
Git Version Control for FDA and IEC 62304

Compliance
By IntuitionLabs • 8/26/2025 • 50 min read

git fda compliance version control iec 62304 21 cfr part 11 medical device software

regulatory submission traceability

Examines how to apply Git version control workflows to satisfy FDA compliance, covering traceability, audit trails, and

standards like 21 CFR Part 11 & IEC 62304. - IntuitionLabs - Custom AI Software Development for pharmaceutical

companies. Leading AI Consulting USA and North American Pharmaceutical AI specialists. Led by Adrien Laurent, top AI

expert USA, multiple exit founder, patent holder, and 20 year software veteran based in San Francisco Bay Area. Premier

biotech consultancy specializing in: Custom CRM Development, ERP Development, AI Chatbot Development, Private AI

Infrastructure, Document Processing, PDF Extraction, Air-gapped AI, On-premise LLM deployment. #1 Veeva AI partner for

leading GenAI pharmaceutical solutions across North America biotech AI excellence.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 1 of 21

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Versioning Your Way to Compliance: Git

Workflows for FDA Submissions

Introduction

Organizations developing FDA-regulated products – whether medical devices,

pharmaceuticals, or digital health software – face stringent documentation and traceability

requirements during regulatory submissions (e.g. 510(k), PMA for devices; IND, NDA for drugs).

Compliance standards such as FDA’s Quality System Regulation (QSR) and ** 21 CFR Part 11**

mandate robust controls on electronic records, including version control, audit trails, and

traceability for all changes. In parallel, international software lifecycle standards like ** IEC

62304** (medical device software) emphasize configuration management and documentation.

This report explores how modern software teams can leverage Git, a distributed version control

system, to meet these compliance demands. We will discuss FDA expectations for software

development documentation, map Git’s capabilities to regulatory requirements, and recommend

Git workflow best practices (branching strategies, release tagging, commit conventions,

integration with issue trackers and CI/CD) that enhance traceability and auditability. We also

address techniques for preserving immutable records and electronic signatures in Git-based

workflows, and provide case studies illustrating successful FDA submissions underpinned by Git

versioning. The goal is to equip regulatory professionals and software engineers in regulated

environments with a comprehensive guide to using Git to streamline compliance without

sacrificing agility.

Regulatory Context: FDA Submissions and Compliance

Standards

FDA regulatory submissions require extensive evidence that a product’s development process

was controlled and documented. For medical devices, a premarket submission (whether a

510(k) for clearance of a class II device or a PMA for approval of class III) must include a Design

History File (DHF) documenting the design and development of the device ketryx.com

ketryx.com. This includes all design outputs, changes, and verification/validation activities,

demonstrating compliance with FDA’s design control requirements (21 CFR 820.30) ketryx.com.

Notably, FDA’s design control regulation explicitly requires procedures for identifying,

documenting, validating (or verifying), reviewing, and approving design changes before

implementation ecfr.gov. In practice, this means every change to the device design (including

software) must be traceable and cannot be applied without proper review and approval.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 2 of 21

https://intuitionlabs.ai/articles/21-cfr-part-11-electronic-records-signatures-overview
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle
https://intuitionlabs.ai/articles/iec-62304-medical-device-software-life-cycle
https://www.ketryx.com/blog/how-to-create-a-design-history-file-dhf-for-medical-devices#:~:text=What%20is%20a%20Design%20History,DHF
https://www.ketryx.com/blog/how-to-create-a-design-history-file-dhf-for-medical-devices#:~:text=1,Premarket%20Approval%29%20applications
https://www.ketryx.com/blog/how-to-create-a-design-history-file-dhf-for-medical-devices#:~:text=regulatory%20requirements,development%20of%20the%20medical%20device
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-820/subpart-C/section-820.30#:~:text=%28i%29%20Design%20changes,design%20changes%20before%20their%20implementation
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

For drug development, submissions like INDs and NDAs similarly demand that any software

used (for example, in clinical trials or in production of a combination product) adheres to Good

Clinical/Manufacturing Practice. Regulatory guidance emphasizes ** software validation** and

traceability to ensure data integrity. All FDA-regulated sectors must also comply with 21 CFR

Part 11 when using electronic records/signatures. Part 11 requires controls such as ** secure,

computer-generated, time-stamped audit trails** that record who made changes and when,

without obscuring prior entries nsflow.com. In other words, electronic records (including code

and documents managed electronically) must have an audit trail so that regulators can

reconstruct the history of modifications. Additionally, access controls and unique user

identities are mandated to ensure only authorized individuals can make changes or sign

records.

International standards complement these regulations. IEC 62304:2006+A1:2015, recognized

by FDA fda.gov, defines software life cycle processes for medical devices, including

requirements for software configuration management (Clause 8) and problem resolution. IEC

62304 calls for maintaining configuration identification, change control, and status

accounting for all software items greenlight.guru. In plain terms, developers must identify each

software configuration item and version, control changes to them, and record the

status/history of those changes, which aligns perfectly with the capabilities of a version

control system. FDA’s 2023 guidance on software in device submissions explicitly allows

companies to submit a Declaration of Conformity to IEC 62304 in lieu of detailed

documentation of their processes fda.gov fda.gov – underscoring that following this standard

(and by extension, having solid configuration management) is key to regulatory compliance.

Moreover, FDA guidance now expects a Software Version History document in submissions,

which is essentially a line-item log of software versions, dates, and changes from the point

design controls were applied up to the final release fda.gov. Each entry should describe changes

relative to the prior version, and the final entry corresponds to the version in the marketed

device, noting any last-minute fixes and their impact fda.gov. This regulatory expectation

directly speaks to the need for comprehensive version control: sponsors must be able to

produce a complete history of software changes – something that a well-managed Git repository

can readily provide.

Finally, beyond design controls and Part 11, quality standards like ISO 13485:2016 (for medical

device QMS) and guidance such as FDA’s General Principles of Software Validation emphasize

traceability (linking requirements to design, implementation, and testing) and risk

management of software changes. For instance, FDA expects processes to link user needs,

system requirements, software requirements, design specifications, tests, and risk

control measures – establishing end-to-end traceability fda.gov. Any version control approach

in a regulated setting should facilitate or at least not impede this traceability (for example, by

enabling tagging or referencing of requirement IDs in commits). In summary, the compliance

landscape sets forth clear demands: every change to software must be controlled,

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 3 of 21

https://intuitionlabs.ai/articles/csv-pharmaceutical-biotech-compliance
https://intuitionlabs.ai/articles/audit-trails-21-cfr-part-11-annex-11-compliance
https://intuitionlabs.ai/articles/audit-trails-21-cfr-part-11-annex-11-compliance
https://nsflow.com/ebooks/how-nsflow-complies-with-21-cfr-part-11#:~:text=%28e%29%20Use%20of%20secure%2C%20computer,creation%2C%20modification%2C%20or%20deletion%20of
https://www.fda.gov/media/153781/download#:~:text=provide%20a%20Declaration%20of%20Conformity,However%2C%20a
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=Software%20configuration%20is%20like%20accounting,for%20traceability%20and%20release%20management
https://www.fda.gov/media/153781/download#:~:text=provide%20a%20Declaration%20of%20Conformity,However%2C%20a
https://www.fda.gov/media/153781/download#:~:text=provide%20a%20Declaration%20of%20Conformity,8%20%28%E2%80%9CDocumentation
https://www.fda.gov/media/153781/download#:~:text=21%20CFR%20820,include%20any%20differences%20between%20the
https://www.fda.gov/media/153781/download#:~:text=number%20that%20was%20tested%20,an%20assessment%20of%20the%20potential
https://www.fda.gov/media/153781/download#:~:text=%C2%B7%20Processes%20and%20procedures%20used,specifications%2C%20software%20testing%20and%20implemented
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

documented, and traceable, with evidence of review/approval and no possibility of

surreptitious alteration. This is the context in which Git will be evaluated as a tool.

Leveraging Git for Regulatory Compliance

Git, as a distributed version control system, offers innate features that support these compliance

needs. At its core, Git tracks changes to files over time, recording each change as a commit with

a unique cryptographic hash (SHA-1/SHA-256), the author’s identity, timestamp, and a message.

This forms an immutable history of the project’s evolution: once committed and pushed to a

central repository, past revisions cannot be altered without detection (due to the hash linkage).

This property aligns strongly with Part 11’s requirement that record changes not obscure

previously recorded information nsflow.com. Git’s history is essentially an ** audit trail** of

source code development. Each commit is a timestamped record of “who did what, when,”

providing the kind of accountability regulators seek. As long as rewrite commands (like history

editing or force pushes) are disallowed in the compliance-critical repositories, Git’s append-only

log of commits functions as a secure audit trail. In fact, industry guidelines for Part 11

compliance recommend using “append-only” record systems or credentials s3.amazonaws.com

– a properly managed Git repository can be configured in exactly this manner, so that nothing is

truly deleted or overwritten, only new commits appended.

Another advantage of Git is its support for distributed collaboration with controlled access. In

an FDA-regulated team, developers can each have their local clone of the repository (providing

redundancy and backup of the full history), but an authoritative central repository (self-hosted

or cloud-based with proper validation) can be designated as the source of truth for submissions

and production releases. Access controls (authentication, user permissions) can be enforced

such that only authorized contributors can commit or merge changes, satisfying Part 11’s

requirement to limit system access to authorized individuals (e.g., via unique accounts and

role-based privileges). Modern Git hosting platforms (GitLab, GitHub Enterprise, Bitbucket)

support integration with corporate authentication and allow fine-grained permissions and audit

logs of who pushed commits or merged pull requests. These logs, combined with Git’s internal

history, help demonstrate compliance with electronic record integrity and access control rules.

Git also inherently supports traceability when used with good practices. Each commit can (and

should) include a message describing the change; teams can adopt commit message

conventions to reference requirements, bug IDs, or risk items. For example, including a

requirement ID in the commit message ties the code change to a specific design input or user

need. This practice implements traceability linking design inputs to implementation and further

to testing (if test cases also reference the requirement or commit). FDA’s expectation that you

link requirements to design and verification fda.gov can be facilitated by such Git conventions in

combination with an issue tracking system. In fact, many organizations use an issue tracker (like

Jira or Azure DevOps) alongside Git, where each issue represents a requirement, change

request, or bug fix; developers mention the issue ID in commit messages (e.g., “Fix defect #123,

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 4 of 21

https://nsflow.com/ebooks/how-nsflow-complies-with-21-cfr-part-11#:~:text=%28e%29%20Use%20of%20secure%2C%20computer,creation%2C%20modification%2C%20or%20deletion%20of
https://intuitionlabs.ai/articles/pharma-regulatory-compliance-software
https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=b,only%20write%20credentials
https://www.fda.gov/media/153781/download#:~:text=%C2%B7%20Processes%20and%20procedures%20used,specifications%2C%20software%20testing%20and%20implemented
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

addressing requirement R1.2”). This creates a cross-reference between the code repository and

the requirements management system. The result is that one can generate a traceability matrix

or change impact analysis by traversing these links – a powerful demonstration of control for

auditors.

From a software lifecycle documentation perspective, Git provides a backbone for maintaining

all sorts of artifacts under version control: not just source code, but also documents

(requirements specs, design documents, test protocols, etc.), or at least links to them. Storing

documentation in a Git repository (written in Markdown, reStructuredText, etc.) allows the same

version history and branching to apply to documents, ensuring that your procedures and

specifications evolve under control. Some companies have even implemented their entire Quality

Management System (QMS) documentation as Markdown files in a Git repo, using pull requests

for document review and approvals. This can work, though care must be taken for electronic

signatures on documents – a simple Git commit or PR approval may not fully meet Part 11

signature requirements without additional controls openregulatory.com openregulatory.com.

Nonetheless, having documents versioned in Git ensures old versions are retained

openregulatory.com and changes are logged – fundamental for document control in ISO 13485

and FDA QSR.

One concern in regulated use of Git is tool validation. FDA’s QSR (21 CFR 820) states that any

software tool used in production or the quality system must be validated for its intended

use greenlight.guru. In plain terms, if you use Git (or an entire DevOps platform) as part of your

design control process, you should demonstrate that it functions correctly and reliably in that

context. This typically involves documenting the intended use (e.g., “manage source code

versions and record change history for Project X”), risk-assessing the tool (Git is low risk to

product quality, but a failure could lose history or allow unauthorized changes), and performing

some qualification tests – for instance, verifying that the repo can only be accessed by

authorized users, that history cannot be modified without trace, that backups work, etc. Many

companies handle this via a standard operating procedure (SOP) on configuration

management that includes using Git, plus vendor certification or internal testing of the Git

hosting solution. FDA’s recent Computer Software Assurance (CSA) approach encourages

focusing validation effort on high-risk tools greenlight.guru greenlight.guru; a version control

system might be considered medium risk, but robust configuration and standard use can

mitigate most risks. In any case, showing auditors that you have procedures for using Git and

have tested its key functions goes a long way. Git itself is a mature, widely-used tool (including

in safety-critical industries), which usually gives confidence as long as you manage it properly.

In summary, Git’s distributed, history-preserving, and collaborative nature can strongly support

regulatory compliance by providing an audit-trailed repository of truth for all software

development artifacts. The next sections will delve into specific workflow practices to

maximize these benefits in an FDA-regulated environment.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 5 of 21

https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=GitHub%20to%20actually%20set%20up,at%20the%20features%20we%20need
https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=The%20basic%20idea%20would%20be,as%2C%20you%20guessed%20it%2C%20reviewers
https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=,old%20versions%20of%20documents%20around
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=According%20to%20the%20FDA%E2%80%99s%20Quality,System%20Regulations
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=How%20much%20validation%20is%20required%3F,%E2%80%9D
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=Broadly%2C%20this%20risk,or%20process%20risk%2C%20as%20applicable
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Git Workflow Best Practices in Regulated Environments

Not all version control workflows are equal in the eyes of compliance. Certain Git patterns and

policies can significantly enhance traceability, auditability, and control. Here we outline best

practices for branching, merging, and releasing that align with regulatory expectations:

Use a Structured Branching Strategy: A common approach in regulated projects is to adopt a

variation of GitFlow or a trunk-based workflow with clearly defined branch policies. For example, a

GitFlow-style model might have a long-lived main (or master) branch representing the current

released codebase and a develop branch for integration of ongoing development. Feature branches

branch off develop for new features or bug fixes, and release branches are created from develop

when preparing a formal release. This structure cleanly separates development work from released

(or soon-to-be-released) code, which is useful because released versions must be locked down

and reproducible for submission and future auditing. In a regulated context, one might treat the

main branch as sacred – it contains only code that has passed verification and is approved for use.

All merges into main occur via controlled pull requests after testing. Meanwhile, trunk-based

development (frequent small merges into main) can also be used, but it requires strong discipline:

automated tests and possibly feature toggles to ensure that main is always in a releasable state.

Trunk-based development has the advantage of simplicity and continuous integration, but in a

safety-critical scenario, teams often still implement gating controls (e.g. requiring approval before a

merge to main).

Branch Protections and Two-Person Review: Regardless of specific branching model, a key best

practice is to protect the primary branches (main, develop, release branches) so that no one can

push changes directly to them. Instead, changes must come via pull requests (PRs) or merge

requests from feature branches. This enforces the four-eyes principle (two-person integrity) –

another person must review and approve the code change before it is integrated. In fact, an industry

white paper on Part 11 compliance recommends a strict “Git Fork & Pull Request workflow” where

developers work in isolated forked repositories or branches and create PRs to the main repo, with no

direct commits to main allowed s3.amazonaws.com. The same source stresses that each PR

undergo a senior developer’s review and digital sign-off, implementing a formal approval step

s3.amazonaws.com. This process mirrors the requirement for independent review and approval of

design changes before implementation ecfr.gov – the Git platform’s code review feature becomes

the vehicle for that required design change review. The record of the code review (who approved and

when) along with the merge commit provides evidence of compliance. Many Git hosting tools allow

requiring at least N approvers for a PR and can even enforce that certain roles (e.g. a QA engineer or

lead) must approve, which can be mapped to the idea of an electronic signature on the change.

Ensure that these settings are documented in your SOP and that audit logs of PR approvals are

retained.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 6 of 21

https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=Technical%20controls%20enforce%20strict%20adherence,core%20part%20of%20the%20quality
https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=Technical%20controls%20enforce%20strict%20adherence,core%20part%20of%20the%20quality
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-820/subpart-C/section-820.30#:~:text=%28i%29%20Design%20changes,design%20changes%20before%20their%20implementation
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Granular Feature Branches Tied to Work Items: It’s wise to create feature or bug-fix branches for

each discrete change, and name the branches clearly (e.g., feature/123-new-login-screen or

bugfix/456-null-pointer-exception). Often the branch name or initial commit message will include

an ID referencing the requirement or issue being addressed. This practice aids traceability because

one can later map a branch (and its merged commits) back to a specific change request or

requirement. It also prevents unrelated changes from mingling, which simplifies impact analysis. In

regulated environments, avoid giant all-encompassing commits; instead, commit frequently with

logical units of change and descriptive messages. Each commit should ideally address one issue or

requirement. Smaller commits with good messages make it easier to generate the “brief description

of all changes” needed for the software version history documentation fda.gov. They also make

code reviews more effective. Regulators don’t mandate how small a commit should be, but they will

appreciate the ability to follow the thread of development for each feature/fix.

Tagging and Releasing: Use Git tags to mark all significant releases, especially those that go into

testing, regulatory submissions, or production. A tag (e.g., v1.0 , v2.1.3-release) is a human-

friendly alias to a specific commit (which might be the merge commit on main corresponding to that

version). By tagging releases, you create an immutable reference to the exact code that was

submitted to FDA or deployed in the field. This is crucial for configuration management: if an issue

arises or if FDA asks for an audit, you can easily retrieve the exact code version that was approved. In

submissions, when providing the software version history, you can list the Git tag or commit ID for

each version tested and released fda.gov. This gives additional confidence in the integrity of the

submission: a regulator could, if desired, ask to inspect the code at that commit and verify the

changes described. Some companies even include the Git commit hash in their submission

documents or labeling (for instance, in release notes or the “about” info of the software) as an

unambiguous identifier of the software configuration. Ensure that once a version is tagged for

submission, that tag is never moved or reused – it must remain a permanent pointer to that commit

to serve as an audit reference.

Release Branches and Patches: In medical device software, after an initial submission and

clearance, you may need to issue updates (bug fixes or minor feature changes). It’s common to

maintain a release branch for each major version (e.g., a 1.x branch) so that urgent fixes can be

made based off the released code, while new development continues on the main or develop branch.

This way, a patch (say v1.0.1) can be prepared on the release branch, tested, and submitted without

pulling in all the ongoing new features intended for v2.0. Git makes branching and parallel

development easy, so you can maintain multiple versions. Just be sure to also tag patch releases.

Maintaining separate branches for supported releases aligns with configuration management best

practices to clearly identify which version is in which state (development vs released vs retired)

greenlight.guru.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 7 of 21

https://www.fda.gov/media/153781/download#:~:text=21%20CFR%20820,include%20any%20differences%20between%20the
https://www.fda.gov/media/153781/download#:~:text=21%20CFR%20820,include%20any%20differences%20between%20the
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=Software%20configuration%20is%20like%20accounting,for%20traceability%20and%20release%20management
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Avoid Rebasing or History Rewrites on Public Branches: In non-regulated open-source projects,

developers sometimes rebase or squash commits to keep history tidy. In a regulated context,

however, the history is sacrosanct – it’s your audit trail. Thus, do not rewrite history on any branch

that has been shared or used for compliance evidence. Configure the Git server to reject force

pushes on protected branches. Squashing commits into one may simplify a merge, but you lose the

granular history of individual changes (and their authorship and timestamps), which could be

valuable evidence. It’s better to keep the full sequence of commits as-is. If a messy history is a

concern, it can be addressed by planning commits better or using pull request squash only on

feature branches before merge (and even that should be carefully considered). Remember, a

regulator might question any anomalies in record keeping – a rewritten history could be viewed as

tampering with records. Immutability of records is paramount; as one guide notes, using append-

only methods for records and avoiding deletion or alteration is essential for audit trails

s3.amazonaws.com.

Commit Signing and Developer Identity: Git allows developers to digitally sign commits and tags

using GPG or X.509 certificates. In a regulated environment, this can add an extra layer of assurance

that commits truly came from the person indicated (and weren’t altered). A signed commit includes a

cryptographic signature that can be verified against the developer’s public key. While not explicitly

required by FDA, using signed commits or tags is a best practice for authenticity, akin to an

electronic signature on each commit. Part 11 stipulates that electronic signatures must be unique to

an individual and verifiable dev.to dev.to. A GPG signature meets the verifiability condition (it

mathematically ties the commit to the signer’s identity). However, to fully comply as an FDA-

recognized e-signature, you also need policies ensuring that key ownership is unique and keys are

securely managed (and typically a mapping of the key ID to the person’s identity in a controlled

document). Many teams simply use repository access controls and user accounts as the identity

mechanism (i.e., only your account can commit under your name, and sharing accounts is

prohibited), which FDA inspectors generally accept along with audit logs. But if you want to be extra

cautious, commit signing provides an immutable link between identity and action – something that

could satisfy even a strict Part 11 auditor. Additionally, consider signing release tags by the

responsible engineer or manager; this is like countersigning the “released” version.

By implementing these workflow practices, an organization creates a controlled environment

where every code change is reviewed and traceable, and the history cannot be inadvertently

or maliciously changed. This aligns with the intent of FDA’s design control and Part 11

requirements, essentially using Git as the backbone of configuration management and

design change control.

Documentation Practices and Tool Integration for

Compliance

Process alone isn’t enough – how you document and integrate your use of Git with other tools

greatly influences compliance. We now turn to concrete practices for documentation, commit

conventions, and integrating Git with CI/CD, issue trackers, and repositories for a seamless

compliance ecosystem:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 8 of 21

https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=b,only%20write%20credentials
https://dev.to/aakash_parikh_651254ef060/embracing-the-digital-future-ensuring-21-cfr-part-11-compliance-in-regulated-industries-233i#:~:text=Electronic%20Signatures%3A%20This%20is%20a,unique%2C%20verifiable%2C%20and%20legally%20binding
https://dev.to/aakash_parikh_651254ef060/embracing-the-digital-future-ensuring-21-cfr-part-11-compliance-in-regulated-industries-233i#:~:text=Electronic%20Signature%20Standards
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Commit Message Conventions: Writing clear, descriptive commit messages is always good

practice, but in a regulated context it becomes critical. Each commit message should provide enough

detail to understand the nature of the change and why it was made. A recommended convention is to

include references to related artifacts: for example, reference the requirement ID, risk ID, or test

case ID that the commit addresses. A commit might read: “Implement checksum verification on data

export (Req#REQ-9); mitigates risk R-15; tested by TC-22.” This makes the commit self-

documenting in terms of traceability: an auditor can see this and know which requirement it ties to

and that there is a corresponding test case. It also helps you maintain a trace matrix automatically,

since the links (REQ-9, R-15, TC-22) can be cross-referenced with your requirements and risk

management records. Indeed, FDA expects traceability across these items fda.gov, and a disciplined

commit messaging practice is a lightweight way to achieve it. Additionally, using imperative mood

and present tense in commit messages (as per many Git guidelines) is recommended (“Fix bug…”

“Add check…”), making them consistent and easy to compile into release notes.

Changelog and Version History Documentation: Maintain a human-readable changelog or

“release notes” document that is updated for each release. This can often be generated or at least

started by tooling that reads commit messages (especially if you follow a structured format like

Conventional Commits). The changelog should summarize new features, fixes, and changes in each

version – effectively an expansion of the “brief description of changes” that FDA wants in the

submission’s software version history fda.gov. By comparing successive entries, one can see what

changed between versions. You might keep this changelog in the repository (e.g., a CHANGELOG.md

file) and tag each section with the version. During submission, the contents of this can populate the

Software Version History table. Because it’s under Git, every update to the changelog is itself

tracked, preserving the documentation evolution. Ensure the final version of the changelog for a

release is reviewed for accuracy and approved (this could be part of the release PR). This practice

not only helps regulators; it also helps your internal teams and customers understand changes.

Linking Git to Issue Trackers: Integrate your Git workflow with an issue tracking system (such as

Jira, GitLab issues, GitHub issues, Azure Boards). Each change in a regulated project typically

originates from a formal change request, requirement, or defect report. By tracking those in an issue

system and then linking commits or merge requests to the issue (through mentions or IDs), you

maintain a rich web of traceability. For example, your procedure might require that “each commit

must mention an approved change request ID,” and your CI pipeline could even enforce this by

rejecting commits that don’t follow the pattern. Many modern tools will automatically close or

comment on an issue when a linked commit is merged – providing an audit trail that the code

change corresponding to a requirement has been implemented and merged. The issue can then

be updated to reflect verification status (e.g., testers attach evidence). This way, when preparing

submission documentation or an audit, you can easily pull reports: show me all commits linked to

requirement X and all test results linked to requirement X. Some compliance software platforms (like

Ketryx, Jama, etc.) offer out-of-the-box traceability reports that aggregate data from Git and

issue trackers ketryx.com. The key is consistency in linking them. The benefit is twofold: developers

work naturally (fix issue -> commit code -> close issue), and traceability is generated in the

background. It reduces duplicate effort compared to manually maintaining a separate trace matrix in

Excel.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 9 of 21

https://www.fda.gov/media/153781/download#:~:text=%C2%B7%20Processes%20and%20procedures%20used,specifications%2C%20software%20testing%20and%20implemented
https://www.fda.gov/media/153781/download#:~:text=21%20CFR%20820,include%20any%20differences%20between%20the
https://www.ketryx.com/blog/how-to-create-a-design-history-file-dhf-for-medical-devices#:~:text=match%20at%20L585%20with%20tools,Ketryx%20also%20supports%20versioning
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Continuous Integration / Continuous Delivery (CI/CD): A common misconception is that CI/CD

can’t be used in regulated environments – it absolutely can, but you must manage it under

configuration control. A CI system (Jenkins, GitLab CI, GitHub Actions, etc.) should be treated as a

production tool and thus validated for its intended use (ensuring the pipeline builds and tests

correctly, and that any risk of it failing is mitigated) greenlight.guru. Once validated, CI can

dramatically enhance compliance by automatically running tests and analyses on each commit. This

provides evidence of software verification: for example, each commit or PR triggers unit tests,

integration tests, static code analysis, maybe even generation of documents like requirements

traceability matrices or test result summaries. The results can be archived (for instance, store the

test reports or a link to the CI job output for each build). Regulators appreciate seeing objective

evidence of testing. CI pipelines can also automate compliance checks – e.g., verifying that commit

messages follow the convention, that every requirement has at least one test, that release builds

include proper version metadata, etc. When it comes time to do a formal release, the pipeline can

produce an artifact package containing the compiled software, a PDF of release notes, an SBOM

(Software Bill of Materials), and even the DHF documents updated to that version. Such artifacts

can be attached to the Git release tag or stored in a controlled repository. Automating these tasks

reduces human error and ensures repeatability (a principle FDA likes in processes). If using CI for

deployment (DevOps), ensure that deployment scripts are also under version control and validated.

The pipeline definitions themselves (like a .gitlab-ci.yml or Jenkinsfile) should be under Git

control, so changes to the build process are tracked and approved.

Documentation Repositories and MDVC (Modern Document Version Control): Consider using Git

not just for code but for maintaining living documentation. For instance, SRS (Software

Requirements Specifications), design descriptions, and test protocols can be written in a

lightweight markup (Markdown, AsciiDoc) and versioned in the repo. This way, any change to

requirements or design is tracked by Git with a commit history. Collaboration on docs can use the

same pull request/review workflow as code. If preferred to use traditional tools (like Word or Excel),

you can still version those binary files in Git – though diffing them is not easy, the version history is

maintained. Alternatively, store those documents in an electronic document management system

(eQMS) that can integrate with your development tools. Some organizations sync document

statuses with Git (for example, using an ID in the document to link to a commit). The emerging

practice is to treat “documentation as code,” which means applying the same rigor of peer review,

versioning, and automation to documents as to source code. The OpenRegulatory initiative, for

example, demonstrates how a QMS can be implemented in GitHub/GitLab using Markdown and pull

request approvals in lieu of wet-ink signatures openregulatory.com openregulatory.com. They

caution, however, that electronic signatures in such a system need careful consideration to truly

meet FDA requirements – simply typing a name in a Markdown file is not a secure, unique signature

openregulatory.com. A mitigation is to use the Git platform’s merge approval as a signature,

combined with audit logs and perhaps GPG signing of the merge commit by the approver. If that

approach is taken, document it in your SOP: e.g., “Approval of a pull request by the Quality Manager

constitutes an electronic signature for document approval in compliance with 21 CFR Part 11.” Also

ensure that your Git system requires unique logins and password policies as per Part 11 (many Part 11

requirements for closed systems, like unique user ID and password controls, are handled by the IT

infrastructure of your source control system) dev.to nsflow.com.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 10 of 21

https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=According%20to%20the%20FDA%E2%80%99s%20Quality,System%20Regulations
https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=How%20can%20we%20implement%20this,in%20GitHub
https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=Software%20Developer
https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=GitHub%20to%20actually%20set%20up,at%20the%20features%20we%20need
https://dev.to/aakash_parikh_651254ef060/embracing-the-digital-future-ensuring-21-cfr-part-11-compliance-in-regulated-industries-233i#:~:text=Security%20Controls%20and%20User%20Authentication
https://nsflow.com/ebooks/how-nsflow-complies-with-21-cfr-part-11#:~:text=,includes%20the%20following%20key%20components
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Generating Traceability and Design History File (DHF) Outputs: Ultimately, during an FDA

submission or inspection, you will need to present your design control evidence in a readable format.

Git can be leveraged to generate some of this content automatically. For instance, you can create

scripts or use tools that extract commit logs between two tagged versions to produce a version

history table for that interval. If commit messages are well-structured, you can populate columns

like “Change Description” and “Rationale” directly from them. Some teams maintain a “DHF index”

document in the repo that lists all required items (SRS, risk analysis, test plan, etc.) and the current

version or commit for each. With integrations (like those provided by compliance platforms such as

Ketryx), the system can pull data from Jira (requirements, test results) and GitHub (commits,

code reviews) to automatically build a DHF or trace matrix ketryx.com. Even without specialized

tools, a combination of Git log, issue tracker queries, and perhaps a little programming can produce

these documents, which you then review and include in submissions. The advantage is consistency –

the documents come straight from the source of truth (code and requirements), reducing manual

transcription errors. Regulators are increasingly receptive to digital records; the FDA’s own guidance

acknowledges modern practices and encourages sponsors to use current standards and best

practices fda.gov. Showing that your submission documentation is directly tied to your version

control and requirements systems demonstrates a high level of control.

Linking Test Results and Validation Evidence: Store or link test results to the relevant commit or

build. For example, after a successful CI test run on a release candidate, you might commit a test

summary or have the CI system post the results to an issue. Ensuring that for every release tag, you

have captured the verification status (pass/fail of all tests, code coverage, etc.) is essential for the

submission’s Verification and Validation section. Also, if you perform formal tool validation of Git

or other tools, keep those records accessible (perhaps in a separate quality repository or eQMS, but

refer to them in your plan). FDA may not ask to see tool validation for something like Git, but if it’s

part of your procedure, it should be available. Using Git to manage the software lifecycle data end-

to-end – from requirements to code to test to release – enables a high degree of automation and

data integrity, but it must be backed by clear documentation of the process (in SOPs) and evidence

that the process is followed (in records and logs).

In implementing these practices, organizations often find that regulatory compliance and

developer productivity are not at odds – a well-integrated toolchain can achieve both. By

automatically generating documentation and linking data, developers spend less time on

bureaucratic tasks while auditors get a richer view into the project. The next section will discuss

how to preserve these records immutably and address the nuances of electronic signatures in

such a Git-centric workflow.

Preserving Immutability, Audit Trails, and Electronic

Signatures

One of the core concerns of regulators is ensuring that records – whether design documents or

source code – are unalterable or at least change-tracked once finalized. Git provides a strong

foundation for immutability through its hashed history, but it is not foolproof out of the box. Here

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 11 of 21

https://www.ketryx.com/blog/how-to-create-a-design-history-file-dhf-for-medical-devices#:~:text=match%20at%20L585%20with%20tools,Ketryx%20also%20supports%20versioning
https://www.fda.gov/regulatory-information/search-fda-guidance-documents/content-premarket-submissions-device-software-functions#:~:text=This%20guidance%20document%20is%20intended,This%20guidance%20document%20replaces%20FDA%E2%80%99s
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

we cover techniques to harden Git’s immutability and audit features, and how to handle

electronic signatures for compliance:

Immutable Repositories and Append-Only Access: As mentioned, configure your central Git

repository to be effectively append-only for critical branches. This means disabling non-fast-

forward updates (no force pushes, no deleting tags or branches without admin approval). Some

teams even adopt a workflow where developers don’t push directly to the main repository at all –

instead, all changes come via pull requests and are merged by a continuous integration bot or

release manager. This creates a checkpoint where integrity can be verified before merging.

Additionally, consider using a code hosting solution that supports append-only mirroring or

immutable logs. For instance, some regulated firms periodically export the Git repository (or specific

important branches) to a secure, timestamped archive or an external write-once medium. This might

be done at release milestones – effectively taking a “snapshot” of the repository state and storing it

in a design control vault. In any dispute or audit, you can show that snapshot and the live repo and

demonstrate they match (or identify discrepancies, which in itself is evidence of tampering if it ever

occurred). The Inductive Automation Part 11 guidance specifically highlights using append-only

mechanisms for record generation and audit trails to meet regulatory expectations

s3.amazonaws.com, which aligns with treating the version control history as append-only.

Audit Trail Completeness: Git’s commit history is a form of audit trail, but there are additional audit

considerations. For example, if someone attempts an unauthorized action (like trying to force push or

access the repo), your system should log that too (this would be at the server/IT level, not in Git

itself). Ensure that server logs or Git management logs are kept as part of your records retention.

Also, note that Git by default tracks changes to file content but not who viewed or who approved

something. That’s where the integration with code reviews and issue trackers is important: those

systems should maintain records of reviews, approvals, and sign-offs. Export or archive those

records (for instance, store the merged pull request with its discussion and approval list, perhaps as

a PDF or in an audit system). Some tools have an API to pull this info. The goal is that if FDA asks,

“Show us the approval of changes for version 2.0,” you can produce a report of all PRs that went into

v2.0, each showing who reviewed/approved and when – essentially an audit trail of the design

change control process. In regulated industries, this is often referred to as an electronic Design

History File log.

Electronic Signatures on Commits or Merges: Part 11 Subpart C deals with electronic signatures,

requiring uniqueness and verification of identity, as well as linking signatures to their records. In a Git

workflow, there are a few ways to implement what could be considered an e-signature for a software

change or document:

The commit author/committer identity (name, email) plus the commit hash itself can serve as a

sort of signature for code changes. It’s not a signature in the legal sense, but it links the change to a

person. If commit signing (GPG) is used, it strengthens this link by cryptographically certifying it.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 12 of 21

https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=b,only%20write%20credentials
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

A pull request approval can be seen as an electronic signature on the set of changes in that pull

request. For this to be Part 11 compliant, you need to ensure that the act of approval is firmly

attributed to a specific individual (unique login) and includes a meaning of signature (e.g., the UI

might show “Approved by Jane Doe on 2025-08-08” – this is a signature manifestation). It should

also be irrevocably tied to the record (once merged, the approver and timestamp are logged and

can’t be easily altered without trace). GitLab, for example, has been exploring features for Part 11

compliant approvals with additional confirmation steps (entering a password at approval, etc., to

mirror a 21 CFR 11 signature) gitlab.com. If your platform doesn’t have that, your SOP can require

that approvers re-authenticate when logging in and note that as satisfying the intent.

Tag signing by responsible parties: Another approach is to have responsible individuals sign the

Git tag of a release. For instance, after all approvals, the QA manager uses git tag -s to create a

signed tag v1.0 on the release commit, including a message like “Approved for release by QA

Manager on date”. The signed tag is then pushed. This provides a clear, unforgeable marker in the

repo that this version was approved. The signature can be verified independently. To an FDA

inspector, this could be presented as the electronic signature of the release. However, be prepared

to explain your process (how you ensure only authorized folks have the signing keys, how you archive

keys, etc.).

Records Retention and Retrieval: FDA requires that electronic records and their audit trails be

retained as long as the record itself (often for years, e.g., the life of the device plus some time). A Git

repository must therefore be preserved and accessible for potentially a long period. This means

robust backup strategies – regular backups of the repository to a secure, off-site location – and

migration plans if technologies change. Using open formats (Git’s data can always be retrieved even

if you change hosting providers) is helpful. If using a cloud service, ensure you can export the full

repo easily. Also, consider how you will provide records to an inspector if asked. You likely wouldn’t

give them raw Git repo access, but you might generate specific reports (commit histories, diff

listings, etc.). Having documented procedures on how to retrieve historical versions is part of

being compliant. For example, “Procedure XYZ: Retrieving Historical Software Versions” could

outline how to check out an old tag and rebuild the software (with archived build environment if

needed). Showing this capability proves the integrity and maintainability of records.

Traceability of Changes to Requirements and Risks: Immutability isn’t just for code; you should

also maintain an audit trail of changes to specifications and requirements. If those are stored in Git,

the same rules apply (no deleting history, etc.). If they are in an external system, ensure that system

has versioning or you export version snapshots to Git. For example, some teams export a

requirements document to PDF and commit it to Git at each baseline release, so that the exact

version of requirements corresponding to a software version is saved. This can go in an Appendix of

the DHF. Part 11 doesn’t explicitly mention requirements docs, but the principle of keeping an audit

trail of all design decisions and changes certainly applies under design controls.

Handling of Deviations and Anomalies: FDA submissions also require listing unresolved

anomalies (bugs) in the released software. If you track bugs in an issue tracker linked with Git, you

can generate this list from open issues at release time. The tie-in with version control is that each

bug fix is a commit, and unresolved ones presumably have no commit yet. Maintaining the state of

these in a controlled way (don’t quietly close issues without rationale, etc.) is part of the record

integrity. It’s worth mentioning in your configuration management plan how you use the issue tracker

and Git to handle bug tracking and ensure none are lost.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 13 of 21

https://gitlab.com/gitlab-org/gitlab/-/issues/367539#:~:text=Regulated%20e,be%20unique%20to%20one
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

Training and User Policies: A subtle but important aspect of Part 11 compliance is user training and

policies. All users of the Git system should be trained in the SOP (so they know not to rewrite history,

to write proper commit messages, to secure their credentials, etc.). Also, policies like no shared

accounts (each person has their own login) are critical for accountability dev.to. Implement technical

controls to enforce password complexity and inactivity timeouts on your Git platforms dev.to – these

are standard IT security but map to Part 11 rules for ensuring only authorized use. In case of

personnel leaving, promptly remove their access (and maybe revoke their signing key if used). These

measures, while not unique to Git, ensure that the chain of trust in your version control records is

maintained.

In essence, preserving immutability and audit trails in Git requires a mix of technical settings,

procedural controls, and possibly cryptographic signing. When done correctly, you can

confidently show that your software repository is an unalterable ledger of the development

process, and that every change was authorized and signed off. This satisfies regulatory

expectations for electronic record integrity and signature accountability. As a result, the Git

repository (and its associated tool logs) becomes a central piece of your compliance evidence.

Case Studies: Git Workflows in FDA-Regulated Projects

To illustrate these concepts, we consider a couple of example scenarios (based on real-world

practices) where Git-based workflows were successfully used to manage software versioning

and documentation in FDA submissions:

Case Study 1: Medical Device Software 510(k) Submission

Acme HealthTech is a startup developing a Class II medical device – a wearable cardiac monitor

with accompanying analysis software (a Software as Medical Device component). In preparation

for a 510(k) submission, Acme needed to document their software development lifecycle (per

FDA’s guidance) and ensure traceability of requirements through design, implementation, and

test. They adopted GitLab as their central code repository and configured a workflow aligned

with GitFlow. Key elements included:

A main branch representing the latest released software and a develop branch for ongoing

development. For version 1.0 (the initial release to be submitted), they created a release-1.0

branch from develop once feature-complete.

All developers worked on feature branches named after the requirement or issue (e.g., feat/REQ-5-

user-authentication). Each branch was linked to a requirement in their Jira project. Jira and GitLab

were integrated such that mentioning “REQ-5” in a commit message automatically updated the Jira

ticket with a reference to that commit. This provided instantaneous traceability from requirement to

code. Additionally, a traceability matrix could be exported from Jira showing for each requirement:

the implementing commit(s) and the test case results (because they also linked automated test

results to Jira).

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 14 of 21

https://dev.to/aakash_parikh_651254ef060/embracing-the-digital-future-ensuring-21-cfr-part-11-compliance-in-regulated-industries-233i#:~:text=Security%20Controls%20and%20User%20Authentication
https://dev.to/aakash_parikh_651254ef060/embracing-the-digital-future-ensuring-21-cfr-part-11-compliance-in-regulated-industries-233i#:~:text=Security%20Controls%20and%20User%20Authentication
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

When developers considered a feature done, they opened a Merge Request (MR) on GitLab to

merge their feature branch into develop . The MR required at least one peer review approval (for

code quality) and one QA representative approval (for regulatory impact assessment). GitLab’s

approval rules ensured no MR could be merged without these signatures. Each approval recorded the

user’s name and timestamp – effectively an electronic signature of review and assent on that

change s3.amazonaws.com.

Once all MRs intended for version 1.0 were merged into develop and tests passed, the team

performed a release candidate build from the release-1.0 branch. They ran full verification

testing (including integration tests on actual devices). The results were archived. They then tagged

the commit as v1.0.0-rc1 . Some bugs were found during validation, which led to new commits on

the release branch to fix them (each fix was also done via MR with approval). This incremental

approach is compliant with FDA’s expectation that you assess and test all changes even late in the

cycle fda.gov.

After resolving test issues, the final commit on release-1.0 was tagged v1.0.0 . The QA Manager

digitally signed the tag with her GPG key and pushed it. This tag sign-off indicated that this exact

code is approved for release.

For the submission, Acme compiled the Software Development and Configuration Management

documentation largely from their GitLab records. They provided a summary of their processes

(development model, branching strategy, tools) referencing conformity to IEC 62304 clauses 5.1

and 8 fda.gov. They included the Software Version History table: it listed version 0.5 (the version

when formal design control started) through 1.0.0, with dates and brief descriptions. These

descriptions were pulled from the Git commit messages of the release merges, giving a high-level

overview of what changed in each version fda.gov. For instance, “v0.7.0 – Added user authentication

module (Req-5), improved ECG filtering (Req-8); internal testing only” and so on, up to “v1.0.0 – Final

release version; includes all features, performance verified; no outstanding anomalies.” Because the

team tracked issues, they could confidently state “no outstanding anomalies” or list the few minor

ones known, directly referencing their issue tracker for details.

Acme also submitted an extract of their Git commit log (filtered for significant changes) as an

appendix, and a mapping of commit IDs to requirement IDs to test cases (as their trace matrix).

During the FDA review, there were questions about a particular algorithm change. Acme was able to,

on the spot, retrieve the specific commit in question (using the hash from the trace matrix) and show

the code diff and commit message explaining the change and its rationale. This level of transparency

impressed the reviewers and satisfied their questions quickly, reinforcing the credibility of Acme’s

submission.

Importantly, Acme’s quality team had validated the GitLab system and its use. They had a procedure

for configuration management which FDA inspected. It described how branches are managed, how

approvals happen, how records (like MRs and issues) are retained. The fact that GitLab kept an audit

trail of all merges and user actions was noted. Acme’s use of role-based access control (only

senior engineers could merge to develop or main) and unique user logins satisfied Part 11

requirements about system security and signature uniqueness.

Result: Acme HealthTech’s submission sailed through the software review with minimal queries.

The FDA reviewer even commented that the software documentation was well organized and

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 15 of 21

https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=Technical%20controls%20enforce%20strict%20adherence,core%20part%20of%20the%20quality
https://www.fda.gov/media/153781/download#:~:text=%C2%B7%20Processes%20and%20procedures%20used,software%20configuration%20and%20change%20management
https://www.fda.gov/media/153781/download#:~:text=provide%20a%20Declaration%20of%20Conformity,8%20%28%E2%80%9CDocumentation
https://www.fda.gov/media/153781/download#:~:text=21%20CFR%20820,include%20any%20differences%20between%20the
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

traceable, likely thanks to the rigorous use of version control and linked tools. Acme continues to

use the same workflow for post-market changes, maintaining the audit trail for any future audits

or submissions (like an eventual PMA).

Case Study 2: Pharmaceutical Data Pipeline – IND Application

PharmaCo is a pharmaceutical company that, as part of an IND submission for a new drug,

needed to include information about a custom software tool used to analyze clinical trial data (a

complex statistical script and application). Although the software itself was not patient-facing, it

fell under FDA scrutiny because its outputs supported safety and efficacy claims. PharmaCo

used GitHub Enterprise to manage the code and collaborated with an external biostatistics

firm. Key compliance steps included:

All code (written in R and Python) was stored in a GitHub repo. A branching strategy wasn’t

complex (they mainly worked on a main branch with feature branches for big changes), but they

tagged a version for each clinical study dataset analysis (e.g., analysis-v1 , analysis-v2

corresponding to interim and final analyses).

They established a commit signing policy: each statistician and programmer had to GPG-sign their

commits. The repo was configured to reject unsigned commits. This ensured that every change to

the analysis script could be traced to a specific, authenticated individual – addressing any concerns

of data manipulation. The commit messages also had to reference a validation ticket ID which

corresponded to a verification task (they treated the analysis scripts like software requiring

verification).

Each version tag of the analysis tool was linked to validation documents. For example, when tagging

analysis-v2 for the final analysis, they attached an export (as a PDF) of the automated test results

and code review checklist to the GitHub Release associated with that tag. Thus, if someone browsed

that release in GitHub, they would find the exact code and the evidence of its validation.

Part 11 compliance was addressed by controlling access (only a small team had access to the repo,

all via individual corporate accounts) and by using GitHub’s protected branches and required

reviews. For instance, even a one-line change in the analysis script required a pull request reviewed

by a second statistician and a QA person who ensured the change was documented in the validation

plan. The approval was recorded in GitHub’s pull request record. This two-person rule is analogous

to what paper-based systems would do with two signatures on a document change request.

When the FDA asked in a meeting how PharmaCo ensured the integrity of their analysis, PharmaCo

demonstrated their use of Git. They explained that every modification to the analysis code was

logged and reviewable, and that they could reproduce any prior analysis by checking out the

tagged version. To prove it, they actually regenerated a key analysis figure live with a past version of

the code from Git, showing the result matched the one in the interim report. This level of

reproducibility is a direct benefit of strict version control: it convinced the FDA that the data analysis

was reliable and that no “data dredging” or untracked changes had occurred.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 16 of 21

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

In the IND submission documents, PharmaCo included a section on “Software Controls for Clinical

Data Analysis” where they cited 21 CFR Part 11 and explained how their use of GitHub Enterprise

provided audit trails and access control. They referenced FDA’s guidance on electronic records

nsflow.com to assert that their approach met the requirements (time-stamped audit trail, etc.). They

also cited internal SOPs aligning with GAMP5 guidelines for computerized systems in GxP use.

Essentially, they treated the analysis software and its repository as a validated system.

Result: The IND was accepted, and FDA did not request additional audits of PharmaCo’s

software procedures. The confidence was partly due to the proactive transparency PharmaCo

showed. Later, when PharmaCo moved to an NDA (New Drug Application), they continued this

approach and even expanded automation (using CI to automatically run all statistical tests when

code changed, ensuring no errors were introduced unknowingly). Git versioning became a

cornerstone of their data integrity assurance.

Case Study 3: Digital Health Software under IEC 62304 (simulated example combining

multiple real scenarios)

MediSoft Inc. develops a mobile app that qualifies as a Software as a Medical Device (SaMD).

They must comply with IEC 62304 and FDA’s digital health documentation guidelines. They

integrate Git, Jira, and an eQMS system:

Requirements and risk analysis are maintained in Jira. Each requirement is tagged with a risk level

and linked to risk mitigations.

The software code is in Git (Bitbucket server) with a branching model: main for releases, feature

branches for development. For each software item identified in their configuration management

plan (e.g., UI module, Algorithm module), they maintain subfolders in the repo and sometimes

separate component branches to isolate changes.

They generate a Configuration Item Index (part of config identification in IEC 62304) which is

basically a list of all software items and their current version (Git commit hash or tag). A simple script

pulls the latest commit ID for each relevant subdirectory and outputs a table. This index is included in

the DHF to show traceability of software items to version greenlight.guru.

When preparing for an FDA submission (they used the De Novo pathway for a novel device), they

leveraged Git’s history to fill in the “Software Version History” table. The first version under design

control was 0.1 (when they completed requirements). Through Git log queries, they listed each major

milestone version, date, and a summary of changes fda.gov. They also indicated which versions were

used in verification testing (some versions were internal only, some went to a clinical study). Because

Git tags were used for each test release, they had exact references.

MediSoft’s change control procedure required that any change to a requirement or risk assessment

must go through a change request in their eQMS, but thanks to integration, the developers could

trigger this via Git/Jira: if code was changed without an update to a linked requirement when needed,

the CI pipeline would flag it. This prevented gaps in documentation. All changes ultimately got

reflected in the DHF documents, which were versioned and signed in the eQMS, but the eQMS

records would include the Git commit IDs for cross-reference.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 17 of 21

https://nsflow.com/ebooks/how-nsflow-complies-with-21-cfr-part-11#:~:text=%28e%29%20Use%20of%20secure%2C%20computer,creation%2C%20modification%2C%20or%20deletion%20of
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=Software%20configuration%20is%20like%20accounting,for%20traceability%20and%20release%20management
https://www.fda.gov/media/153781/download#:~:text=21%20CFR%20820,include%20any%20differences%20between%20the
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

During audit, MediSoft provided the auditor with a read-only login to their Bitbucket server to browse

the repo history, showing confidence in their process. The auditor examined the commit log around a

particular bug fix and saw the peer review comments and approvals attached to that commit. The

auditor noted this as an example of a good audit trail for software changes, fulfilling regulatory

expectations that changes are documented and reviewed prior to implementation ecfr.gov.

These case studies demonstrate that Git is flexible enough to handle various regulated

scenarios – from device firmware to clinical analysis code to mobile health apps. The common

thread is a disciplined workflow, integration with complementary tools, and a mindset that treats

the repository as a regulated record store. By aligning Git usage with compliance requirements

(traceability, change control, audit trails, signatures), companies have successfully navigated

FDA submissions while maintaining modern DevOps practices.

Conclusion

Git has emerged not only as a dominant tool for software development, but also as an enabler of

regulatory compliance when used thoughtfully. In FDA-regulated environments – spanning

medical devices, pharma, biotech, and digital health – the demands for complete, traceable,

and tamper-evident documentation of the software lifecycle are non-negotiable. As we have

detailed, Git’s capabilities map closely to these needs: its distributed yet secure change tracking

provides the traceability and audit trail envisioned by standards like FDA 21 CFR Part 11 and

IEC 62304. By implementing robust Git workflows (branch protections, code reviews, release

tagging) and integrating with issue tracking and CI/CD, organizations can ensure that every

change is captured, justified, reviewed, tested, and approved – exactly the assurance

regulators seek.

We explored how specific practices – from commit message conventions referencing

requirements, to GPG-signing commits and tags, to generating version history tables from Git

logs – can turn a Git repository into a living Design History File. The best practices outlined,

such as using pull requests to enforce independent review and maintaining an immutable history,

directly support compliance with FDA’s design control (820.30) requirements for design change

control and verification ecfr.gov. Moreover, treating Git as part of the quality system (with

appropriate validation and SOPs) addresses the expectations of Part 11 for trustworthy

electronic records nsflow.com and signatures. The case studies provided give a glimpse into

how real teams have successfully harnessed Git for FDA submissions, not only satisfying

regulatory requirements but often exceeding them, thereby reducing the friction of audits and

reviews.

In conclusion, a well-managed Git workflow can be “your way to compliance” by embedding

compliance activities into the everyday development process. Rather than maintain separate,

duplicative documentation to satisfy regulators, teams can lean on their version control system

as a single source of truth. This approach improves developer efficiency (less manual

paperwork) and yields more reliable, consistent documentation for regulators. However, success

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 18 of 21

https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-820/subpart-C/section-820.30#:~:text=%28i%29%20Design%20changes,design%20changes%20before%20their%20implementation
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-820/subpart-C/section-820.30#:~:text=%28i%29%20Design%20changes,design%20changes%20before%20their%20implementation
https://nsflow.com/ebooks/how-nsflow-complies-with-21-cfr-part-11#:~:text=%28e%29%20Use%20of%20secure%2C%20computer,creation%2C%20modification%2C%20or%20deletion%20of
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

requires careful planning: writing clear procedures, training staff on compliance-conscious use

of Git, and selecting tool configurations that maximize integrity (e.g., access control, audit

logging, backup). When these elements are in place, Git not only streamlines development but

also enhances regulatory peace of mind, ensuring that when it’s time to submit that 510(k) or

NDA, the traceability matrix, audit trail, and version history are just a few clicks away in the

repository.

By versioning your way to compliance, you build quality and accountability into the product from

day one – fulfilling the letter and spirit of FDA regulations while leveraging the best of modern

software engineering practices.

References (Selected)

1. FDA, Content of Premarket Submissions for Device Software Functions – Guidance for Industry and

FDA Staff, June 2023. (Recommends documentation of software development, configuration

management, and provides for IEC 62304 conformity) fda.gov fda.gov.

2. FDA, 21 CFR 820.30 Design Controls. (Regulation requiring design change control and Design History

File) ecfr.gov ketryx.com.

3. FDA, 21 CFR Part 11, Electronic Records; Electronic Signatures. (Criteria for trustworthy electronic

records and signatures, including audit trail requirements) nsflow.com dev.to.

4. Johner Institute, “21 CFR Part 11: An over-interpreted law?” August 2024. (Discussion of Part 11

requirements like audit trails) blog.johner-institute.com.

5. IEC 62304:2006+A1:2015, Medical Device Software – Software Life Cycle Processes. (International

standard mandating configuration management, change control, and traceability in software

development) greenlight.guru.

6. Inductive Automation, 21 CFR Part 11 and Pharmaceutical Best Practices with Ignition, 2022. (White

paper recommending use of Git for change control and two-person code reviews in compliance

workflows) s3.amazonaws.com s3.amazonaws.com.

7. Greenlight Guru, “SaMD Software as a Medical Device – The Ultimate Guide.” (Explains IEC 62304

practices like configuration management and tool validation in SaMD development) greenlight.guru

greenlight.guru.

8. Ketryx Blog, “How to Create a Design History File (DHF) for Medical Devices,” Jan 2025. (Discusses

traceability and integration of tools like Jira and GitHub to auto-generate DHF contents) ketryx.com.

9. OpenRegulatory, “Setting Up a QMS in GitHub/GitLab.” (Article illustrating use of Git for document

control and discussing electronic signature limitations in such setups) openregulatory.com

openregulatory.com.

(Additional citations are embedded in text as † for specific assertions.)

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 19 of 21

https://www.fda.gov/media/153781/download#:~:text=provide%20a%20Declaration%20of%20Conformity,However%2C%20a
https://www.fda.gov/media/153781/download#:~:text=provide%20a%20Declaration%20of%20Conformity,8%20%28%E2%80%9CDocumentation
https://www.ecfr.gov/current/title-21/chapter-I/subchapter-H/part-820/subpart-C/section-820.30#:~:text=%28i%29%20Design%20changes,design%20changes%20before%20their%20implementation
https://www.ketryx.com/blog/how-to-create-a-design-history-file-dhf-for-medical-devices#:~:text=regulatory%20requirements,development%20of%20the%20medical%20device
https://nsflow.com/ebooks/how-nsflow-complies-with-21-cfr-part-11#:~:text=%28e%29%20Use%20of%20secure%2C%20computer,creation%2C%20modification%2C%20or%20deletion%20of
https://dev.to/aakash_parikh_651254ef060/embracing-the-digital-future-ensuring-21-cfr-part-11-compliance-in-regulated-industries-233i#:~:text=Security%20Controls%20and%20User%20Authentication
https://blog.johner-institute.com/regulatory-affairs/21-cfr-part-11/#:~:text=5.%20Use%20of%20computer,the%20permitted%20sequencing%20of
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=Software%20configuration%20is%20like%20accounting,for%20traceability%20and%20release%20management
https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=Technical%20controls%20enforce%20strict%20adherence,core%20part%20of%20the%20quality
https://s3.amazonaws.com/files.inductiveautomation.com/s3fs-production/test_folder/21%20CFR%20Part%2011%20and%20Pharmaceutical%20Best%20Practices%20with%20Ignition_3.pdf?VersionId=wK55Bh7RsxiXml1ij1XDuwbEsJOkL6K.#:~:text=b,only%20write%20credentials
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=Software%20configuration%20is%20like%20accounting,for%20traceability%20and%20release%20management
https://www.greenlight.guru/blog/samd-software-as-a-medical-device#:~:text=According%20to%20the%20FDA%E2%80%99s%20Quality,System%20Regulations
https://www.ketryx.com/blog/how-to-create-a-design-history-file-dhf-for-medical-devices#:~:text=match%20at%20L585%20with%20tools,Ketryx%20also%20supports%20versioning
https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=How%20can%20we%20implement%20this,in%20GitHub
https://openregulatory.com/articles/quality-management-system-qms-in-github-gitlab#:~:text=GitHub%20to%20actually%20set%20up,at%20the%20features%20we%20need
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

IntuitionLabs - Industry Leadership & Services

North America's #1 AI Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs

leads the US market in custom AI software development and pharma implementations with proven

results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies including Scilex

Holding Company (SCLX) and leading CROs across North America.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11

compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years

in software development, multiple successful exits, and patent holder. Recognized as one of the top

AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs,

chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private

cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data

conversion, automated document analysis, and intelligent data extraction from clinical and regulatory

documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and

custom field force applications with advanced analytics and reporting capabilities.

AI Chatbot Development: Create intelligent medical information chatbots, GenAI sales assistants,

and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory

management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and

real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring,

and custom data visualization solutions for pharmaceutical insights.

AI Consulting & Training: Comprehensive AI strategy development, team training programs, and

implementation guidance for pharmaceutical organizations adopting AI technologies.

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 20 of 21

https://intuitionlabs.ai/contact?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only.

We make no representations or warranties of any kind, express or implied, about the completeness,

accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or

its representatives be liable for any loss or damage including without limitation, indirect or consequential

loss or damage, or any loss or damage whatsoever arising from the use of information presented in this

document.

This document may contain content generated with the assistance of artificial intelligence technologies.

AI-generated content may contain errors, omissions, or inaccuracies. Readers are advised to

independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are

the property of their respective owners. All company, product, and service names used in this document

are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply

endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading AI software development firm specializing exclusively in

pharmaceutical and biotech companies. As the premier US-based AI software development company for

drug development and commercialization, we deliver cutting-edge custom AI applications, private LLM

infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance

software. Founded in 2023 by Adrien Laurent, a top AI expert and multiple-exit founder with 20 years of

software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your

business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent Git Version Control for FDA and IEC 62304 Compliance

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 21 of 21

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://www.linkedin.com/in/adrienlaurent/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/articles/git-workflows-fda-compliance?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=git-version-control-for-fda-and-iec-62304-compliance.pdf

