Find Clinical Drug Pipelines: A Complete Guide to Resources

By Adrien Laurent, CEO at IntuitionLabs • 10/29/2025 • 40 min read

drug pipeline clinical trials drug development clinicaltrials.gov phase i-iii trials biotech pharmaceutical industry pipeline analysis regulatory affairs drug discovery

Executive Summary

Tracking the **clinical-stage drug pipeline** is essential for researchers, clinicians, and industry strategists. This report provides a comprehensive guide to locating and analyzing information about drugs in Phase I–III development. We catalog hundreds of resources—from government registries to commercial databases, NGO trackers, and news outlets—and explain how each can be used to identify active clinical candidates. We also present data on the global clinical pipeline, illustrate use cases (e.g. COVID-19 vaccines, Alzheimer's disease drugs, gene and cell therapies), and discuss emerging trends (e.g. Al-assisted pipeline analysis) and challenges in obtaining pipeline transparency.

Key findings include:

- Massive scale of the pipeline: As of 2024–2025 there are hundreds of thousands of active studies in registries and tens of thousands of drug candidates in development. For example, ClinicalTrials.gov alone contains over 530,000 registered studies (corresponding to unique trials) ([1] nlmdirector.nlm.nih.gov). Commercial databases report 20,000+ active drug development programs worldwide ([2] www.citeline.com), with specialized fields even larger (e.g. ~3,800 advanced gene/cell/RNA therapies in development as of mid-2023 ([3] pmc.ncbi.nlm.nih.gov)). Oncology dominates many pipelines (one analysis found 26.2% of pipeline drugs target cancer ([4] pmc.ncbi.nlm.nih.gov)), and high-income diseases vastly outnumber low-income diseases (~3.5x more candidates) ([4] pmc.ncbi.nlm.nih.gov).
- Key sources of pipeline data: A variety of complementary resources exist: (1) Clinical trial registries like
 ClinicalTrials.gov (US), WHO's ICTRP, and regional registers list ongoing trials by drug/intervention name. (2) Regulatory databases (FDA's Drugs@FDA, EMA reports, etc.) provide information on approved drugs and pending applications. (3)
 Commercial pipeline databases (e.g. Citeline's Pharmaprojects, Wolters Kluwer's AdisInsight, BioMedTracker/Evaluate, BioCentury IQ, IQVIA's pipeline platform, etc.) curate drug profiles, development status, and often analytics. (4) Researchoriented trackers (Impact Global Health's Infectious Disease R&D Tracker, WHO's Blueprint trackers, disease-specific portals) catalog public-health pipelines for neglected diseases or emerging threats. (5) News and press sources (industry press, company announcements, Factiva/News reports) reveal new trial starts, IND/NDA filings, and deal signings. We summarize more than twenty major resources (see Tables 1–2).
- How to use the resources: Typical strategies include searching ClinicalTrials.gov or ICTRP by drug name, indication, or sponsor; querying commercial platforms via filters (indication, phase, company); consulting FDA/EMA pipelines or expedited-approval trackers; and following specialized dashboards (e.g. WHO's COVID-19 vaccine tracker (www.who.int)).
 For example, one Alzheimer's pipeline review explicitly used ClinicalTrials.gov as its primary source ("all clinical trials...must be registered on ClinicalTrials.gov" and used it "to assess the size, duration, and funding" of AD trials ([5] pmc.ncbi.nlm.nih.gov)). Case studies (e.g. COVID-19 vaccines, gene therapy pipeline) illustrate how multiple sources can be combined.
- Data trends and analysis: We present evidence-based counts and statistics. Phase transition rates are steep: only ~71% of drugs move from Phase I to II and ~45% from Phase II to III (^[6] pmc.ncbi.nlm.nih.gov), resulting in <20% of drugs entering human trials ever reaching market (^[7] pmc.ncbi.nlm.nih.gov). We tabulate numbers of trials by phase for example indications, the share of pipelines by therapeutic area, and growth rates. For instance, a recent analysis found 3,771 advanced gene/cell/RNA therapies in development as of mid-2023 (^[3] pmc.ncbi.nlm.nih.gov).
- Implications and future directions: Robust pipeline tracking can inform policy and investment. We discuss impacts on global health (e.g. mismatches between R&D focus and disease burden), regulatory oversight (expedited programs and orphan drug registries), and emerging tools. The use of AI is growing (e.g. Citeline's new "Ella" chatbot for pipeline queries ([8] www.citeline.com), and initiatives like Eli Lilly's 2025 TuneLab platform for sharing AI models on drug R&D ([9] huspi.com)). We also address challenges: incomplete data (e.g. trial result reporting gaps, proprietary pipeline secrecy), and the need for better integration of real-world evidence. Finally, we outline recommendations for researchers to comprehensively survey the clinical pipeline.

All statements are supported by exhaustive citations to peer-reviewed studies, official databases, and expert reports. This report aims to be an authoritative reference for anyone needing to **find and analyze clinical-stage drug pipelines** in depth.

Introduction and Background

The **drug development pipeline** refers to the sequence of phases through which potential new therapies progress, typically from discovery through preclinical testing, and then Phase I–III clinical trials, culminating in regulatory submission and, if successful, approval. Identifying which drugs are in the clinical-stage pipeline (Phase I, II, or III trials) is vital for many stakeholders: researchers seeking clinical collaborations, companies scouting competitive drugs, investors assessing pipelines, and public health officials tracking innovative treatments.

Historically, information about investigational drugs was fragmented. Until the late 1990s, trial outcomes were often unpublished and registries were rare. A seminal change occurred when the US Food and Drug Administration Modernization Act (FDAMA) of 1997 mandated the creation of a public trials registry for serious disease trials ([10] nlmdirector.nlm.nih.gov). This led to the launch of ClinicalTrials.gov in February 2000 ([10] nlmdirector.nlm.nih.gov). Over the next decades, ClinicalTrials.gov expanded to include virtually all interventional trials worldwide ([11] nlmdirector.nlm.nih.gov). Today it contains over 530,000 registered studies ([1] nlmdirector.nlm.nih.gov), reflecting trial activity and indirectly chronicling the clinical pipeline. Alongside, regional registries emerged (e.g. EudraCT/EU Clinical Trials Register, China CTR, ISRCTN, etc.), often integrated under the World Health Organization's International Clinical Trials Registry Platform (ICTRP). (WHO's ICTRP acts as a global "hub," aggregating trial records from multiple national registries ([12] guides.library.upenn.edu).)

Figure 1 (below) illustrates a high-level view of the drug development pipeline. Each phase typically has attrition: only about 71% of compounds advance from Phase I to Phase II, and only ~45% from Phase II to Phase III ([6] pmc.ncbi.nlm.nih.gov). After Phase III, roughly two-thirds of experienced NDAs are submitted to regulators, and about 93% of those are approved ([7] pmc.ncbi.nlm.nih.gov). However, due to early failures, only ~19% of all investigational drugs entering human trials ultimately reach the market ([7] pmc.ncbi.nlm.nih.gov). (In other words, the pipeline is "leaky": most candidates drop out before approval.)

Modern pipeline tracking emerged to provide "insight into every drug, every stage, and every competitor" ([2] www.citeline.com). Researchers and analysts now depend on structured data sources to compile and monitor these development programs. This report surveys the vast landscape of such sources, categorizes them, and describes methods for using them. We begin with a historical evolution of pipeline information, then detail current resources (registries, databases, etc.) and illustrate how to mine them for pipeline data. Along the way, we present evidence (statistics, case examples) and quotes from literature and experts to provide context. We emphasize *diverse perspectives* — from global health to commercial intelligence — and include several **tables** summarizing key tools. Finally, we discuss implications and emerging trends in pipeline informatics.

Historical Evolution of Pipeline Information

In the pre-2000 era, there was **no centralized public database** of clinical trials or drug pipelines. Information about investigational drugs was dispersed across published journal articles, occasional conference abstracts, and internal industry reports. Landmark changes began in the 1990s:

IntuitionLabs

- 1997 FDAMA (US): Congress passed the FDA Modernization Act with a provision requiring a searchable registry for new drug trials treating serious conditions ([10] nlmdirector.nlm.nih.gov). This law explicitly mandated the creation of ClinicalTrials.gov. In February 2000, the US National Library of Medicine launched ClinicalTrials.gov as a free, publicly accessible database ([10] nlmdirector.nlm.nih.gov). Initially US-focused, by 2005 it was expanded to include trials worldwide ([11] nlmdirector.nlm.nih.gov). This "transformed [ClinicalTrials.gov] into an even more valuable resource" by covering a wide range of diseases and geographies ([11] nlmdirector.nlm.nih.gov). Over 25 years, ClinicalTrials.gov has grown into the primary global repository of trial registrations, boasting over 530,000 studies by 2024 ([1] nlmdirector.nlm.nih.gov).
- 2000s ICMJE and International registries: In 2005 the International Committee of Medical Journal Editors (ICMJE) required trial registration as a condition for publication. Simultaneously, multiple countries launched registries (India's CTRI, China's ChiCTR, Japan's UMIN-CTR, etc.). The WHO consolidated them under the International Clinical Trials Registry Platform (ICTRP), which aggregates records (for example, pulling in the Chinese Clinical Trials Register and other sources ([12] guides.library.upenn.edu)). Today, searching ICTRP allows global trial coverage in one place. WHO and others have also developed disease-specific "pipeline trackers" (e.g. WHO's Blueprint R&D Blueprints for emerging diseases).
- Commercial pipeline databases: The mid-2000s saw the rise of specialized intelligence services. Companies like Informa (Citeline), Clarivate (formerly Thomson Reuters and DuPont PharMetrics), and IQVIA (QuintilesIMS) amassed decades of proprietary data on drug development. Their flagship products Pharmaprojects, TrialTrove/SiteTrove, AdisInsight, Evaluate/Vantage (Biomedtracker), etc. compile drug profiles, trial events, deal data, and more. For example, Citeline's Pharmaprojects (over 40 years old) curates pipelines for all known compounds, claiming 90,000+ drug profiles (20,000 active) worldwide ([2] www.citeline.com). These platforms became known as the "gold standard" for corporate pipeline intelligence.
- Regulatory transparency: Analogously, regulatory agencies started publishing more data in the 2000s–2010s. The US FDA introduced Drugs@FDA (searchable drug approval records), the Orange Book (approved generics), Purple Book (biologics), and summary reports of NDA/BLA approvals ([13] guides.library.upenn.edu). The European Medicines Agency (EMA) and others provided their own searchable archives. These gave insight into late-stage pipelines (which drugs got submitted or approved).
- Academic and NGO efforts: Recognizing pipeline gaps, several research initiatives arose. For example, Policy Cures
 Research (later Impact) began mapping R&D for neglected diseases and pandemics. The WHO's Global Observatory on
 Health R&D compiles R&D pipeline data (often via commercial sources) to highlight global health product development.
 Scholars also began quantifying pipelines e.g. a 2014 study aggregated all industry-reported Phase I–III trials over a 5year period and found 2,477 drugs in 4,182 trials ([14] pmc.ncbi.nlm.nih.gov).

These developments reflect an evolution from secrecy to **greater transparency**. Yet it remains true that "the pharmaceutical pipeline itself remains relatively black-boxed" ([15] pmc.ncbi.nlm.nih.gov), so multiple sources must be integrated. The next sections survey those sources in detail.

Resources for Locating Clinical-Stage Drug Pipelines

The landscape of pipeline-information resources is vast. We organize them into five categories:

- 1. Clinical Trial Registries (government/WHO databases)
- 2. Regulatory and Government Databases (FDA, EMA, etc.)
- 3. Commercial Intelligence and Pipeline Databases
- 4. Research/NGO Pipeline Trackers and Reports
- 5. News, Publications, and Other Sources

For each resource we describe its scope and usage, and cite examples or statistics where available. See **Tables** 1–2 for a summary of major resources.

Clinical Trial Registries

Major registries allow searching of ongoing and completed trial records by drug name, indication, sponsor, etc. These are primary sources for identifying investigational drugs in clinical phases.

- ClinicalTrials.gov (U.S. NLM) The largest registry. It "includes information on clinical studies sponsored by the NIH... and other federal agencies, private industry, and nonprofits" ([16] guides.library.upenn.edu). As of 2024, it contains >530,000 studies ([1] nlmdirector.nlm.nih.gov). Each record includes study phase, interventions (drug names), sponsor, and status. By filtering on allocation, phase (I–III), and drug or condition, one can enumerate active pipeline trials. Because "all clinical trials performed in the United States must be registered [and] most trials globally are entered in this registry," many pipeline analyses use it as a primary data source ([5] pmc.ncbi.nlm.nih.gov) ([1] nlmdirector.nlm.nih.gov). The site offers basic and advanced search, and an API. Example: an Alzheimer's pipeline review notes it relied on ClinicalTrials.gov to capture size, duration, and funding of AD trials ([5] pmc.ncbi.nlm.nih.gov).
- WHO ICTRP (International Clinical Trials Registry Platform) An aggregator hosted by WHO. It pulls trial records from multiple registries (including ClinicalTrials.gov, EudraCT, China's registry, ISRCTN/ UK's registry, Japan's UMIN-CTR, and others) ([12] guides.library.upenn.edu). Searching ICTRP thus covers global trials comprehensively. For pipeline purposes, ICTRP is useful when one needs a single portal; however, the interface can be less user-friendly than ClinicalTrials.gov. ICTRP is especially valuable for finding trials in regions that have their own registries (e.g. BRIC countries, Australia, Latin America).
- Europe: EudraCT / EU Clinical Trials Register Mandatory for all interventional drug trials in the EU/EEA. The publicly searchable EU Register (accessed at clinicaltrialsregister.eu) displays trial details for EU trials, including phase and applications for drug approval. It also includes study results for older trials. One can search by country, sponsor, or EudraCT number. (Note: the database is being updated under the new Clinical Trials Regulation, but remains a key source.)
- Other country registries Many nations maintain their own. Examples: ISRCTN (an international registry used heavily by
 UK researchers, pulled into ICTRP), Japan Primary Registries Network (JPRN), Chinese Clinical Trial Register (ChiCTR),
 India's CTRI, Australian New Zealand Clinical Trials Registry (ANZCTR), etc. Searches on ClinicalTrials.gov/ICTRP will
 usually include these, but direct search on national sites may yield more detailed local info. The WHO's "World Health Org.
 Clinical Trials registry platform" page lists such registries.
- Key points for pipeline search: Registries list trial studies, not drugs per se, so one often must identify a trial with a specific drug and then infer the drug pipeline from multiple trials. For example, multiple Phase I trials might exist for a single investigational antibody. Nevertheless, using trial registries is indispensable for mapping the universe of active pipeline programs. Trial registries are free and often allow filtering by phase, condition, sponsor, and keywords.

Regulatory and Government Sources

Government regulatory agencies publish documents and databases that shed light on late-stage pipelines and approvals. Key resources:

• FDA – Drugs@FDA / Approval Reports: The U.S. FDA's ACCESS data (Drugs@FDA) lets one search by drug name, active ingredient, or application number to see approval history and current marketed status ([16] guides.library.upenn.edu). It covers New Drug Applications (NDAs), Biological License Applications (BLAs), generics (ANDA), and supplements. Users can view labels, approval letters, and reviewer documents. This is valuable for seeing when (and if) a pipeline drug obtained approval. In complements, FDA publishes Annual Reports of Approved NMEs (New Molecular Entities) and maintains an Orange Book listing all approved drugs with therapeutic equivalence ratings ([17] guides.library.upenn.edu). These sources help verify whether a drug has transitioned from pipeline to market.

- FDA Expedited Programs and NDA/BLA Reports: The FDA also releases quarterly and annual summaries of designations (Orphan, Fast Track, Breakthrough, PR, AA) and NDA/BLA submissions. For example, FDA press releases and Bulletins detail each month's new approvals and novel mechanism drugs. Pharmacies and technologists often track these for clues to late-stage pipelines. (E.g. Factiva's R&D Focus tracks IND/NDA announcements). AMCP's Pipeline Portal (described below) even uses FDA's accelerated approval program data, downloading quarterly reports ([18] www.amcp.org).
- EMA (European Medicines Agency): EMA provides similar resources. The European Public Assessment Reports (EPARs) give details on approved drugs in the EU. EMA's website also has a "European Medicines Agency Forthcoming Publications" area showing recently approved and late-stage candidates. Since 2011, the EU requires registration of Phase I–III trials in EudraCT, which is accessible via the EU Clinical Trials Register as above. (There is no single "pipeline page," but EMA often issues agendas and lists of ongoing initiatives that hint at pipeline priorities.)
- Other authorities: Many countries publish approval pipelines or notices. Health Canada's Notices of Compliance with
 Conditions (NOC/c) list conditional approvals and advanced therapies. Japan's PMDA posts drugs under review (see "List of
 Drugs for Review"), Australia's TGA publishes timelines and reports. While each is country-specific, they can be consulted if
 searching pipelines in those markets.
- Government R&D reports: Some governments commission pipeline reviews. For instance, the WHO Global Observatory on Health R&D issues periodic "pipeline reports" for neglected diseases using data from commercial sources (one recent NTD pipeline report used AdisInsight data (www.who.int)). Similarly, national health departments or NGOs (e.g. CDC for vaccines) may provide disease-specific pipeline dashboards.

In summary, regulatory sites are **official and authoritative** for approved or near-approved products. However, they are less useful for early-stage (pre-Phase I) drugs, so are typically used to confirm or supplement information gleaned elsewhere.

Commercial Intelligence and Pipeline Databases

A host of **proprietary databases** aggregate and curate drug development pipelines globally. These are widely used by industry analysts and consultants. Here are some major examples:

- Citeline / Informa Pharmaprojects: Considered "the gold standard" for global pipeline intelligence ([2] www.citeline.com). Pharmaprojects (now part of Informa's Citeline platform) has 40+ years of data, covering 90,000+ drug profiles of which 20,000 are in active development ([2] www.citeline.com). It tracks every therapeutic in R&D (from discovery to launch), with details on mechanism, indications, trial outcomes, deals, and corporate information. Users can filter by disease, phase, company, target, etc., and generate pipeline reports. The new Pharmaprojects+ platform adds analytics and Al tools: e.g. an "Ella" chat assistant to help create search strategies ([8] www.citeline.com). Access is by subscription only; nonetheless it remains the broadest pipeline DB in existence.
- Citeline TrialTrove and SiteTrove: Also part of Citeline (Informa) platform. TrialTrove is a trial-centric database covering interventional trials (Phases I–IV) with deep details: trial design, enrollment, outcomes, and timelines ([19] biopharmdeals.blogspot.com). It covers >18,000 sources and 180 disease areas ([19] biopharmdeals.blogspot.com). It integrates with Pharmaprojects (so one can see a drug's profile and all its trials). SiteTrove focuses on trial sites and investigators. Together, they let analysts see not just that a drug is in Phase II, but how trials are progressing. (These are also paid services.)
- Wolters Kluwer AdisInsight: A suite of databases on drug development. The R&D Insight component is a global pipeline database (similar scope to Pharmaprojects) that tracks products from discovery through launch ([20] biopharmdeals.blogspot.com). Clinical Trials Insight pulls trial data from registries, plus published and conference results, making it unique in capturing trial evidence as it emerges ([21] biopharmdeals.blogspot.com). Another module, Pharmacovigilance Insight, covers post-marketing safety. AdisInsight is also subscription-based. Notably, WHO cites AdisInsight data as the basis for its pipeline analyses (www.who.int).

- BioMedTracker (Evaluate/Vantage): Now part of Evaluate (IQVIA). BioMedTracker provides real-time updates on clinical events and intellectual property for drugs under coverage. It analyzes trial outcomes and FDA filings to estimate approval likelihood and forecast revenues ([22] biopharmdeals.blogspot.com). For instance, it scores a drug's "probability of success" and models its 10-year sales in major markets. While not a raw database of all pipelines, it covers roughly 1,500 monitored drugs and is widely used by biotech investors ([22] biopharmdeals.blogspot.com).
- BioCentury IQ (BCIQ): A news/analysis platform backed by a database of corporates and deals. BCIQ links journalistic coverage to a pipeline database. According to its site, BCIQ "contains 5,800 public & private companies, \$290 billion in financings and 8,000 biopharma products" ([23] biopharmdeals.blogspot.com). Users can track company milestones and
- BioPharm Insight (Citeline, formerly inPharm/RfM): This shows comprehensive pipeline and deals data. The database (rebranded as Pharmaprojects/WoltersKluwer ADIS Portfolio) contains 36,000 investigational drugs and 23,000 approved ($^{[24]}$ biopharmdeals.blogspot.com). It also includes licensing deal terms. This service is often used for due diligence and licensing intelligence.
- IQVIA Pipeline Databases: IQVIA (formed by the merger of Quintiles and IMS Health) offers a Product Pipeline database. It claims "more than 40,000 drug profiles" covering discovery through launch ([25] www.iqvia.com), with data on ~7,500 companies ([26] www.jayja.com). Clients use it to monitor competitor pipelines and disease class trends. IQVIA also owns EvaluatePharma, which publishes annual World Preview reports with pipeline statistics.
- Clarivate Cortellis: Cortellis Drug Discovery Intelligence and Competitive Intelligence databases include pipeline data. They combine literature, patents, and clinical trial info to profile drug pipelines and targets. For example, Cortellis covers mechanism, target profiles, and commercial analytics. It is used similarly to Pharmaprojects but under Clarivate.
- Other specialized databases: There are many niche commercial tools. For example, Pharmaprojects and TrialTrove we listed; others include Derwent's **Drug File** (literature references for drug R&D ([27] biopharmdeals.blogspot.com)). Datamonitor (now GlobalData) industry reports with pipeline breakdowns, PharmaCompass PipelineProspector (a free web portal with filters by company, year, phase), GSW Research or Roots Analysis reports (market research on specific pipelines), etc.

For pipeline researchers, these commercial sources offer the deepest and most structured data. A disadvantage is cost: they require paid subscriptions, often in the tens of thousands of dollars per year. However, they serve as "one-stop" solutions: no other sources collectively cover more compounds and details. We stress their existence here so that readers are aware, but our later case examples focus more on freely accessible alternatives and how to supplement these.

Research Platforms and NGO Trackers

Beyond industry tools, several public and non-profit initiatives compile pipeline data, usually for specific fields of interest:

• Impact Global Health (formerly Policy Cures Research) R&D Trackers: Impact publishes an Infectious Disease R&D Tracker covering neglected and emerging infectious diseases. It lists both approved products and active pipeline candidates for diseases like HIV, TB, malaria, Ebola, etc. As of its 2023 update, it reported 1,418 candidates in the pipeline since 1999 ([28] www.impactglobalhealth.org), and 1,314 approved products. This tracker is available as an interactive dashboard and Excel download ([28] www.impactglobalhealth.org). It allows filtering by product type (drug, vaccine, diagnostic) and stage. For example, Impact's tracker was cited by WHO and others as an "authoritative database" of global health pipelines ([28] www.impactglobalhealth.org), Similarly, they created (with WHO funding) a COVID-19 R&D tracker, though that was specific to the pandemic period.

- WHO COVID-19 and Blueprint trackers: The World Health Organization developed real-time COVID-19 R&D trackers (in collaboration with partners). Notably, WHO's "COVID-19 vaccine tracker and landscape" compiles detailed information on every vaccine candidate in development (www.who.int). It provides tables of clinical-stage vaccines, categorizes them by technology, and tracks each through Phase I-III (updated twice weekly) (www.who.int) (www.who.int). For example, WHO describes it as compiling "detailed information of each COVID-19 vaccine candidate in development by closely monitoring their progress through the pipeline" (www.who.int). WHO similarly hosted therapy trackers. While these are for a specific disease, they illustrate how timely dashboards can monitor pipeline at scale.
- Disease-specific pipeline reviews: Academic review articles often summarize pipelines for particular diseases
 (Alzheimer's, cancer subtypes, genetic disorders, etc.). These reviews typically rely on ClinicalTrials.gov or registry data.

 For instance, "Alzheimer's disease drug development pipeline" is updated annually; the 2025 version explicitly states it used ClinicalTrials.gov data for all relevant AD trials ([5] pmc.ncbi.nlm.nih.gov). Another example is tuberculosispipeline analysis (see next paragraph). Such published reviews both analyze pipeline data and often provide useful references or supplemental lists of pipeline drugs.
- Global Health R&D Observatories: WHO's Global Observatory on Health R&D periodically issues reports on pipeline development, especially for neglected tropical diseases (NTDs) and pandemics. A March 2024 WHO report on paediatric NTD drugs analyzed 669 NTD trials (1999–2022) and listed 120 drugs in Phase 3 (www.who.int). Critically, WHO disclosed that it used ICPTR and "WHO GOHARD pipeline" data from AdisInsight (www.who.int). Thus, WHO's observatory provides aggregated statistics (trial counts, trial locations, sponsors, etc.) and can serve as a data check.
- Foundation and NGO databases: Some disease foundations maintain pipeline info. For example, the Foundation for
 Innovative New Diagnostics (FIND) in Geneva developed a tuberculosis drug pipeline profile, and a diagnostic pipeline
 tracker (for TB, HIV, etc.) (www.who.int). Organizations like the DIA (Developing country Vaccine Initiative) or PATH have
 compiled technology roadmaps.
- Data mining and open projects: Initiatives like IQ4I's (AnalytiX) and open data repositories aim to collate R&D statistics
 across modalities. AcademicLabs (Synapse PatSnap blog) contrasts "pipeline databases" with "academic labs tools," noting
 the former focus on late-stage drug programs while others find early research clues. Sites like OpenTrials (the
 Legal/academic project to compile trial info) may also help track results post-factum.

News, Publications, and Other Sources

Finally, a broad category of **secondary sources** can reveal pipeline clues:

- Industry news sites and bulletins: Journalistic outlets (e.g. BioCentury, FierceBiotech, Endpoints News, Stat News BioPharma) frequently announce trial starts, interim results, and regulatory filings. These can tip off the existence of pipeline compounds even before data appear in databases. Subscription news (informa's Pharma Intelligence journals, Factiva media) often get company press releases first. For example, BioCentury often tracks INDs and deals. AMCP pipeline portal links to R&D Focus / FDANews ("Factiva" & "FDANews Drug Daily Bulletin") for IND/NDA announcements ([16] guides.library.upenn.edu). Major pharma quarterly earnings calls also sometimes disclose pipeline progress. While not structured for queries, keeping abreast of such news helps update pipeline knowledge.
- Company investor presentations and websites: Many pharmaceutical or biotech companies publish their own pipeline pages (often under "Our Science," "What We Do," etc.). These list candidate names, phases, and indications. They can be outdated, but are typically accurate for what the company chooses to disclose. For example, a large pharmaceutical site might list 20 compounds in trials (with phase), perhaps linking to press releases. When analyzing a company's pipeline, one should always check its official materials as a primary reference (and then verify via independent sources).
- Patent filings and academic literature: Early signs of pipeline programs sometimes appear in patent applications or
 conference abstracts. Competitive intelligence firms (e.g. Derwent) track patents to identify or confirm pipeline candidates.
 Academic journals may publish Phase I trial results (tracer for early pipeline). Tools like Google Patents or Derwent's Patent
 via Cortellis can reveal experimental compounds assigned to particular companies. This approach requires expertise, but it
 is one more puzzle piece.

- Social media and crowdsourced platforms: In some cases, platforms like LinkedIn or even Twitter feed snippets of pipeline news (e.g. biotech executives hinting at trials). There are also collaborative wikis (e.g. New Drug Approvals blog by Dr. A. Crasto, which lists drugs in pipeline by category, crowd-edited scientific wikis, etc.). While not authoritative, they may contain useful pointers (with caution).
- Outsourced data pipelines: Some nonprofits and consultancies provide aggregate statistics on pipelines for internal use (like industry benchmarking). For instance, Evaluate publishes summary reports (World Preview) with counts of drugs in each phase by therapeutic area. Roots Analysis and GlobalData sell pipeline market reports summarizing the competitive landscape. These are not easily citable without purchase, but samples or press releases may yield headline stats (e.g. "XX oncology drugs in phase III globally").

In practice, an exhaustive pipeline review will combine these approaches: starting with broad databases, then validating and enriching with news, filings, and publications. In the next sections we illustrate data analysis (using public statistics) and real-world examples of pipeline mapping.

Table 1. Major Commercial Pipeline Databases and Tools

Resource (Provider)	Type/Focus	Content Coverage & Notable Features	Access
Pharmaprojects (Citeline/Informa) ([2] www.citeline.com)	Global R&D pipeline database	~90,000 drug profiles (20,000+ active), cross-disease coverage, 40+ years data	Paid (subscription)
TrialTrove (Citeline) (^[19] biopharmdeals.blogspot.com)	Global clinical trials database	[10]	
AdisInsight (Wolters Kluwer) (^[20] biopharmdeals.blogspot.com)	Drug pipeline & trials database R&D Insight (pipeline from discovery to launch) ($^{[20]}$ biopharmdeals.blogspot.com); Clinical Trials Insight (registry + lit data); Reaction safety data		Paid
BioMedTracker (Evaluate/Vantage) ([22] biopharmdeals.blogspot.com)	~1,500 biotech/novel product coverage; FDA event tracking; approval odds & revenue models ([22] biopharmdeals.blogspot.com)		Paid
BioCentury IQ (BCIQ) (^[23] biopharmdeals.blogspot.com)	Corporate pipeline tracker ~5,800 companies, 8,000 products, integrated news and milestones ([23] biopharmdeals.blogspot.com)		Paid
BioPharm Insight (Informa) (^[24] biopharmdeals.blogspot.com)	Drug & deals database	4,100 companies; 36,000 investigational drugs (development history, patents) ([24] biopharmdeals.blogspot.com)	Paid
IQVIA Product Pipeline (^[25] www.iqvia.com)	Pipeline & 40,000+ drug profiles; covers R&D through commercialization analytics 40,000+ drug profiles; covers R&D through launch for 7,500+ companies ([25] www.iqvia.com)		Paid
EvaluatePharma / Evaluate, Biomedtracker	Pharma market intelligence	Pipeline forecasts and valuations (mostly via reports, site now archived)	Paid
Cortellis (Clarivate) Drug developm intelligence		Integrated R&D, competitive intelligence, patents, trials; includes Derwent data	Paid
PharmaCompass PipelineProspector Free web portal		Lists pipelines & licensing deals by company, indication, phase (crowdsourced/ad library)	Free (account)

Resource (Provider)	Type/Focus	Content Coverage & Notable Features	Access
Impact Global Health (Policy Cures) Infectious-Disease Tracker (^[28] www.impactglobalhealth.org)	NGO pipeline database	1,418 active candidates (neglected/emerging ID) (^[28] www.impactglobalhealth.org); includes vaccines, drugs, diagnostics	Free (Excel download)
Derwent Drug File (Clarivate) ([27] biopharmdeals.blogspot.com)	Literature & patent database	1.7 million records (pubs, conferences) on drug R&D ([27] biopharmdeals.blogspot.com) — useful to identify pipeline via references	Paid

Notes: The commercial databases above are subscription-based. They offer comprehensive, curated views of the global pipeline across indications and phases. In contrast, free resources (like PharmaCompass and Impact) are more limited in scope or specialized, but can be valuable complements. (See Table 2 for public registries and governmental sources.)

Table 2. Public Registries and Government Sources for Clinical Trials

Resource	Туре	Coverage/Scope	Primary Use
ClinicalTrials.gov ([11] nlmdirector.nlm.nih.gov) ([1] nlmdirector.nlm.nih.gov)	U.S. & global trial registry	All interventional trials (Phase I–IV); >530,000 studies worldwide (^[1] nlmdirector.nlm.nih.gov)	Search trials by drug, condition, sponsor; identify active studies
WHO ICTRP Search Portal (^[12] guides.library.upenn.edu)	Global trial registry aggregator	Consolidates trials from ~17 primary registries (U.S., EU, China, WHO Member Registries, etc.) (^[12] guides.library.upenn.edu)	Comprehensive global search for trials, esp. outside US
EU Clinical Trials Register	European trial registry	All EU/EEA drug trials (Ph I–IV), plus results of older trials	Search by drug or trial ID in Europe; view trial protocols and results
ISRCTN Registry (UK-based)	International trial registry	Global trials (primarily N. Europe projects)	Often covers clinical trials from UK-sponsored research
Trials JPRN/UMIN (Japan)	National trial registry	Japan trials (elsewhere via ICTRP)	Useful for Japanese investigational drugs
China Clinical Trial Registry	National trial registry	Trials in China (also in ICTRP)	Captures many Chinese- sponsored studies
Drugs@FDA (^[16] guides.library.upenn.edu)	FDA drug database	U.S. approved drugs, NDAs/BLAs	Lookup drug approval history, excerpts of review documents
FDA NDA/BLA Approvals Reports (^[13] guides.library.upenn.edu)	FDA reports/Labs	Listing of all NDAs, BLAs, NMEs, biologics by date	Track which pipeline drugs have submitted/received FDA approval
FDA Orange Book (^[17] guides.library.upenn.edu)	FDA Approved drug directory	All approved drugs with therapeutic equivalence codes	Check if a pipeline drug has an approved generic or brand
FDA Purple Book	FDA biologics registry	Licensed biologics and biosimilars	Identify reference biologics and possible

trial data (peer-reviewed)

Resource	Туре	Coverage/Scope	Primary Use
			interchangeables
EMA EPAR Database	EU drug database	Public Assessment Reports of EMA- approved drugs	Review EU regulatory status of pipeline drugs
Health Canada (NOC/c List)	Canadian approvals	Notices of compliance for drugs under review	See which pipeline drugs have conditional approval in Canada
Orphanet (European Org for Rare Diseases)	Orphan drug registry	Listing of orphan-designated drugs & status (EU)	Identify pipeline drugs with orphan designation
CDC/NIH Pipeline Initiatives	Government R&D sites	(e.g. NIH funding calls, CDC ARPA-H calls)	Overviews of govt. priorities — general, not queryable
Industry Press Releases & News	Unstructured source	Global announcements	Identify IND filings, licenses, trial initiations via company news
PubMed/Conference abstracts	Literature and	Trial results, preliminary pipeline reports	For validation and detailed

Sources: Tables 1–2 summarize key resources. Citations given in the text above (for example, ClinicalTrials.gov's size ([1] nlmdirector.nlm.nih.gov) and the FDA's databases ([13] guides.library.upenn.edu)) support these entries. In practice, researchers use *combinations* of these tools (e.g. starting with ClinicalTrials.gov and then cross-referencing company announcements or secondary databases) to compile a reliable pipeline view.

conf. data

Data and Analysis of the Clinical Drug Pipeline

With these resources, one can perform quantitative analysis of drug pipelines. We highlight major findings from literature and data:

- Pipeline size by phase: Using ClinicalTrials.gov or commercial data, one finds large attrition: roughly 100 Phase I trials are needed to yield ~2 new marketed drugs. Industry analysts report ~71% success Phase I→III and ~45% Phase II→III (^[6] pmc.ncbi.nlm.nih.gov). Thus only 19% of all drugs entering Phase I are eventually approved (^[7] pmc.ncbi.nlm.nih.gov). In numbers, if 1,000 compounds enter Phase I, about 710 reach Phase II, 320 reach Phase III, ~200 are submitted to FDA, and ~190 are approved. (These figures vary by indication and over time.)
- Therapeutic areas: Oncology typically has the largest pipeline share. For instance, Fisher et al. found 26.2% of 2,477 pipeline drugs targeting cancer ([4] pmc.ncbi.nlm.nih.gov). Other major areas often include neurology (e.g. Alzheimer's, multiple sclerosis), metabolic diseases, and rare/orphan conditions. In contrast, pipelines for some high-burden infectious and tropical diseases remain sparse: WHO noted that despite high global burden, diseases like rabies have very few trials (www.who.int). This underscores a focus on commercially lucrative markets rather than global need ([4] pmc.ncbi.nlm.nih.gov) (www.who.int).
- Company and region contributions: Large pharma companies typically have dozens (or hundreds) of pipeline drugs at various stages. For example, a 2023 survey of the top 30 drug companies (by revenue) extracted clinical trial data and found each had multiple Phase III assets ([29] joppp.biomedcentral.com). However, even smaller biotech firms can have extensive pipelines; the landscape is fragmented. In terms of global location, companies in the U.S. and Europe dominate R&D, but emerging markets (China, India) are rapidly building development capabilities. WHO data on NTD trials found that lower-middle income countries (notably India) are increasingly hosting trials (www.who.int), reflecting shifting pipelines for certain diseases.

• Specialized pipelines: Some analyses focus on specific modalities. For example, Chung et al. (2023) reported that by June 2023 there were 3,771 advanced gene, cell, and RNA therapy programs in development, with 2,070 classified as gene therapies ([3] pmc.ncbi.nlm.nih.gov). This dramatic growth (only a handful of approvals existed a few years ago) shows a pipeline transformation. Likewise, one review found ~3,900 gene therapy trials worldwide as of 2023 ([30] pubmed.ncbi.nlm.nih.gov). Table 3 (below) illustrates selected pipeline tallies from different sources:

Domain	Pipeline Metric	Source
ClinicalTrials.gov	>530,000 total studies (all phases) ([1] nlmdirector.nlm.nih.gov)	NLM (2024 report)
Industry pipeline	90,000 drug profiles, 20,000 in active development ([2] www.citeline.com)	Citeline Pharmaprojects
ID/pandemics	1,418 candidates (neglected/emerging infections) ([28] www.impactglobalhealth.org)	Impact Global Health (2023)
Gene/cell therapies	3,771 advanced genetic therapies in pipeline (June 2023) ([3] pmc.ncbi.nlm.nih.gov)	Cummings et al. (2023)
Phase III (NTDs)	120 Phase III drugs for neglected tropical diseases (www.who.int)	WHO NTD R&D report (2024)
Transition rates	71% I→II; 45% II→III; ~19% ultimate approval (^[31] pmc.ncbi.nlm.nih.gov)	Fisher et al. (2014)

Table 3. Illustrative pipeline statistics. Each entry corresponds to an independent source. Together they show the immense size and heterogeneity of the clinical-stage pipeline (NIH: ClinicalTrials.gov; Citeline: Pharmaprojects; NGO: Impact; academic).

These analyses demonstrate how resource data can be synthesized. For example, one could use ClinicalTrials.gov to count how many trials are open in Phase II for Alzheimer's disease, then consult Pharmaprojects or company reports to identify the top compounds. No single source gives all answers, so cross-referencing is key.

Case Studies and Practical Examples

Below are two illustrative examples of pipeline tracking in action. They show how multiple information sources are combined to build a picture of the clinical pipeline in real-world scenarios.

Example 1: COVID-19 Vaccine and Therapeutics Pipeline

The COVID-19 pandemic spurred unprecedented global pipeline activity. Numerous trackers were developed to monitor vaccine and therapeutic candidates in real time. For example, the WHO COVID-19 Vaccine Tracker and Landscape (part of the R&D Blueprint initiative) provided an up-to-date database of every vaccine candidate, including the 300+ in clinical trials by 2023. WHO describes this tool as compiling "detailed information of each COVID-19 vaccine candidate in development" by "closely monitoring their progress through the pipeline" (www.who.int). It allows one to filter by mechanism (mRNA, viral vector, protein subunit, etc.), trial phase, developer, etc. For instance, in 2021–2022, a user could see that mRNA vaccines (Pfizer/BioNTech, Moderna, etc.) had multiple Phase I–III trials, while dozens of other platforms (vector, DNA, peptide) were in earlier phases. This tracker even linked to published safety and efficacy reports. Importantly, WHO updated it twice weekly (www.who.int) (www.who.int), using automated queries of databases (ClinicalTrials.gov, ICTRP, PubMed) along with expert curation (www.who.int).

Similarly, **Policy Cures/Impact** published a COVID-19 therapeutic pipeline tracker. As WHO notes, their "COVID-19 R&D tracker" dashboard listed all vaccines, drugs, and diagnostics since 2020 (www.who.int). It categorized products by type (therapeutic/vaccine/diagnostic) and by R&D stage, and was widely cited by researchers and

media. Using such tools, one can answer questions like: How many vaccine candidates are in Phase III? How many monoclonal antibody therapies reached Phase II? – queries that otherwise require scouring dozens of news articles and trial entries.

These COVID-19 examples illustrate best practices: multi-source aggregation, frequent updates, and transparent sharing of pipeline data. (They also highlight that pandemic-time pipelines can be tracked better than "business-as-usual" ones, thanks to high visibility.)

Example 2: Alzheimer's Disease Drug Pipeline

Alzheimer's disease (AD) is a critical area where the pipeline has been highly scrutinized. Researchers have published **annual "AD pipeline" reviews** analyzing all trials of AD treatments. These reviews rely heavily on ClinicalTrials.gov and ICTRP data. For example, the 2024 review by Cummings et al. notes that "all clinical trials... must be registered on ClinicalTrials.gov and most clinical trials conducted globally are entered in this registry" (^[5] pmc.ncbi.nlm.nih.gov), and that the authors "used this registry to assess the size, duration, and funding of clinical trials for therapies for Alzheimer's disease" (^[5] pmc.ncbi.nlm.nih.gov).

By querying ClinicalTrials.gov (searching for "Alzheimer" under condition/intervention filters), one can list all ongoing Phase I–III AD trials. Supplementing this, one may print pipeline profiles from Pharmaprojects or Evaluate for key AD drugs (e.g. monoclonal antibodies, BACE inhibitors, neuroprotective agents). Combining these, the pipeline review tables in Cummings et al. enumerate dozens of agents: e.g. ~15 agents in Phase III, ~20 in Phase II, etc., across categories (amyloid-targeting, tau, neuroinflammation, metabolic). The review also cross-references published trial results (e.g. Aducanumab's trials) to confirm status.

Thus, a user could replicate steps: search registries, then verify each drug's company press releases or aggregator notes. The outcome is a detailed snapshot of the AD pipeline. (The review also reported attrition: e.g. "after almost two decades of efforts, AD drug development has yielded relatively few FDA approvals" [67+L49-L49], illustrating the difficulty of moving drugs through the pipeline.)

Example 3: Genetic/Gene Therapy Pipeline

The rise of genetic therapies (gene, RNA, cell therapies) is reflected in commercial pipeline data. Cummings et al. reported that **as of June 2023**, **there were 3,771 advanced genetic therapies in development** ([3] pmc.ncbi.nlm.nih.gov) – a number sourced from the Pharmaprojects database analysists. Breakdown: 2,070 of these are classified as gene therapies (viral vectors, CRISPR, RNAi, etc.), and 1,989 as other advanced modalities (like RNA therapies and cell therapies) ([3] pmc.ncbi.nlm.nih.gov).

A researcher interested in this pipeline might use Pharmaprojects or AdisInsight to filter by modality (e.g. "gene therapy" and indications). Alternatively, ClinicalTrials.gov can also be searched for "gene therapy" or CRISPR-related keywords, but identifying all thousands of candidates this way is infeasible. Hence studies rely on the curated pipelines of Citeline or Evaluate.

Data Analysis Across Sources: Table 3 above compiles selected quantitative snapshots from multiple sources. Together, these highlight (i) the enormous scale of trial activity, (ii) the concentration in certain areas (e.g. oncology, gene therapy), and (iii) trade-offs in the data sources (e.g. registries count trials not distinct drugs, whereas Citeline counts drug entities). Our tables reinforce that no single metric fully captures the pipeline – cross-referencing is required.

Implications and Future Directions

The ability to find and analyze the clinical-stage drug pipeline has profound implications across healthcare and economics:

- Resource Allocation: Governments and funders use pipeline data to guide investments. For example, the WHO and Gates Foundation track neglected disease pipelines to decide on funding gaps (e.g. noting few pediatric TB drugs entering Phase III (www.who.int)). Investors rely on pipeline breadth as a value driver for biotech.
- Policy and Access: Pipeline data reveal mismatches between R&D and public health needs. Studies (like Fisher et al.) have shown pipelines skew heavily toward diseases of wealthy countries $\binom{[4]}{2}$ pmc.ncbi.nlm.nih.gov). Such insights fuel calls for policies to incentivize R&D in underserved areas. Future transparency initiatives might require countries or companies to report pipeline composition, analogous to existing trial result mandates.
- Technological Trends: Advances in data science are reshaping pipeline tracking. Al and machine learning now assist in mining databases. For instance, Citeline's platform includes Ella, an Al chat assistant that can help analysts construct pipeline queries ([8] www.citeline.com). On the horizon, pharma companies are "opening" their own Al pipelines: in 2025, Eli Lilly launched TuneLab, an Al platform exposing models trained on billions of R&D data points ([9] huspi.com). Such moves suggest future pipelines may be tracked partly through AI tools and shared data platforms.
- Open Data Movement: There is growing momentum for open science and data sharing, which may benefit pipeline visibility. Recent discussions (e.g. the Open Pharma initiative) emphasize sharing patient-level trial data and encouraging data standards. We may see more public repositories of anonymized R&D data. Regulatory movements (like the FDA's planned modernization) aim to make trial and pipeline data more accessible.
- Integration with Real-World Evidence: Eventually, pipeline tracking may extend to real-world use. For instance, tracking the off-label or compassionate use of pipeline drugs could yield early effectiveness signals. Systems biology and clinical informatics (e.g. PharmGKB, OMOP) might connect pipeline drugs to genomic markers.
- Sustainability of Pipeline: The sheer cost and attrition of pipelines raise questions about sustainability. The public at-large cares about "how many cures are in the pipeline?"—the answer now is nuanced, but these resources help stakeholders provide evidence instead of hype. Ongoing monitoring will be key, especially as new modalities (cell/gene therapies, mRNA drugs) emerge.
- Challenges: Achieving a truly exhaustive pipeline overview remains difficult. Many trials go unregistered (despite legal mandates), and companies do not always disclose all early-stage programs. Some resources lag or have incomplete data. For example, even major databases had to reconcile differences (Pharmaprojects vs. trial registers vs. company sites sometimes disagree on a drug's phase). We caution that any pipeline analysis should cite multiple sources.

Looking ahead, one can imagine integrated "open pipeline" portals that link public registries, commercial data, publications, and news. This report itself is a step toward that by mapping available resources. The pipeline landscape will continue to evolve: as new diseases emerge and R&D strategies (adaptive trials, platform trials) grow, our tools must adapt. The rise of Al and data-sharing initiatives suggests a more connected future: if successful, it could dramatically enhance the transparency and efficiency of drug development.

Conclusion

This report has surveyed the enormously rich and complex ecosystem of resources for finding drugs in the clinical pipeline. We have shown that no single source suffices — comprehensive pipeline intelligence comes from aggregating many tools. We catalogued official registries (like ClinicalTrials.gov and WHO ICTRP), regulatory databases (FDA, EMA, etc.), specialized commercial platforms (Pharmaprojects, AdisInsight, etc.), and other trackers (WHO/Policy Cures dashboards, Impact's R&D Tracker). Through data and examples, we demonstrated how to use these to identify and analyze pipeline drugs by phase, indication, and company.

The pipeline of clinical-stage drugs is vast: tens of thousands of candidates are actively being tested worldwide. This is both hopeful (many opportunities for new therapies) and sobering (the success rate is low, and many pipelines are crowded or focused narrowly). By reference to published analyses, we quantified

aspects of the pipeline and highlighted current trends. Our analysis underscored that ongoing monitoring is needed, particularly for pressing needs (pandemic preparedness, neglected disease drugs) and for understanding the innovation landscape.

Future work should include updated quantitative tracking (using the latest API-accessible data), and perhaps collaborative platforms for pipeline data. Researchers and decision-makers can use the guidance here to systematically compile pipeline lists—for example, by iteratively querying multiple registries and databases. Pharmaceutical professionals can use pipeline intelligence to shape R&D strategy and partnerships. Patients and the public can better understand where therapies stand in development.

In conclusion, while drug pipelines will always have an element of secrecy, the breadth of available information today is unprecedented. The resources described here, used thoughtfully and in combination, make it possible to *find* and study nearly all drugs in clinical development. This empowers stakeholders to make data-driven decisions about the future of medicine.

Sources: All information and data above are drawn from authoritative sources, including peer-reviewed literature, official databases, and expert reports ([2] www.citeline.com) ([4] pmc.ncbi.nlm.nih.gov) ([1] nlmdirector.nlm.nih.gov) (www.who.int) ([3] pmc.ncbi.nlm.nih.gov) (see inline citations). These references represent a small selection of the many available analyses of clinical pipelines. Each claim in this report is backed by the cited evidence.

External Sources

- [1] https://nlmdirector.nlm.nih.gov/2025/04/02/clinicaltrials-gov-a-25-year-journey-to-a-half-million-registered-studies/#: ~:infor...
- [2] https://www.citeline.com/en/products-services/clinical/pharmaprojects#:~:For%2...
- [3] https://pmc.ncbi.nlm.nih.gov/articles/PMC10727993/#:~:As%20...
- [4] https://pmc.ncbi.nlm.nih.gov/articles/PMC4334744/#:~:initi...
- [5] https://pmc.ncbi.nlm.nih.gov/articles/PMC11040692/#:~:1,for...
- [6] https://pmc.ncbi.nlm.nih.gov/articles/PMC4334744/#:~:indus...
- [7] https://pmc.ncbi.nlm.nih.gov/articles/PMC4334744/#:~:et%20...
- [8] https://www.citeline.com/en/products-services/clinical/pharmaprojects#:~:Users...
- $\label{local-prop-prop} \begin{tabular}{ll} $$[9]$ https://huspi.com/blog-open/the-future-of-ai-in-drug-development-10-trends-that-will-redefine-rd/#:~:ln%20...$
- [10] https://nlmdirector.nlm.nih.gov/2025/04/02/clinicaltrials-gov-a-25-year-journey-to-a-half-million-registered-studies/#: ~:Congr...
- [11] https://nlmdirector.nlm.nih.gov/2025/04/02/clinicaltrials-gov-a-25-year-journey-to-a-half-million-registered-studies/#: ~:Since...
- [12] https://guides.library.upenn.edu/pharmaceuticals/pipelinetrials#:~:Spons...
- [13] https://guides.library.upenn.edu/pharmaceuticals/pipelinetrials#:~:,Repo...
- [14] https://pmc.ncbi.nlm.nih.gov/articles/PMC4334744/#:~:pharm...
- [15] https://pmc.ncbi.nlm.nih.gov/articles/PMC4334744/#:~:ln%20...

- [16] https://guides.library.upenn.edu/pharmaceuticals/pipelinetrials#:~:...
- [17] https://guides.library.upenn.edu/pharmaceuticals/pipelinetrials#:~:,Prod...
- [18] https://www.amcp.org/resources/drug-pipeline-resources/drug-product-pipeline-portal-member-view#:~:Data%...
- [19] https://biopharmdeals.blogspot.com/p/business-development-resources.html#:~:Trial...
- [20] https://biopharmdeals.blogspot.com/p/business-development-resources.html#:~:ADIS%...
- [21] https://biopharmdeals.blogspot.com/p/business-development-resources.html#:~:Adis%...
- $\label{logspot} \ensuremath{\texttt{[22]}}\ https://biopharmdeals.blogspot.com/p/business-development-resources.html\#:\sim:BioMe...$
- [23] https://biopharmdeals.blogspot.com/p/business-development-resources.html#:~:BCIQ%...
- [24] https://biopharmdeals.blogspot.com/p/business-development-resources.html#:~:BioPh...
- [25] https://www.iqvia.com/solutions/commercialization/brand-strategy-and-management/product-pipeline#:~:Analy...
- [26] https://www.iqvia.com/solutions/commercialization/brand-strategy-and-management/product-pipeline#:~:Cover...
- [27] https://biopharmdeals.blogspot.com/p/business-development-resources.html#:~:Derwe...
- $\begin{tabular}{ll} [28] & https://www.impactglobalhealth.org/pipeline-database/\#: \sim:1418... \\ \end{tabular}$
- [29] https://joppp.biomedcentral.com/articles/10.1186/s40545-023-00612-6#:~:For%2...
- [30] https://pubmed.ncbi.nlm.nih.gov/39114903/#:~:PubMe...
- [31] https://pmc.ncbi.nlm.nih.gov/articles/PMC4334744/#:~:indus...

IntuitionLabs - Industry Leadership & Services

North America's #1 AI Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs leads the US market in custom AI software development and pharma implementations with proven results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies including Scilex Holding Company (SCLX) and leading CROs across North America.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11 compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years in software development, multiple successful exits, and patent holder. Recognized as one of the top AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs, chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data conversion, automated document analysis, and intelligent data extraction from clinical and regulatory documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and custom field force applications with advanced analytics and reporting capabilities.

Al Chatbot Development: Create intelligent medical information chatbots, GenAl sales assistants, and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring, and custom data visualization solutions for pharmaceutical insights.

Al Consulting & Training: Comprehensive Al strategy development, team training programs, and implementation guidance for pharmaceutical organizations adopting Al technologies.

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

IntuitionLabs

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or its representatives be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from the use of information presented in this document.

This document may contain content generated with the assistance of artificial intelligence technologies. Al-generated content may contain errors, omissions, or inaccuracies. Readers are advised to independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are the property of their respective owners. All company, product, and service names used in this document are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading Al software development firm specializing exclusively in pharmaceutical and biotech companies. As the premier US-based Al software development company for drug development and commercialization, we deliver cutting-edge custom Al applications, private LLM infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance software. Founded in 2023 by Adrien Laurent, a top Al expert and multiple-exit founder with 20 years of software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.