015 Amendment changes: IEC 62304 was amended in 2015 (Amendment 1) to refine the

classification rules. The updated Clause 4.3 (2015) says to assign the class according to the

“risk of harm” in a worst-case scenario, after considering external risk control measures

aligned.ch aligned.ch. Specifically:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 19 of 44

https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20A%3A%20No%20injury%20or,damage%20to%20health%20is%20possible
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20A%3A%20No%20injury%20or,damage%20to%20health%20is%20possible
https://www.greenlight.guru/glossary/iec-62304#:~:text=,or%20serious%20injury%20is%20possible
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20B%3A%20Non,possible
https://www.greenlight.guru/glossary/iec-62304#:~:text=,or%20serious%20injury%20is%20possible
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=,the%20SOFTWARE%20SYSTEM%20can%20contribute
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=,the%20SOFTWARE%20SYSTEM%20can%20contribute
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=Class%20A%3A%20No%20injury%20or,damage%20to%20health%20is%20possible
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=If%20the%20HAZARD%20%28i,assumed%20to%20be%20100%20percent
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=In%20examples%20where%20a%20failure,the%20risk%20of%20harm%20is
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20SOFTWARE%20SYSTEM%20is%20software,%E2%80%9D
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=This%20is%20essentially%20saying%20that,on%20the%20software%20safety%20classification
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=In%20examples%20where%20a%20failure,the%20risk%20of%20harm%20is
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=There%20are%20also%20further%20complications,risk%27s%20acceptability%20into%20the%20picture
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=,as%20indicated%20in%20Figure%203
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20SOFTWARE%20SYSTEM%20is%20software,%E2%80%9D
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

If the software cannot contribute to a hazardous situation at all, or it can contribute to a hazardous

situation but external risk controls (outside the software) make the risk acceptable, then the

software can be Class A aligned.ch.

If the software can contribute to a hazardous situation that results in unacceptable risk (after

external mitigations) and the possible harm is non-serious injury, then it’s Class B aligned.ch.

If the software can contribute to a hazardous situation with unacceptable risk after external controls

and the possible harm is serious injury or death, it’s Class C aligned.ch.

The big change here is introducing the concept of unacceptable vs. acceptable risk and

probability of harm into classification aligned.ch. In essence, you may take into account if

external measures (like hardware safety features, user procedures, clinical context) reduce the

risk. If they do such that risk is acceptable, the software might be classed lower. This brings the

classification approach closer to a true risk assessment combining severity and probability

(probability of harm, not of software failure) aligned.ch.

However, note: We still assume software failure probability = 100% internally aligned.ch – the

change is that we can consider the probability that a failure actually leads to harm (the

“probability of harm given a failure”), which might be low if, say, a doctor would catch an

erroneous output before harm occurs aligned.ch. So effectively, the amendment allows

considering risk controls and clinical factors to avoid over-classifying software as Class C

when real-world risk is minimal aligned.ch aligned.ch. This aligns IEC 62304 with ISO 14971’s

risk acceptability concept aligned.ch.

For example, suppose software monitors vital signs and could erroneously report data. Worst-

case, if wrong data is given, a patient might get improper treatment (serious injury). Under 2006

rules that’s Class C. Under 2015 rules, if in normal clinical use a nurse would double-check and

unlikely act on one aberrant reading (making risk of harm acceptable), the software might be

Class B aligned.ch aligned.ch. Manufacturers must exercise sound judgment and document how

they determined risk acceptability using ISO 14971 criteria aligned.ch.

Software system vs. items: Classification applies at the software system level by default, but

you can segregate the system into items which can be classified separately if truly independent

aligned.ch. If you do so, each software item (or unit) gets a class. Importantly, if a software item

is implementing a risk control for another item’s hazard, it inherits the same class as the item

with the hazard aligned.ch. You cannot have a safety feature at lower integrity than the thing it’s

protecting. For instance, if part of the software is Class C because it can cause harm, any

software that mitigates that harm (say a monitoring module) also effectively needs to be Class C

in terms of processes aligned.ch.

Implications of classes: After determining the class, the manufacturer knows which

requirements of IEC 62304 must be implemented. The standard is written such that certain

subclauses or activities are not required for Class A, required for B and C, etc. Annex A of

IEC 62304 actually provides a table of requirements vs. class. Generally: Class A software still

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 20 of 44

https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20SOFTWARE%20SYSTEM%20is%20software,external%20to%20the%20SOFTWARE%20SYSTEM
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20SOFTWARE%20SYSTEM%20is%20software,SERIOUS%20INJURY
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=SOFTWARE%20SYSTEM%20and%20the%20resulting,SERIOUS%20INJURY
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20pivotal%20point%20lies%20in,combination%20of%20severity%20AND%20probability
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20pivotal%20point%20lies%20in,combination%20of%20severity%20AND%20probability
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=This%20means%20that%20it%20makes,estimate%20the%20probability%20of%20harm
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20amendment%20of%20the%20standard,place%20in%20a%20clinical%20context
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=In%20examples%20where%20a%20failure,the%20risk%20of%20harm%20is
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20pivotal%20point%20lies%20in,combination%20of%20severity%20AND%20probability
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=categories%2C%20which%20is%20fairly%20straightforward%2C,risk%27s%20acceptability%20into%20the%20picture
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=,as%20indicated%20in%20Figure%203
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20pivotal%20point%20lies%20in,combination%20of%20severity%20AND%20probability
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=categories%2C%20which%20is%20fairly%20straightforward%2C,risk%27s%20acceptability%20into%20the%20picture
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=,controls
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=,controls
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

must do planning, requirements, basic verification, etc., but it does not require formal

architecture or detailed design documentation, and some verification steps can be lighter.

Class B requires architecture and most verification steps. Class C requires everything (and more

thorough review, tests, etc.) extrahorizon.com. In all cases, risk management and configuration

management apply.

Manufacturers should document the rationale for the class chosen in the risk management file

extrahorizon.com. Notified bodies or FDA reviewers will examine if the chosen class is

appropriate given the device’s intended use. If software is mis-classified too low, some required

processes might be missed, endangering safety.

To illustrate classification with an example: Consider a home-use insulin pump’s software. If

the software fails, it could deliver a massive overdose of insulin, causing serious harm or death.

There are usually mitigations (alarms, hardware limiters), but uncontrolled failure is potentially

life-threatening. This software clearly falls in Class C greenlight.guru. Therefore, the developer

must apply the full rigors of IEC 62304: extensive documentation, independent reviews,

comprehensive testing, etc., to minimize any chance of failure. Now compare a simple mobile

app that acts as a medication reminder (no direct harm if it fails except maybe a missed

reminder which is non-serious) – that could be Class B or even Class A if it’s argued that no

injury will occur (perhaps just inconvenience). The class drives the scale of effort: the Class C

insulin pump software would have architecture and unit tests and code inspections, while a

Class A reminder app might be developed with a lighter process (though still within a QMS). In

practice, many regulatory bodies lean on the side of safety, so developers often err on higher

classification if unsure.

Finally, it’s worth noting that IEC 62304’s classes are not the same as the device’s regulatory

class (I/II/III). They are separate concepts – one is about software failure harm potential, the

other about overall device risk and regulatory controls. However, they often correlate (e.g., life-

sustaining device software tends to be Class C and the device is Class III). Also, the FDA’s old

“Level of Concern” categories (Minor, Moderate, Major) for software submissions were very

similar to Class A/B/C criteria (Major LOC ~ Class C, etc.) blog.johner-institute.com

promenadesoftware.com. In fact, FDA recognized that alignment; their guidance allowed using

IEC 62304’s classes to justify the level of concern blog.johner-institute.com

promenadesoftware.com. (FDA recently replaced Level of Concern with a new “Software

Documentation Level” scheme, but it still hinges on the severity of hazards, which parallels

these classes.)

In summary, determining the correct safety class is a crucial early step in applying

IEC 62304. It requires understanding how software failures could lead to harm in the context of

the device’s use. Once set, the class helps ensure that the development process is

commensurate with the risk: higher risk software gets more scrutiny and control. The 2015

amendment gives a bit more flexibility by allowing consideration of mitigating factors, but at the

end of the day, if there’s any realistic scenario of serious harm from software, you should treat it

as Class C and invest in the highest level of safety process aligned.ch.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 21 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=documents%2C%20files%20and%20records%20produced,during%20the%20risk%20management%20process
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Information%20regarding%20the%20software%20safety,during%20the%20risk%20management%20process
https://www.greenlight.guru/glossary/iec-62304#:~:text=,or%20serious%20injury%20is%20possible
https://blog.johner-institute.com/iec-62304-medical-software/level-of-concern/#:~:text=3,is%20possible%20%3B%20Class
https://www.promenadesoftware.com/blog/fda-iec62304-software-documentation#:~:text=FDA%20and%20IEC%2062304%20Software,associated%20A%2CB%2CC%20for%20IEC%2062304
https://blog.johner-institute.com/iec-62304-medical-software/level-of-concern/#:~:text=3,is%20possible%20%3B%20Class
https://www.promenadesoftware.com/blog/fda-iec62304-software-documentation#:~:text=FDA%20and%20IEC%2062304%20Software,associated%20A%2CB%2CC%20for%20IEC%2062304
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20SOFTWARE%20SYSTEM%20is%20software,%E2%80%9D
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Risk Management Integration (IEC 62304 and ISO 14971)

Risk management is deeply woven into IEC 62304. As we’ve discussed, the standard explicitly

requires compliance with ISO 14971: Medical Devices – Application of Risk Management

accessdata.fda.gov. In practical terms, this means that a manufacturer developing medical

device software must have a full risk management process in place: identifying hazards,

estimating risk, implementing risk controls, verifying effectiveness, and maintaining a risk

management file extrahorizon.com extrahorizon.com. IEC 62304 takes advantage of ISO 14971

already being a well-established framework, stating that rather than duplicating those

requirements, it simply makes normative reference to ISO 14971 to cover general risk

management blog.pacificcert.com accessdata.fda.gov.

However, IEC 62304 adds some software-specific expectations on top of ISO 14971. Here’s how

the integration works and the relation to ISO 14971:

Hazard Identification: ISO 14971 guides identifying device hazards (like electrical shock, drug

overdose, data loss, etc.). IEC 62304 zooms in to ensure software-related hazards are considered:

e.g., calculation errors, alarm failures, user interface errors due to software, cybersecurity issues,

etc. Clause 7 of IEC 62304 provides a list of specific software hazard root causes to investigate (as

covered: specification errors, bugs, SOUP failures, etc.) extrahorizon.com. This is effectively a more

granular analysis within the overall risk management process. The results of this analysis (hazardous

scenarios involving software) are fed into the overall hazard list of the device.

Risk Assessment: Under ISO 14971, each hazard is evaluated for risk (severity and probability) and

decisions are made about risk acceptability. IEC 62304 originally assumed you treat software failures

as certain to occur (probability 1) for classification and for initial risk control decisions aligned.ch.

With the 2015 changes, IEC 62304 now aligns more with ISO 14971 by considering probability of

harm (with external controls) in classification aligned.ch. But generally, during design, manufacturers

perform risk assessments where software failure modes are assigned severity and probability just

like any other hazard. The difference is often in probability: many companies will assign a

conservative probability (like “frequent” or “probable”) to software failures until proven otherwise,

because software complexity makes probability hard to pin down. ISO 14971:2019 actually

encourages not to overestimate probability for software – it says if probability cannot be estimated,

just treat it qualitatively. IEC 62304’s approach was exactly to treat it as 1 (worst-case) aligned.ch,

which is a very conservative stance.

Risk Control Implementation: Once risks are identified as unacceptable, ISO 14971 requires

implementing risk control measures. These can be inherent design improvements, protective

measures, or labeling. For software-related risks, the risk control often is implemented in

software itself (for example, adding a cross-check in code, an alarm, or making the software

workflow fool-proof). IEC 62304 requires that these software risk control measures be traced back

to the hazard and verified promenadesoftware.com. In development terms, this means many risk

controls appear as additional software requirements or constraints. IEC 62304 also highlights that

risk controls external to the software (hardware interlocks, user procedures) should be considered

in classification and risk evaluation aligned.ch aligned.ch, but if a hazard is mitigated purely by

something outside the software, you should ensure the software does not defeat that mitigation.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 22 of 44

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,It%20should%20be
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20manufacturer%20of%20the%20medical,that%20complies%20with%20ISO%2014971
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20goal%20of%20risk%20management,to%20understand%20how%20risks%20originated
https://blog.pacificcert.com/iec-62304-2006-medical-device-software-life-cycle/#:~:text=,requirements%20are%20needed%20for
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,It%20should%20be
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20should%20consider%20potential%20causes,directly%20from%20the%20standard%20itself
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=If%20the%20HAZARD%20%28i,assumed%20to%20be%20100%20percent
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20pivotal%20point%20lies%20in,combination%20of%20severity%20AND%20probability
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=If%20the%20HAZARD%20%28i,assumed%20to%20be%20100%20percent
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=the%20SOFTWARE%20SYSTEM%20cannot%20contribute,external%20to%20the%20SOFTWARE%20SYSTEM
https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=The%20SOFTWARE%20SYSTEM%20is%20software,%E2%80%9D
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Importantly, as mentioned, software risk controls cannot be used to downgrade the class of

the software itself unless they are external. A software item that could cause death is Class C,

even if you add more software to monitor it – that monitoring software is also Class C, it doesn’t

reduce the first item to B promenadesoftware.com. Only external controls (like a hardware

guard) can reduce the risk enough to consider a lower class promenadesoftware.com.

Verification of Risk Controls: ISO 14971 requires verifying that risk controls are implemented and

effective. IEC 62304 enforces this by integrating those verifications into the software V&V activities.

For example, if a risk control is “software shuts pump if overdose detected,” then your integration or

system tests must include a scenario to simulate overdose and observe shutdown extrahorizon.com.

Clause 5.6 and 5.7 explicitly list “implementation of risk control measures” as something to verify

during integration testing and system testing extrahorizon.com. Additionally, Clause 7 says to verify

risk control measures and consider any new risks introduced extrahorizon.com.

Risk Management File and Traceability: ISO 14971 calls for a risk management file compiling all

risk analysis, decisions and records. IEC 62304 contributes to this file with software-specific

documentation: the list of software hazards, the link of each hazard to control measures, and

evidence of implementation and testing of those measures extrahorizon.com

promenadesoftware.com. There should be bidirectional traceability: from each identified software

hazard to the requirement that mitigates it, to the code module implementing it, and to the test case

verifying it extrahorizon.com promenadesoftware.com. This is often managed through a trace matrix

or within an Application Lifecycle Management tool. During an audit or submission, an inspector

might pick a hazard from the risk file and ask to see how it was controlled in the software and tested

– traceability provides that line of sight.

Iterative Risk Management: Both ISO 14971 and IEC 62304 emphasize that risk management is not

one-and-done. As software evolves (bug fixes, new features), you must re-evaluate risks.

IEC 62304 Clause 6.3 requires doing a risk analysis for each change to see if it introduces new

hazards or affects existing ones extrahorizon.com. For example, if you modify an algorithm for

accuracy, check if that could cause any new failure modes. Any new hazards would be added to the

risk file and mitigated accordingly. This ensures the risk picture stays current.

In summary, IEC 62304 leverages ISO 14971 as the foundation, but ensures that the process

explicitly covers software considerations. The two standards are highly complementary:

ISO 14971 provides the general risk management principles (and is recognized by regulators

globally as the required approach to device risk accessdata.fda.gov), while IEC 62304 makes

sure that within the software development activities, those principles are applied in a focused

way for software hazards blog.pacificcert.com accessdata.fda.gov.

One could view IEC 62304’s risk management integration as a specialized extension of

ISO 14971. In fact, there is an entire Technical Report, IEC/TR 80002-1, which offers guidance on

applying ISO 14971 to software in the context of IEC 62304 accessdata.fda.gov

accessdata.fda.gov. That report is meant for risk practitioners and software engineers to

understand each other’s domain. It reiterates that ISO 14971 is “the principal standard” for

risk management and IEC 62304 makes normative reference to it, requiring its use

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 23 of 44

https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=implementation%20of%20code%20files.%20,however%2C%20can%20reduce%20the%20class
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=such%20as%20the%20Operating%20System%2C,however%2C%20can%20reduce%20the%20class
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,foreseeable%20misuse
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=taken%20directly%20from%20the%20standard,4
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,control%20measures
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Information%20regarding%20the%20software%20safety,during%20the%20risk%20management%20process
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,development%20of%20the%20software%20system
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20should%20do%20an%20initial,risk%20assessment%20of%20the%20change
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=device%2Fsystem%2C%20and%20at%20software%20engineers,healthcare%20environment%20independent%20of%20whether
https://blog.pacificcert.com/iec-62304-2006-medical-device-software-life-cycle/#:~:text=,requirements%20are%20needed%20for
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,It%20should%20be
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=medical%20device%20software%20Scope%2FAbstract%20IEC%2FTR,ISO%2014971
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

accessdata.fda.gov. So compliance with IEC 62304 inherently means you’re doing risk

management to ISO 14971 standards.

From a regulatory standpoint, integrating risk management is crucial. For example, the FDA

expects to see how software hazards are mitigated in design, often documented via a Hazard

Analysis or Failure mode effects analysis that references software requirements or architecture.

The EU’s MDR explicitly requires a risk management process through design and post-market;

having ISO 14971 and IEC 62304 processes working together satisfies that. In fact, using

IEC 62304 greatly facilitates meeting the risk management requirements of regulations

because it enforces thorough and traceable mitigation of software risks, which regulators will

ask for.

In practical terms, developers should ensure early on that hazard analysis includes software.

Often a cross-functional hazard analysis is done (with hardware, software, clinical experts

together). The outputs related to software then drive specific software requirements (e.g., self-

test, redundancy, alarms) which are implemented and tested. Throughout development, every

time a risk control is implemented or changed, the risk management file is updated. By the end,

one should be able to demonstrate that for every identified software hazard, the risk is reduced

to acceptable levels and all such risks are verified – fulfilling both ISO 14971 and IEC 62304

obligations accessdata.fda.gov extrahorizon.com.

Documentation and Traceability Expectations under

IEC 62304

One hallmark of IEC 62304 is its strong emphasis on comprehensive documentation and

traceability throughout the software life cycle. The standard effectively requires that each

phase of development produces documented outputs, and that these connect to each other in a

traceable way. This not only ensures a rigorous development process but also produces the

evidence needed for regulatory submissions and audits.

Key documentation outputs mandated or implied by IEC 62304 include:

Plans: The Software Development Plan (Clause 5.1) is a primary document extrahorizon.com. Also, if

you’re in maintenance, a Software Maintenance Plan (Clause 6.1) is required extrahorizon.com. These

plans themselves might reference subsidiary plans (like configuration management plan, integration

test plan, etc., or those can be sections within the main plan). Regulators will expect to see a plan

that outlines how you complied with IEC 62304.

Requirements Documentation: You need a documented set of software requirements (an SRS)

extrahorizon.com. This should cover all functional requirements, performance criteria, interfaces,

and also identify which requirements are in place to mitigate risks extrahorizon.com. Typically, each

requirement is uniquely numbered for traceability.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 24 of 44

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20manufacturer%20of%20the%20medical,that%20complies%20with%20ISO%2014971
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=First%2C%20you%20must%20produce%20your,systems%20in%20the%20medical%20device
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Software%20Maintenance%20Process
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=For%20each%20software%20system%20of,evaluated%20and%20updated%20as%20appropriate
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=The%20full%20list%20of%20requirements,of%20the%20IEC%2062304%20standard
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Architecture and Design Documentation: For Class B and C, a Software Architecture Document is

expected, detailing the high-level design and interfaces extrahorizon.com. And for Class B and C,

software Detailed Design specifications for units or modules should be documented (textually or via

annotated code, etc.) extrahorizon.com. These documents show how the requirements are realized

in the design structure.

Verification Documents: A suite of documents like Test Plans, Test Protocols (procedures), and

Test Reports are needed for integration testing (5.6), system testing (5.7), and often unit testing

(5.5) although the standard doesn’t explicitly require separate unit test documents, in practice you

need evidence of unit verification. Test protocols outline the test cases (inputs, expected outputs)

and the results are captured in test reports or logs. Also, reviews (like code reviews or design

reviews) should be documented, typically via review records or reports.

Risk Management File artifacts: While risk management has its own documentation per ISO 14971,

from the software side you’ll contribute things like a Software Hazard Analysis (often a document or

spreadsheet listing software failure modes, causes, mitigations) and traceability info that links into

the overall risk table of the device. Any risk-related decisions (like rationale for class, or why a risk is

acceptable) should be recorded.

Configuration Management Records: You should maintain a configuration item list or software bill

of materials (all software components and their versions). Also, version history logs and release

notes for each software version indicating what changed (and referencing change requests/problem

reports). The standard expects you to archive software and associated documentation at release

extrahorizon.com, so archival records or a Design History File (in FDA terms) is kept.

Problem Resolution Records: All problem reports, investigation notes, and change requests must

be documented (likely in a issue tracking system or log) extrahorizon.com extrahorizon.com. Also, a

log of all changes made (with references and approvals) is part of the documentation trail

extrahorizon.com. When problems are fixed, evidence of verification of the fix is documented (could

be additional test reports, regression test results, etc.).

Many companies create a traceability matrix that ties together requirements ↔ design ↔

implementation (modules) ↔ verification tests, and also hazards ↔ risk controls ↔ tests

extrahorizon.com promenadesoftware.com. In fact, IEC 62304 requires that you establish

traceability between software requirements, the implemented risk control measures, and

the tests (verification) for those requirements extrahorizon.com. Clause 5.1 specifically lists

traceability as something to address in the planning and to maintain as part of the development

process extrahorizon.com. Also, as noted in Promenade Software’s guidance, Clause 5.1.1

basically demands traceability between all requirements and their test cases

promenadesoftware.com. This means by the end of the project, for each software requirement

(especially those tied to safety), you should be able to point to one or more verification tests that

confirm it. Conversely, every test case should trace back to a specific requirement or risk control

(this prevents “random” tests with no rationale).

Why such emphasis on documentation? Medical device regulations (FDA, EU, etc.) require

extensive design controls and technical documentation. IEC 62304’s documentation outputs

align with those expectations. For example, the FDA expects to see software documentation in a

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 25 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=In%20the%20IEC62304%20standard%20itself%2C,environment%20in%20which%20they%20operate
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%2C%20the%20manufacturer%20must%20refine,unit%20should%20be%20properly%20documented
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,report
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Then%2C%20using%20your%20software%20risk,to%20scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=With%20changes%2C%20there%20must%20always,changes%2C%20including%20the%20following%20information
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,development%20of%20the%20software%20system
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=I%20list%20the%20new%20requirement,you%20have%20the%20verification%20needed
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,development%20of%20the%20software%20system
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,of%20the%20activities%20and%20tasks
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=I%20list%20the%20new%20requirement,you%20have%20the%20verification%20needed
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

premarket submission including: software requirements spec, architecture charts, hazard

analysis, traceability from hazards to software requirements to test results, and summary of

verification and validation testing accessdata.fda.gov. Following IEC 62304 inherently produces

these documents in a structured way, giving the manufacturer a ready-to-go design history file

or technical file for the software.

Furthermore, documentation is crucial for maintenance and long-term reliability. If a company

needs to update the software 2 years later or investigate a field issue, having clear specs, design

descriptions and trace links makes it far easier to understand the software and identify the

impact of changes. It also facilitates knowledge transfer if the project personnel change.

Traceability specifically brings multiple benefits: it ensures coverage (every requirement is

tested, every hazard mitigated), it helps analyze the impact of changes (you can see what tests

and functions might be affected if a requirement or module changes), and it provides quick

answers in audits (e.g., “show me how you verified requirement X?” can be answered by looking

at the matrix and pulling the test case result). Tools exist to manage traceability automatically

(linking requirements management tools, version control, and test management).

IEC 62304 doesn’t prescribe the format of documents, so you have flexibility. Small teams might

combine certain documents (e.g., include the risk traceability within the requirements spec, or

have a single “software design description” covering both architecture and detailed design).

Larger projects often have separate docs for clarity. The main point is that the information is

documented somewhere and kept under configuration control.

Examples of traceability: Suppose you have a hazard “over-infusion of drug”. Your risk control

is “software shall limit infusion rate to max X”. This appears as a software requirement (call it SR-

10). In your trace matrix, SR-10 maps to the hazard HF-1 and has a verification test TC-5 that

simulates an infusion command beyond X and expects the software to cap it. If TC-5 passes in

your test report, you have documented evidence that the risk control works, and the trace matrix

shows the link from hazard to test promenadesoftware.com promenadesoftware.com. This kind

of end-to-end trace is what IEC 62304 envisions.

Document control: Under the QMS (ISO 13485) that Clause 4.1 requires, all these documents

must be controlled (reviewed, approved, versioned). IEC 62304’s configuration management

(Clause 8) extends to documents too – e.g., you must version your SRS and know which version

is current, etc. Also, relationships like which software version was released with which version of

requirements/design docs should be clear.

In audits or assessments for certification, examiners often sample documentation:

They might check if the plan covers all required processes (and see if you did what you planned).

They’ll certainly review the requirements spec to ensure it’s complete and includes safety

requirements.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 26 of 44

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=Relevant%20FDA%20Guidance%20and%2For%20Supportive,and%20FDA%20Staff%2C%20May%202005
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=I%20list%20the%20new%20requirement,you%20have%20the%20verification%20needed
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

They may inspect design documentation to see if it’s consistent with requirements (and sufficiently

detailed for Class C).

They will scrutinize test protocols and reports to see if testing was thorough (covering normal and

abnormal cases) and traceable to requirements.

They also verify that anomalies were tracked and resolved properly with records.

Thus, a good practice is to maintain a mapping of IEC 62304 clauses to your documents to

ensure you didn’t miss anything. Some organizations create an internal checklist (e.g., did we

produce output for each subclause applicable? If Class C, do we have document for 5.3, 5.4,

etc.?). In fact, some guides provide “IEC 62304 document checklists” to help with this

ketryx.com ketryx.com.

Another aspect of documentation is coding standards and procedures – IEC 62304

(Clause 5.5) suggests that adherence to coding standards is a verification criterion

extrahorizon.com. Many companies adopt a standard like MISRA for C/C++ and document that in

their development plan and verification results. For example, the LDRA case study mentions

using MISRA C in combination with IEC 62304 to ensure safe coding practices ldra.com.

Compliance to such standards (like a MISRA compliance report) can be another document

artifact demonstrating due diligence in implementation.

In conclusion, IEC 62304 expects a robust documentation set that tells the story of the

software’s development and safety. This includes everything from plans to hazard analyses,

requirements, design descriptions, verification evidence, and maintenance logs. Equally

important is the traceability tying these pieces together extrahorizon.com

promenadesoftware.com. The investment in documentation pays off by easing regulatory

approvals (you have proof of what you did) and helping maintain the software over its lifecycle.

As the saying goes, “if it’s not documented, it didn’t happen” – IEC 62304 ensures that for every

important aspect of software development, there is documentation to show what was done and

why.

Challenges and Best Practices for Implementation

Implementing IEC 62304 in a real development organization can be challenging. The standard is

comprehensive and can appear heavy, especially to teams not accustomed to regulated

development. Here we discuss some common challenges manufacturers face and best

practices to overcome them, ensuring both compliance and efficient development.

Challenges:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 27 of 44

https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=IEC%2062304%20Checklist
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=IEC%2062304%20sets%20the%20framework,numbered%20from%205%20through%209
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,requirements%2C%20including%20risk%20control%20measures
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=to%20apply%20language%20subsets,C%20were%20used%20in%20combination
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,development%20of%20the%20software%20system
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Documentation and Process Overhead: One of the first challenges is the amount of documentation

and formal process IEC 62304 seems to require. Teams used to fast-paced agile development might

find it cumbersome to produce all the plans, specs, and reports. There can be resistance to the

perceived bureaucracy. Moreover, keeping documents up to date as the project evolves is effort-

intensive.

Understanding and Interpreting the Standard: IEC 62304 is sometimes generic in phrasing (since

it must apply to various technologies and risk levels). New adopters can be unsure about the depth

of detail needed for, say, architecture documentation or how exactly to do “risk management for

software” without duplicating the ISO 14971 process. Terms like software item vs. unit, or what

constitutes SOUP, may cause confusion.

Integration with Agile or Modern DevOps Practices: Many software teams use agile

methodologies (iterative development, continuous integration, continuous delivery). IEC 62304

doesn’t forbid agile, but its structure is traditionally aligned with a waterfall or V-model approach

(plan → requirements → design → etc.). A challenge is reconciling iterative development with the

standard’s milestones and documents. For example, in agile you might develop requirements and

design as you go – but IEC 62304 asks for an upfront plan and defined requirements before

implementation, which can seem at odds.

Maintaining Traceability: Establishing and maintaining the many-to-many trace relationships can be

complex. As requirements change or tests are updated, the trace matrix must be updated. Without

appropriate tooling, this quickly becomes a headache. Mismanaging traceability can lead to audits

finding inconsistencies (e.g., a test exists with no linked requirement).

Cultural Change: Implementing IEC 62304 often requires a cultural shift in organizations that are

not quality-system oriented. Developers have to get used to writing documentation and

justifications, following standard operating procedures, and perhaps stricter version control and

code review practices than they’re used to. This can initially slow down productivity until the

practices become routine.

Tool Validation: In a regulated environment, even the tools used for development (like compilers,

testing tools, etc.) may need to be assessed for impact. IEC 62304 doesn’t explicitly require tool

validation (that’s more addressed in IEC 62304’s sister standard IEC 61508 or FDA guidance), but if a

tool could introduce errors, companies often validate it. This adds another task.

Legacy Software and SOUP management: Many companies have existing software that wasn’t

developed under IEC 62304 processes (so-called legacy software). Bringing those into compliance

(retrospectively documenting, analyzing risks) can be challenging. Also, using third-party

components (SOUP) is tricky – you must perform extra risk analysis and often test SOUP extensively

since you don’t have its design specs or full source.

Keeping pace with Innovation: In domains like mobile apps or AI-based software, development

cycles are expected to be quick and iterative. Ensuring IEC 62304 compliance in such fast innovation

cycles can be seen as burdensome. For example, redeploying a mobile app weekly with full

documentation each time is impractical. Companies struggle to find the balance between speed and

compliance.

Best Practices:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 28 of 44

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Invest in Training and Culture Building: A fundamental best practice is to train the development

team on IEC 62304 and regulatory context ketryx.com. When engineers understand why these

activities matter for patient safety and product success, they’re more likely to buy in. Many firms

hold workshops or bring in experts to educate the team on how to practically implement the

standard. Training should cover the entire life cycle and how each role (developers, testers, QA, etc.)

contributes to compliance ketryx.com. Building a “quality culture” is important – encourage

developers to see documentation and testing not as red-tape, but as integral to making a safe,

effective product.

Perform a Gap Analysis and Process Improvement: Before implementing IEC 62304 on a project,

do a gap analysis of your current processes against the standard ketryx.com. Identify where you are

lacking – e.g., perhaps you have coding and testing practices but no formal risk management tie-in

or no configuration audit trail. With gaps identified, you can create a focused improvement plan (like

adopt a requirements management tool, or formalize the code review procedure, etc.). The gap

analysis gives you a roadmap to compliance so you don’t feel you have to reinvent everything at once

ketryx.com.

Leverage Existing Systems (QMS/ISO 13485): Since a QMS is required, if your company is already

ISO 13485 certified or has design control procedures, integrate IEC 62304 into that framework

rather than separate. For instance, use existing document control, change control, and CAPA

processes and tailor them to software. IEC 62304 can often be satisfied by slightly tweaking existing

templates (like adding software-specific considerations into your design plan template, etc.).

Use Tools for Traceability and Documentation: Managing traceability manually (e.g., in Excel) can

work for small projects but becomes error-prone as complexity grows. Best practice is to use an

Application Lifecycle Management (ALM) tool or requirements management tool that supports

linking items and tracking changes ketryx.com. Many tools (e.g., Jama, Doors, Polarion, even Jira

with plugins) allow you to establish requirements, test cases, risk items, etc., and maintain links.

Some can auto-generate trace matrices and even documents. Similarly, using a version control

system for code with proper commit discipline (linking commit IDs to change requests) is essential.

The right tooling significantly eases the burden of compliance: it can automate trace matrix creation,

ensure people follow workflows (like not allowing a test to pass unless linked to a requirement), etc.

For example, Ketryx (a QMS/ALM software) advertises end-to-end traceability and auto-generation

of documents from developer tools ketryx.com. Tools can enforce that you can’t mark a software

item “done” until all linked risk mitigations are tested, etc., thus embedding compliance checks in the

development pipeline ketryx.com.

Adopt Coding Standards and Static Analysis: A technical best practice is to adopt a coding

standard (like MISRA C/C++ or equivalent for your language) to reduce the introduction of certain

classes of bugs (buffer overflows, etc.). This addresses Clause 5.5 criteria about code correctness

extrahorizon.com. Use static analysis tools to enforce these standards and catch issues early. This

not only helps compliance (e.g., you can show auditors your code quality measures) but also

improves software reliability. The LDRA case study, for instance, combined MISRA and static analysis

tools to ensure their code met IEC 62304 objectives ldra.com. Also, consider using automated test

frameworks for unit and integration testing to achieve more rigorous verification with less manual

effort.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 29 of 44

https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=Training%20and%20Education%3A%20Manufacturers%20should,market%20maintenance.%E2%80%8D
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=Training%20and%20Education%3A%20Manufacturers%20should,market%20maintenance.%E2%80%8D
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=software%20life%20cycle%2C%20from%20initial,market%20maintenance.%E2%80%8D
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=Gap%20Analysis%3A%20Conducting%20a%20gap,a%20roadmap%20to%20full%20compliance
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=1,risk%20has%20an%20associated%20mitigation
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=1,risk%20has%20an%20associated%20mitigation
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=properly%20recorded%20and%20traceable,tests%2C%20and%20doesn%E2%80%99t%20have%20any
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,requirements%2C%20including%20risk%20control%20measures
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=to%20apply%20language%20subsets,C%20were%20used%20in%20combination
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Iterative Development with Compliance (Agile + IEC 62304): Contrary to misconception,

IEC 62304 can be implemented in an Agile methodology – you just have to map the practices.

AAMI TIR45:2012 (updated 2023) provides guidance on using Agile in a regulated context

blog.johner-institute.com. Best practices include: maintain living documents that evolve each sprint

(rather than big-bang documents), use tools to continuously update traceability, and define “done”

criteria for each user story that include documentation and verification tasks. For example, you can

treat each user story as producing some requirements, code, and tests, and at sprint end ensure

traceability is updated and risk assessment done for new features. Agile emphasizes frequent

iteration; you can still comply by ensuring at each iteration, mini-versions of the IEC 62304 outputs

are produced or updated. Continuous integration can run regression tests to satisfy verification on

the fly. The key is integrating compliance tasks into the agile workflow – e.g., having a “definition of

done” that includes “documentation updated, tests passing, review held”. Organizations that succeed

here take an incremental documentation approach (don’t wait until the end to write everything, do

it as you go) and possibly use automation (scripts to generate documents from ticket systems, etc.).

Early and Continuous Risk Management: Treat risk management not as a checkbox but as a

guiding practice. Start hazard analysis early (even in concept phase) and keep updating it. This will

drive critical safety requirements and tests from the beginning. Many companies hold a risk

brainstorming right when defining software features so that safety requirements are built-in (this

aligns with “software as FMEA” concept promenadesoftware.com). By the time you formalize

requirements, you already know the risk controls to include. Continually revisit the risk register

whenever changes occur (which IEC 62304 requires anyway) extrahorizon.com. This proactive risk-

based approach leads to safer design and less backtracking, and it impresses auditors if you show

that risk was “baked in” to design, not tacked on later.

Regular Internal Audits and Reviews: Conducting internal audits or assessments against

IEC 62304 during the project helps catch gaps early ketryx.com. For example, midway through

development, have quality assurance do a mini-audit: is there a plan? Are we following it? Are

requirements documented and reviewed? Are tests traced? This is essentially a compliance sanity

check. Clause 5 has many parts – auditing helps ensure none are inadvertently skipped. Additionally,

hold formal design reviews and code reviews especially for Class C software. Besides finding

technical issues, reviews are an opportunity to ensure compliance aspects (like “did we update the

SRS after that change?”) are not forgotten.

Continuous Improvement: Even after you get a product out, have a retrospective. What parts of our

process caused delays or non-conformities? Perhaps the requirements churned too much – maybe

invest in better upfront user needs next time. Or if testing found many late defects, maybe earlier

unit testing or different tools needed. IEC 62304 compliance is not just a one-time; as the Ketryx

guide notes, maintenance and continuous improvement of processes is important ketryx.com

ketryx.com. Also, keep an eye on updates to the standard or best practices (like cybersecurity

guidance – future IEC 62304 editions will likely incorporate more on security). Manufacturers should

stay current and adapt processes accordingly ketryx.com.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 30 of 44

https://blog.johner-institute.com/iec-62304-medical-software/tir-45-agile-software-development/#:~:text=institute,summary%20of%20the%20TIR%2045
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=Instead%2C%20of%20a%20top,bug%20in%20a%20critical%20point
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20should%20do%20an%20initial,risk%20assessment%20of%20the%20change
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=Internal%20Audits%3A%20Conducting%20internal%20audits,of%20the%20software%20life%20cycle
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=the%20software%20life%20cycle
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=Maintenance%20and%20Continuous%20Improvement%3A%20Certification,effective%20throughout%20its%20life%20cycle
https://www.ketryx.com/blog/a-comprehensive-guide-to-iec-62304-navigating-the-standard-for-medical-device-software#:~:text=Staying%20Current%20with%20IEC%2062304
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Utilize Guidance and Templates: There are many resources available: AAMI TIR45 for agile, the

FDA’s guidance documents for software (like “General Principles of Software Validation”

accessdata.fda.gov), IMDRF documents, etc. Also, companies and consultants often provide

templates for IEC 62304 documents (plans, SRS, trace matrix). Using templates can jumpstart

compliance and ensure you don’t forget required content. Just be sure to customize them to your

project.

To summarize, the best practices revolve around making compliance efficient and integral

to development rather than an afterthought. Use automation and tools to handle the

mundane parts (trace links, document generation), train and involve people so they understand

the value, and iteratively incorporate IEC 62304 activities so it’s not a big crunch at the end.

Many companies that have gone through it report that after the initial adjustment, the process

discipline actually improves product quality and team clarity. For example, having clearly

defined requirements and test cases early can reduce ambiguity for developers. In the long run,

following IEC 62304 can reduce costly late-phase fixes or even post-market failures – which is a

very tangible benefit.

One real-world best practice example: Some teams adopt a policy that no code is written

unless there is a linked requirement and hazard analysis entry for it – this keeps

development focused and avoids gold-plating. Another example: injecting static analysis and

unit testing in the continuous integration pipeline, so every code commit is checked for standard

violations and doesn’t break existing tests – this supports Clause 5.5 and 5.6 verification

continuously rather than in big batches.

Implementing IEC 62304 is certainly a non-trivial effort, but by applying the above strategies,

companies have successfully merged it with modern development. This ensures devices are not

only compliant on paper but truly built with a safety mindset. As a result, developers can move

fast and not break things – at least not in a way that reaches the patient.

Comparison with Other Regulatory Requirements (FDA

and EU MDR)

IEC 62304 does not exist in a vacuum; it is a consensus standard that aligns with regulatory

expectations in major markets like the United States and Europe. Complying with IEC 62304 can

greatly aid in meeting specific regulatory requirements such as U.S. FDA software guidelines and

the EU Medical Device Regulation (MDR). Here we compare IEC 62304’s provisions with those

regulatory frameworks and highlight how they interrelate:

U.S. FDA: The FDA doesn’t mandate IEC 62304 by name in its regulations, but it has robust

requirements for medical device software via the Quality System Regulation (QSR) and guidance

documents. Key points of intersection:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 31 of 44

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=Guidance%20for%20Off,in%20Medical%20Devices%2C%20September%201999
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Design Control (21 CFR 820.30): FDA’s QSR requires manufacturers to have a design control

process for device development, including software. This involves planning, input requirements,

design outputs, verification, validation, and design reviews orielstat.com. IEC 62304 essentially

provides a concrete way to implement these design controls for software. For example, design inputs

in QSR correspond to software requirements; design verification corresponds to integration and

system testing to ensure requirements are met; design validation (ensuring the device meets user

needs) is mostly outside IEC 62304’s scope but having a thoroughly tested software through

IEC 62304 supports validation activities.

FDA Guidance on Software Validation (2002): FDA’s “General Principles of Software Validation”

stresses the importance of a structured software development life cycle, risk management, and

thorough testing accessdata.fda.gov. It encourages establishing requirements, performing code

reviews, unit tests, integration tests, etc., and documenting everything. These are precisely the

practices IEC 62304 enshrines. By following IEC 62304, a manufacturer will inherently satisfy most

expectations from this FDA guidance – for instance, having a requirements spec, test protocols, and

traceability (FDA expects traceability from requirements to verification and validation tests, which

IEC 62304 provides via its processes).

Level of Concern (LOC) vs. Safety Class: FDA historically used Level of Concern categories in

premarket submissions to determine how much documentation is needed. The LOC definitions are

very similar to IEC 62304 classes:

Minor LOC meant no possible injury (parallels Class A).

Moderate LOC meant non-serious injury possible (Class B).

Major LOC meant potential for serious injury or death (Class C).

Indeed, FDA has acknowledged this correspondence, and manufacturers often referenced IEC 62304

class rationale to justify their LOC. Recent FDA draft guidance (as of 2022-2023) replaced LOC with

“Software Documentation Levels” (Basic or Enhanced), which are determined by criteria that again

boil down to risk severity and device type. Class C software typically falls into the highest

documentation level. So, if you classify software as Class C per IEC 62304, FDA will likely

consider it high risk requiring extensive documentation – which you will have if you followed

Class C processes blog.johner-institute.com promenadesoftware.com. In essence, IEC 62304

classification can be used to systematically address FDA’s risk-based documentation requirements.

FDA Recognition of IEC 62304: The FDA formally recognizes ANSI/AAMI IEC 62304 (2006 +

A1:2015) as a consensus standard for medical device software lifecycle. This means a manufacturer

can declare conformity to IEC 62304 in a 510(k) or other submission to partly satisfy relevant

regulatory requirements. According to FDA’s database, IEC 62304 is recognized “on its scientific and

technical merit and because it supports existing regulatory policies” accessdata.fda.gov. FDA notes

that IEC 62304’s normative reference to ISO 14971 provides a foundation for safe software

accessdata.fda.gov. By conforming to IEC 62304, a manufacturer can streamline their submission –

for example, they might submit a Declaration of Conformity to IEC 62304, which can reduce what

FDA scrutinizes in terms of software development details.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 32 of 44

https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=management%2C%20clinical%20evaluation%2C%20and%20post,FDA%20released%20a%20final
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=Guidance%20for%20Off,in%20Medical%20Devices%2C%20September%201999
https://blog.johner-institute.com/iec-62304-medical-software/level-of-concern/#:~:text=3,is%20possible%20%3B%20Class
https://www.promenadesoftware.com/blog/fda-iec62304-software-documentation#:~:text=FDA%20and%20IEC%2062304%20Software,associated%20A%2CB%2CC%20for%20IEC%2062304
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=Extent%20of%20Recognition%20Complete%20standard,and%20FDA%20Staff%2C%20May%202005
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

FDA Guidance on Content of Premarket Submissions for Software (2005 & newer drafts): FDA

expects documentation like Software Requirements Specification, Architecture Design Chart, Hazard

Analysis, Traceability Matrix, and Test Protocols/results in submissions accessdata.fda.gov. These

map one-to-one with IEC 62304 outputs (SRS, design, risk management file, trace matrix,

verification reports). If you follow IEC 62304, you will have these artifacts ready. FDA’s newer draft

guidance (if finalized) will likely continue to require basically the same info. So compliance with

62304 positions you to easily compile your “software dossier” for FDA.

Post-market (CAPA): FDA’s expectations for post-market surveillance and corrective actions on

software issues also align with IEC 62304’s maintenance and problem resolution. For instance, FDA

will expect that software bugs found in the field are investigated and corrections implemented with

design controls. Clause 9’s rigorous problem resolution process extrahorizon.com extrahorizon.com

is essentially a CAPA process for software, which helps fulfill 21 CFR 820.100 (Corrective and

Preventive Action) in context of software. If FDA audits your company after release and you can show

an IEC 62304-compliant problem log and change management records, that directly supports QSR

compliance.

In summary, IEC 62304 satisfies FDA’s fundamental concerns: that you have a well-

structured development process, you’ve considered risks, and you’ve verified the software

thoroughly greenlight.guru accessdata.fda.gov. It’s not a legal requirement, but using it greatly

reduces the likelihood of FDA finding gaps in your software engineering approach. Many

companies choose to comply with IEC 62304 precisely to meet FDA expectations with less

guesswork.

EU MDR (2017/745) and IVDR (2017/746): The European regulatory landscape has its own

demands, and standards play a crucial role:

Harmonized Standard in EU: IEC 62304 (as EN 62304) is a harmonized standard for medical

device software in Europe blog.johner-institute.com. Under the previous Medical Devices Directive

(MDD), EN 62304:2006 was harmonized, meaning compliance gave “presumption of conformity” to

the essential requirements related to software. Under the newer MDR, harmonization is ongoing;

EN 62304:2006/A1:2015 was listed as harmonized for MDR in 2020 (for certain requirements).

Essentially, if you comply with EN 62304, you are presumed to meet the MDR’s General Safety and

Performance Requirements (GSPR) for software life cycle processes blog.johner-institute.com. For

example, MDR Annex I, Chapter II (Requirement 17.1 and 17.2) covers electronic programmable

systems (including software) and says devices with software must be “developed and

manufactured according to the state of the art taking into account the life cycle, risk

management, validation and verification” orielstat.com. IEC 62304 is the state of the art reference

for life cycle processes; following it is the easiest way to demonstrate compliance with this

requirement orielstat.com. In fact, the MDR essentially describes IEC 62304 in those clauses (life

cycle, risk, V&V). By citing compliance to EN 62304 in your technical documentation, you address

those points.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 33 of 44

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=Relevant%20FDA%20Guidance%20and%2For%20Supportive,and%20FDA%20Staff%2C%20May%202005
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Then%2C%20using%20your%20software%20risk,to%20scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=right%2C%20you%20might%20have%20to,scroll%20up%20a%20bit
https://www.greenlight.guru/glossary/iec-62304#:~:text=IEC%2062304%20is%20an%20internationally,compliance%20with%20both%20%2058
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://blog.johner-institute.com/category/iec-62304-medical-software/#:~:text=IEC%2062304%20is%20a%20European,the%20development%20and%20maintenance%20of
https://blog.johner-institute.com/category/iec-62304-medical-software/#:~:text=IEC%2062304%20is%20a%20European,the%20development%20and%20maintenance%20of
https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=,what%20that%20means%2C%20read%20this
https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=,what%20that%20means%2C%20read%20this
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

EU MDR Classification Rules for Software: The MDR introduced Rule 11 for classifying standalone

software as medical devices (Class IIa, IIb, III or I) based on risk to the patient orielstat.com. While

this is about device classification (regulatory class), not software safety class, it has increased

scrutiny on software. Higher risk software (Class IIb/III devices under MDR) will require more rigorous

conformity assessment by Notified Bodies. Those Notified Bodies will expect to see compliance with

62304 as evidence of “state of the art” development. Also, MDR Annex I has several GSPRs about

reducing risks (general risk management, labeling, usability, etc.) that indirectly require a solid

development process. For example, GSPR 3 and 8 cover risk reduction and consideration of user

errors – a well-implemented IEC 62304 process, combined with ISO 14971 and IEC 62366 (usability),

addresses these.

Post-market Surveillance and Updates: MDR has strong emphasis on post-market surveillance

and trending of issues (similar to FDA’s CAPA). The software maintenance and problem resolution

processes of IEC 62304 support compliance with these obligations. For instance, if a Notified Body

sees that you have a structured maintenance process (Clause 6) and you handle field issues

systematically (Clause 9), that helps fulfill MDR’s requirement that manufacturers proactively gather

and analyze post-market information and take action on safety signals.

Technical Documentation (Annex II & III of MDR): Manufacturers must compile extensive technical

documentation, including design and development outputs, verification/validation, and risk

management. If you followed IEC 62304, you will have a chunk of this ready: software design

documents, risk management file, testing evidence, etc. Also, in the EU, traceability and linkage

between risk controls and verification is scrutinized during conformity assessment. IEC 62304’s

mandated traceability provides exactly that promenadesoftware.com. Many Notified Body auditors

use IEC 62304 as a checklist when auditing software: they will effectively check that you have

documents and records corresponding to Clause 5 through 9 requirements.

In essence, IEC 62304 is recognized internationally as “state of the art” for software

development in medtech extrahorizon.com. Regulators like FDA and EU authorities don’t just

passively accept it; they participated in its creation and update. The standard was written by

industry and regulatory experts to encapsulate what regulators expect to see. By adhering to it,

you cover a lot of bases:

You comply with FDA’s QSR design control and documentation expectations.

You conform to EU MDR’s GSPRs related to software life cycle and risk management (and can claim

harmonized standard compliance for those) blog.johner-institute.com orielstat.com.

You also align with other jurisdictions that often leverage the same standards (Health Canada, TGA in

Australia, etc., all either recognize 62304 or have similar expectations).

IMDRF (International Medical Device Regulators Forum): IMDRF has published documents on

Software as a Medical Device (SaMD) where they outline a quality management system and life

cycle for SaMD. They explicitly list IEC 62304 as a key standard relevant to SaMD development

imdrf.org. For example, IMDRF’s SaMD Quality Management System guidance (IMDRF/SaMD

WG/N23) references IEC 62304:2006 as a commonly used lifecycle standard for software

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 34 of 44

https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=Classification%20of%20Software%20Under%20the,EU%20MDR
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Harmonisation
https://blog.johner-institute.com/category/iec-62304-medical-software/#:~:text=IEC%2062304%20is%20a%20European,the%20development%20and%20maintenance%20of
https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=,what%20that%20means%2C%20read%20this
https://www.imdrf.org/sites/default/files/2025-01/IMDRF_SaMD%20WG_Software-Specific%20Risk_N81%20Final_0.pdf#:~:text=,software%20%E2%80%94%20Software%20life%20cycle
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

development imdrf.org. So globally, there’s convergence that IEC 62304 represents best

practices.

One difference to note: Regulatory device classification vs. IEC 62304 class. IEC 62304

Class C software might reside in a Class II device in the US (e.g., some moderate devices have

potentially harmful software). Conversely, a high-risk Class III device almost certainly has

Class C software if software is part of it. But one should not confuse the two. When preparing

submissions or technical files:

You state the device’s regulatory class per FDA or MDR rules.

You also indicate compliance to IEC 62304 and might mention the software safety class as part of

the explanation of your software development rigor.

Regulators care that the level of control is appropriate. If you have a high-risk device but you

somehow claimed your software was Class A (no possible harm), that will raise a red flag. They

will expect alignment – e.g., life-sustaining device software should be Class C and thus have had

the highest rigor. In fact, an FDA or NB reviewer could challenge you if they think you under-

classified software to avoid work. So always ensure your classification rationale is solid and

defensible in terms of patient risk.

Cybersecurity & New expectations: One area evolving is cybersecurity. FDA and EU both now

expect manufacturers to address cybersecurity risks (FDA has guidances, MDR has GSPR 17.4

on minimizing risks of unauthorized access, etc.). IEC 62304:2006 didn’t explicitly cover

cybersecurity, but Amendment 1 and future edition drafts include references that architecture

should consider cybersecurity and that other standards will cover it assets.iec.ch assets.iec.ch.

For now, manufacturers often use IEC 62304 alongside other guidance (like FDA’s cybersecurity

guidance, or the upcoming IEC 81001-5-1 standard on security) to satisfy regulators. The good

news is that the same lifecycle approach in IEC 62304 can be extended to security: e.g., treat

security vulnerabilities as “hazards” in risk management, have requirements for security

controls, test them, etc. So the structured process helps with emerging requirements too

orielstat.com orielstat.com.

Summary of comparison: FDA and EU MDR do not conflict with IEC 62304; rather, they

embrace its principles. FDA recognizes it and essentially expects its elements to be present in

submissions accessdata.fda.gov. The EU MDR has legally binding language that essentially

requires what IEC 62304 mandates (a lifecycle with risk management and verification)

orielstat.com. Thus, compliance with IEC 62304 provides a strong measure of confidence that

you are meeting regulatory requirements on both sides of the Atlantic. It simplifies preparing

documentation for regulators and reduces the risk of non-compliance findings during audits or

reviews.

Manufacturers often cite IEC 62304 compliance in their regulatory filings as a selling point.

For example, they may state: “The software development was conducted under an IEC 62304

compliant process, and the software was classified as Class B. A full suite of verification

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 35 of 44

https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-151002-samd-qms.pdf#:~:text=,used%20software%20development%20lifecycle
https://assets.iec.ch/public/sc62a/IEC%2062304%20Ed.%202.0%20Design%20Specification.pdf?2025030348#:~:text=only%20to%20software%20safety%20class,and%20the%20capability%20of%20tools
https://assets.iec.ch/public/sc62a/IEC%2062304%20Ed.%202.0%20Design%20Specification.pdf?2025030348#:~:text=II,a%20change%20since%20it%20currently
https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=,what%20that%20means%2C%20read%20this
https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=validation%2C%20and%20cybersecurity%20issues.%20,what%20that%20means%2C%20read%20this
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=,what%20that%20means%2C%20read%20this
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

activities (unit, integration, system testing) was performed, with traceability from requirements

to tests.” For a reviewer, this indicates the company followed industry best practices.

One case in point: when WHILL (a maker of innovative wheelchairs) sought FDA clearance for

their Model C2 wheelchair software, they made sure it was IEC 62304-compliant. Achieving

IEC 62304 compliance was an enabling factor in obtaining FDA Class II approval for that product

parasoft.com. It showed the FDA that the software met safety and engineering standards, which

allowed physicians to confidently prescribe it as a medical device in the US parasoft.com.

To conclude, IEC 62304 serves as a common language between manufacturers and

regulators regarding software development. It encapsulates what regulators mean by “state of

the art” and “adequate assurance of safety” in software. By using the standard, companies can

more efficiently satisfy the mosaic of regulations (FDA, MDR, etc.) without reinventing the wheel

for each jurisdiction – one process to meet them all. Of course, manufacturers should also keep

an eye on region-specific requirements (like FDA wants a bit more on software validation in

clinical context, EU wants more on usability per IEC 62366), but those often dovetail with or are

complemented by the IEC 62304 framework.

Practical Examples of IEC 62304 Compliance

To illustrate how IEC 62304 is applied in practice, let’s look at a couple of examples and case

studies that show what compliance entails and the benefits it brings:

Example 1: Class C Insulin Pump Software – Scenario: A company is developing an insulin

pump, a device that delivers insulin to patients and whose malfunction could cause serious injury

or death (by delivering too much or too little insulin). Clearly, the software in this pump is safety-

critical. Under IEC 62304, the software would be classified as Class C (since a failure could lead

to serious harm) greenlight.guru.

The development team creates a software development plan upfront describing how they will

implement all processes with Class C rigor (including architecture and detailed design

documentation, extensive testing, etc.).

During risk management, hazards like “overdose of insulin” or “failure to deliver insulin” are

identified with software causes (e.g., arithmetic error in dosage calculation, or task freezing). Each

hazard is mitigated: for overdose, perhaps they implement a safety interlock in software that caps

the dose, and an alarm if a dose anomaly is detected. These become software requirements linked to

those hazards promenadesoftware.com.

The team writes a Software Requirements Specification capturing all functional needs (user can

set dose, pump delivers dose, etc.) and safety requirements (e.g., “REQ 3.5: If commanded dose

exceeds safe threshold, system shall alarm and not deliver the dose”). They also include

requirements for reliability (maybe a watchdog reset if software hangs) and security (prevent

unauthorized dose changes), acknowledging modern expectations.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 36 of 44

https://www.parasoft.com/wp-content/uploads/2024/05/case-study-WHILL-FDA-approved-IEC62304-compliant.pdf#:~:text=team%20build%20software%20that%20operates,healthcare%20system
https://www.parasoft.com/wp-content/uploads/2024/05/case-study-WHILL-FDA-approved-IEC62304-compliant.pdf#:~:text=team%20build%20software%20that%20operates,healthcare%20system
https://www.greenlight.guru/glossary/iec-62304#:~:text=,or%20serious%20injury%20is%20possible
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=The%20crux%20of%20the%20IEC,often%20a%20new%20software%20requirement
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

They produce an architecture design: perhaps separating the software into independent modules –

one for the control algorithm, one for the monitoring safety interlock, one for the user interface. They

design it such that the safety interlock runs on a separate microcontroller or at least as separate task

that can cut off the pump if needed (demonstrating segregation of a safety component) aligned.ch.

All interfaces (like between control and monitoring modules) are defined in documents or diagrams.

For detailed design, each module is further specified (e.g., pseudo-code or flowcharts for the

dosing algorithm, etc.). Because it’s Class C, they meticulously document the logic of each unit, and

peer-review these designs.

Coding is done in, say, C. They enforce a coding standard (MISRA C) to reduce errors. They use

static analysis tools to catch any deviations (e.g., buffer overflow risks, etc.). This addresses

Clause 5.5 verification criteria like absence of certain code flaws extrahorizon.com.

They perform unit tests for each critical function (for example, test that the dose calculation

function correctly computes doses in normal and edge cases; test that the alarm triggers when it

should). They also do code reviews, ensuring code matches the detailed design and has no

dangerous constructs. All this is documented in review records and unit test reports.

Then they do integration testing: combine modules and test scenarios. For instance, simulate a

sensor failure and see if the monitoring module detects it and the system goes into a safe state

(expected behavior per risk control). They test timing – ensuring the pump can process inputs and

deliver outputs within required response times (essential for real-time therapy). They test abnormal

conditions: e.g., two modules losing communication – does the system fail safe? extrahorizon.com.

Each integration test is traced back to requirements (and thereby hazards).

Next, system testing on the fully integrated pump (with actual hardware). They test against every

software requirement: normal dose delivery, bolus delivery, user interface functions, and all those

safety features. They even do simulated misuse: have a user attempt an overdose or tamper with it,

verifying the software still prevents harm extrahorizon.com extrahorizon.com. They keep thorough

records of each test case and outcome. When some tests initially fail (as usually happens), those

issues are logged as problem reports.

The team uses the problem resolution process (Clause 9) for any bugs found. For example, they

find that under a rare condition the alarm didn’t sound. That’s logged, investigated (root cause in

code identified), fixed, and regression-tested extrahorizon.com extrahorizon.com. Each such issue

has a paper trail linking it to a change in the code and tests proving the fix.

As they approach release, they ensure traceability matrix is complete: every requirement (including

risk controls) has one or more tests passed promenadesoftware.com, and every test case maps to a

requirement. For instance, requirement “cap dose at X” is tested by “Test #45: attempt dose 2X,

verify pump limits it to X and alarms.”

They archive the software baseline (source code, object code, etc.), all documents (SRS,

architecture, test results), and establish a version like “Software v1.0” to be released

extrahorizon.com extrahorizon.com. The release notes indicate it’s Class C software developed per

IEC 62304, listing known residual anomalies (if any) that are not safety-related.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 37 of 44

https://www.aligned.ch/resources/insights-and-articles/tipps-and-tricks/426-how-software-safety-classifications-changed-in-iec-62304-2015-amendment-1#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,requirements%2C%20including%20risk%20control%20measures
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=taken%20directly%20from%20the%20standard,4
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,foreseeable%20misuse
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Then%2C%20using%20your%20software%20risk,to%20scroll%20up%20a%20bit
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=Now%20that%20the%20change%20requests,from%20the%20standard%20itself
https://www.promenadesoftware.com/blog/iec-62304-hazard-analysis#:~:text=I%20list%20the%20new%20requirement,you%20have%20the%20verification%20needed
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,complete%2C%20including%20the%20associated%20documentation
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

The company’s Technical File for CE marking and 510(k) for FDA include these documents or

summaries. Because they followed IEC 62304 strictly, the Notified Body and FDA reviewers find the

documentation very robust. For instance, the NB can see immediately via the trace matrix that all

safety-related functions have been verified. The FDA reviewer sees a well-structured hazard analysis

referencing software requirements – aligning with FDA’s guidance.

Outcome: The insulin pump passes regulatory review with no major questions on software. The

development process, while intensive, likely prevented serious bugs from reaching patients. The

thorough testing caught issues early. Post-market, when an update is needed (say to adjust for a

new insulin type), the team follows the maintenance process: raising a change request, doing

impact analysis, and verifying the update without breaking existing functionality. This example

shows that for high-risk software, IEC 62304’s prescribed practices (from risk-driven

requirements to rigorous V&V) are indispensable for patient safety and regulatory approval.

Example 2: Class B Mobile Medical App (SaMD) – Scenario: A startup develops a smartphone

app that analyzes heart rate data from a consumer fitness band to detect signs of atrial

fibrillation (irregular heartbeat) and advise the user to see a doctor. This could be considered a

Software as Medical Device (SaMD). If the app fails, potential harm might be a delayed diagnosis

(which could be considered non-serious if a short delay, or serious if it misses a severe

condition; let’s assume in this case it’s moderate harm potential). They classify the software as

Class B – injury possible but not serious greenlight.guru.

Being a software-only product, they apply IEC 62304 to the app development. They plan to use an

Agile methodology (e.g., Scrum). Their Software Development Plan reflects this: it states they will

do iterative cycles, but still produce required outputs (requirements, tests, etc.) each sprint. They

ensure the plan covers configuration management (using Git for code, and a ticket system for

changes) and problem resolution (using their issue tracker) extrahorizon.com.

For risk management (with ISO 14971), hazards might include “app fails to detect AFib when present

(false negative)” or “app falsely alarms causing anxiety (false positive).” False negative is a bigger

patient risk (could delay care). They mitigate that by, say, setting conservative detection thresholds

(to minimize missed detections at cost of more false alarms). That calibration is a requirement: “The

algorithm shall detect AFib with at least 90% sensitivity.” A false positive isn’t directly harmful (just

user anxiety), so perhaps acceptable or mitigated with a notice “this is not a diagnosis, see doctor to

confirm.”

They document software requirements: including functional ones (measure heart rate, run

algorithm, display message) and risk controls (e.g., “if signal quality is poor, app shall warn that

reading may be inaccurate” to mitigate risk of false negative due to bad data). They also have

requirements for compatibility (runs on Android 10+, iOS 14+ etc.).

Architecture: As an app, the architecture might be simpler than an embedded device. They still

document it: e.g., a three-layer architecture (data acquisition module, analysis algorithm module,

user interface module). They identify a SOUP component – perhaps they use a third-party signal

processing library (which is SOUP). They record that library’s name, version, and known issues (none

critical, hopefully) extrahorizon.com.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 38 of 44

https://www.greenlight.guru/glossary/iec-62304#:~:text=IEC%2062304%20identifies%20three%20safety,classes%20for%20medical%20device%20software
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,in%20your%20software%20plan
https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=,your%20SOUP%20items
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Detailed design: for Class B, the standard requires architecture and likely expects some detail

design, but perhaps not as rigorously as Class C. The team writes pseudo-code for the core

algorithm and interface logic, enough to guide coding and for a reviewer to understand critical

sections.

Implementation: They code in Swift/Kotlin for mobile. They use good practices but perhaps not

MISRA-level since it’s higher-level language (but they use static analysis for common bugs, and

follow secure coding practices since data is involved). They also incorporate a lot of unit tests,

especially for the analysis algorithm (to verify it works on known ECG sample data for normal vs. AFib

rhythms).

Because they’re agile, every two-week sprint they build a potentially shippable increment. They do

integration testing on the app incrementally: e.g., test that data flows from sensor to algorithm

correctly, test UI displays result.

At defined points (maybe every few sprints), they do more formal system testing with a wider range

of test scenarios: feed recorded heart data with and without arrhythmias to the app on various phone

models, ensure the app correctly identifies or doesn’t identify AFib as required. They also test edge

cases: no internet (should still work?), low battery, etc. They simulate “foreseeable misuse” e.g., user

using it while running (movement noise) – app maybe should detect poor signal.

Since it’s Class B, there is a fair bit of testing but maybe not a separate independent test team as

would often be for Class C. Still, they document results and use a trace matrix to ensure every

requirement (including those from hazards) is verified.

An anomaly: During testing they find the algorithm occasionally flags AFib when heart rate is just

momentarily irregular due to motion artifact (false positive). They log this as a problem report. Risk-

wise, false positive is not dangerous per se, but they decide to refine the algorithm to reduce

nuisance alarms (a quality improvement). They issue a change request, adjust the algorithm (maybe

add a rule to ignore <5 seconds of irregularity), verify the change fixed it (tested with simulated

motion data), and close the problem report with rationale that false positives were acceptable risk

but improved for user experience.

They follow config management: all code and test scripts are versioned. When ready to release v1.0,

they tag the code, and generate the necessary documentation from their tools (some agile teams

automate output of a basic design description and trace matrix via JIRA plugins, etc.). They archive

that as the design history.

For regulatory submission (since it might be a Class IIa under MDR, and likely a de novo or 510(k) to

FDA), they prepare the documentation. They include an IEC 62304 compliance summary,

indicating the software is Class B and describing how they met the standard’s requirements in an

agile context. They provide the required artifacts: SRS, architecture diagram, hazard analysis (with

references to software requirements), traceability from requirements to test results, and summary of

verification.

The FDA reviewer, noting the software is moderate risk, sees that all expected documentation is

there and that the team followed a recognized standard (which FDA appreciates). The EU Notified

Body auditor during technical documentation review sees evidence of lifecycle management and risk

control per state of the art (which helps them be confident with GSPR 17.2 compliance).

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 39 of 44

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Outcome: The mobile app gets clearance/CE marking. Post-market, suppose a new phone OS

version causes a bug (app crashes). Thanks to their maintenance process, they catch this

through user feedback, log a problem report, do a quick patch release under change control,

and inform users to update the app to avoid the issue (fulfilling Clause 6.5 duties to inform users

of problems and fixes) extrahorizon.com. This swift, controlled action prevents any safety issues

and keeps regulators satisfied that the company manages software changes responsibly.

This example demonstrates that even in a modern agile development of a medical app,

IEC 62304 can be applied effectively. The key was integrating the standard’s required activities

(risk analysis, documentation, testing, traceability) into the agile cycles, which the team did.

They maybe produced lighter-weight documentation than a heavy Class C project, but still

sufficient and controlled. It highlights that compliance is achievable without stifling innovation if

done smartly – an important lesson in today’s SaMD era.

Case Study: Empowering Disabled People (NOW Technologies) – Real-world case: NOW

Technologies developed the “Gyroset” wheelchairs, which are controlled by head movements for

people with disabilities. This system’s software needed to comply with IEC 62304. According to

a case study by LDRA, NOW Technologies combined IEC 62304 with MISRA C coding

standards and thorough tool validation to achieve compliance ldra.com ldra.com. Highlights

from that:

They treated the head-control interface software as safety-critical (Class C, presumably, since a

malfunction could cause a wheelchair to move erratically).

They employed static analysis and coding rules (MISRA) to ensure the implementation was robust

ldra.com.

They faced design challenges (like needing to use particular microcontrollers and sensors) and

solved them while still adhering to 62304 processes – for instance, specifying a tool chain and

validating it, because compiler or debugger issues can affect software reliability ldra.com ldra.com.

The outcome was that they delivered a product that gave users mobility freedom, and they did so

meeting both FDA and CE requirements, by following the discipline of IEC 62304. The case study

emphasizes that although meeting the standard can be “painful” for developers used to freedom,

using the right practices and tools can ease the burden and ultimately yields high-quality code

ldra.com.

Case Study: WHILL Model C2 Power Wheelchair – We touched on this: WHILL’s motorized

wheelchair with smart controls was considered a medical device. Achieving IEC 62304

compliance was a stepping stone to obtaining FDA Class II clearance parasoft.com.

The team likely had to integrate hardware and software development processes; they used

IEC 62304 to manage the software part.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 40 of 44

https://www.extrahorizon.com/iec-62304-software-development-medical-devices#:~:text=You%20also%20have%20some%20obligations,your%20device%20and%20regulators%20about
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=to%20apply%20language%20subsets,C%20were%20used%20in%20combination
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=IEC%2062304%20compliance%20case%20study%3A,Tool%20classification%20and%20validation
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=to%20apply%20language%20subsets,C%20were%20used%20in%20combination
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=IEC%2062304%20compliance%20case%20study%3A,Specifying%20a%20tool%20chain
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=IEC%2062304%20compliance%20case%20study%3A,Tool%20classification%20and%20validation
https://ldra.com/ldra-blog/iec-62304-compliance-case-study/#:~:text=IEC%2062304%20compliance%20case%20study%3A,code%20right%20for%20MISRA%20C
https://www.parasoft.com/wp-content/uploads/2024/05/case-study-WHILL-FDA-approved-IEC62304-compliant.pdf#:~:text=team%20build%20software%20that%20operates,healthcare%20system
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

They faced challenges like reusing legacy code in a safety-critical context, and ensuring functional

safety of embedded software parasoft.com. Using IEC 62304 structure helped them systematically

improve product quality and safety (e.g., they established efficient systems for code reuse that still

met quality criteria, and put in verification for critical functions like the unique omni-wheel control)

parasoft.com parasoft.com.

The result: The wheelchair could be prescribed as a medical device, since it met required safety

standards. This allowed a broader range of people to get insurance coverage for it in the US

parasoft.com.

Key takeaways from these examples:

For high-risk devices (Class C software), nothing short of full IEC 62304 compliance is acceptable.

The processes might seem heavyweight, but they directly correlate to ensuring the product won’t

cause harm. These examples show that companies successfully navigated the rigorous process and

thereby delivered safe, effective products.

For moderate to lower risk (Class B/A), you have some flexibility (maybe fewer documents, etc.), but

the structured approach still greatly aids in catching errors (like false readings in the app example)

and demonstrating quality to regulators.

Real companies often pair IEC 62304 with other best practices (like MISRA coding standards, or with

other standards like ISO 26262 for automotive if it’s a crossover product, etc.) to enhance their

development workflow.

Implementing IEC 62304 not only satisfies regulators but improves team discipline and product

robustness. Teams find more bugs internally (instead of users finding them), and have a clearer

picture of what the software should do (thanks to well-defined requirements and design).

Finally, one can see IEC 62304 as somewhat akin to DO-178C in the aviation world (which is a

software standard for airborne systems). A comparative study showed that while DO-178C is

even more stringent in some ways, IEC 62304 covers similar ground for medical – requiring

verification, traceability, configuration control, etc., but with focus on patient safety rather than

flight safety real-time-consulting.com. Knowing this, some medtech companies hire engineers

from aerospace or other safety-critical industries to leverage their experience with rigorous

lifecycle standards. This cross-industry fertilization of best practices has helped many

implement IEC 62304 effectively.

In conclusion, the practical examples and case studies affirm that IEC 62304 is achievable and

beneficial. Whether it’s an insulin pump, a diagnostic app, or a sophisticated wheelchair,

following the standard leads to high-quality software that stands up to regulatory scrutiny. It

reduces risk for both patients and the company (fewer recalls, liability issues). Companies have

reported that once these processes are integrated, they become a normal part of development –

the initial ramp-up is the hardest part. But as illustrated, even startups can integrate IEC 62304

early and succeed (the app example). The standard scales – you apply only what’s needed for

your class/risk, which is an efficient use of resources to target safety where it matters most.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 41 of 44

https://www.parasoft.com/wp-content/uploads/2024/05/case-study-WHILL-FDA-approved-IEC62304-compliant.pdf#:~:text=in%20the%20U,us%20to%20achieve%20both%20high
https://www.parasoft.com/wp-content/uploads/2024/05/case-study-WHILL-FDA-approved-IEC62304-compliant.pdf#:~:text=THE%20CHALLENGES%20WHILL%20produces%20all,integrating%20features%20with%20smartphone%20apps
https://www.parasoft.com/wp-content/uploads/2024/05/case-study-WHILL-FDA-approved-IEC62304-compliant.pdf#:~:text=in%20the%20U,us%20to%20achieve%20both%20high
https://www.parasoft.com/wp-content/uploads/2024/05/case-study-WHILL-FDA-approved-IEC62304-compliant.pdf#:~:text=team%20build%20software%20that%20operates,healthcare%20system
https://real-time-consulting.com/wp-content/uploads/2025/05/A-Comparative-Analysis-of-Embedded-Avionics-and-Embedded-Medical-Software-Development-Standards.pdf#:~:text=,insights%20into%20how%20these
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

Conclusion: IEC 62304 provides a comprehensive framework ensuring that medical device

software is developed with safety at the forefront. It covers everything from planning to post-

market, demanding rigor proportionate to risk, and dovetails with global regulatory expectations.

By adhering to IEC 62304, companies not only comply with regulations like FDA’s QSR and EU’s

MDR accessdata.fda.gov orielstat.com, but they also instill engineering best practices that lead

to more reliable and maintainable software.

In the rapidly evolving medtech industry, software complexity is ever-increasing (think AI,

connected devices). IEC 62304 acts as a safeguard – a common language and process that

developers, quality teams, and regulators can rely on to ensure that no matter how innovative

the software is, it has been thoroughly vetted and made as safe as possible for those who

depend on it. By following the standard and the best practices outlined, organizations can

navigate the challenges and deliver medical software that improves patient outcomes without

compromising on safety or effectiveness.

accessdata.fda.gov blog.johner-institute.com

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 42 of 44

https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://www.orielstat.com/blog/compliance-requirements-for-medical-device-software-and-software-as-a-medical-device-in-the-us-and-eu/#:~:text=,what%20that%20means%2C%20read%20this
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfstandards/detail.cfm?standard__identification_no=30596#:~:text=recognized%20worldwide%20by%20regulators%2C%20is,regulatory%20inspection%20or%20certification%20assessment
https://blog.johner-institute.com/category/iec-62304-medical-software/#:~:text=IEC%2062304%20is%20a%20European,the%20development%20and%20maintenance%20of
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

IntuitionLabs - Industry Leadership & Services

North America's #1 AI Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs

leads the US market in custom AI software development and pharma implementations with proven

results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies including Scilex

Holding Company (SCLX) and leading CROs across North America.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11

compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years

in software development, multiple successful exits, and patent holder. Recognized as one of the top

AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs,

chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private

cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data

conversion, automated document analysis, and intelligent data extraction from clinical and regulatory

documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and

custom field force applications with advanced analytics and reporting capabilities.

AI Chatbot Development: Create intelligent medical information chatbots, GenAI sales assistants,

and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory

management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and

real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring,

and custom data visualization solutions for pharmaceutical insights.

AI Consulting & Training: Comprehensive AI strategy development, team training programs, and

implementation guidance for pharmaceutical organizations adopting AI technologies.

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 43 of 44

https://intuitionlabs.ai/contact?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only.

We make no representations or warranties of any kind, express or implied, about the completeness,

accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or

its representatives be liable for any loss or damage including without limitation, indirect or consequential

loss or damage, or any loss or damage whatsoever arising from the use of information presented in this

document.

This document may contain content generated with the assistance of artificial intelligence technologies.

AI-generated content may contain errors, omissions, or inaccuracies. Readers are advised to

independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are

the property of their respective owners. All company, product, and service names used in this document

are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply

endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading AI software development firm specializing exclusively in

pharmaceutical and biotech companies. As the premier US-based AI software development company for

drug development and commercialization, we deliver cutting-edge custom AI applications, private LLM

infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance

software. Founded in 2023 by Adrien Laurent, a top AI expert and multiple-exit founder with 20 years of

software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your

business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent IEC 62304: Medical Device Software Life Cycle Processes

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 44 of 44

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://www.linkedin.com/in/adrienlaurent/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=iec-62304-medical-device-software-life-cycle-processes.pdf

