intuitionlabs.ai

Decentralized Clinical Trials (DCTs): How They Work & Benefits

decentralized clinical trials dct clinical research virtual trials hybrid clinical trials patient-centric trials digital health technology telemedicine

Decentralized Clinical Trials (DCTs): How They Work & Benefits

Executive Summary

Decentralized clinical trials (DCTs) represent a fundamental evolution in clinical research, leveraging modern technologies to conduct trial-related activities outside traditional research sites. In a DCT, measures such as recruitment, drug delivery, data collection, and patient monitoring are performed remotely—often in patients' homes or local community settings—rather than at centralized hospital or clinic-based sites ([1] pmc.ncbi.nlm.nih.gov) ([2] www.fda.gov). This model can range from hybrid trials (some remote elements) to fully decentralized trials (all activities remote) ([3] pmc.ncbi.nlm.nih.gov) ([4] www.ncbi.nlm.nih.gov). By "bringing the trial to the patient," DCTs have demonstrated multiple advantages: increased patient convenience, broader geographic and demographic reach, faster enrollment, improved retention, and richer real-world data capture ([5] pmc.ncbi.nlm.nih.gov) ([6] www.ncbi.nlm.nih.gov). For example, U.S. guidance notes that DCTs can include patients in rural/underserved areas and allow continuous or frequent monitoring via wearables and smartphone apps ([6] www.ncbi.nlm.nih.gov) ([7] www.ncbi.nlm.nih.gov), Indeed, surveys and case reports indicate patients strongly prefer the convenience of remote trials, with many expressing a demand for continuing telehealth and virtual visits in research ([8] acrpnet.org) ([9]

However, DCTs introduce new challenges. Data integrity and consistency can be affected by uncontrolled home environments and digital literacy gaps ([10] pmc.ncbi.nlm.nih.gov) ([11] pmc.ncbi.nlm.nih.gov). Regulatory oversight requires adaptation to remote data capture and electronic consent while ensuring patient safety and privacy ([12] pmc.ncbi.nlm.nih.gov) (www.hra.nhs.uk). High-speed internet access is uneven globally, posing logistical barriers for fully remote designs ([11] pmc.ncbi.nlm.nih.gov) ([13] pmc.ncbi.nlm.nih.gov). Despite these hurdles, regulatory bodies and industry stakeholders are increasingly endorsing DCT methods. Recent U.S. FDA guidance explicitly defines DCTs and encourages decentralized elements where appropriate ([2] www.fda.gov) ([ii] pmc.ncbi.nlm.nih.gov); European agencies have published recommendations under ACT EU to facilitate DCTs and reduce patient travel burden (www.ema.europa.eu); and the UK HRA likewise supports remote participation to "reduce burden" and improve diverse recruitment

In the wake of COVID-19, decentralized approaches surged. Historically limited to a few pilot studies per decade, DCT adoption expanded dramatically during the pandemic ([14] www.ncbi.nim.nih.gov) ([15] pmc.ncbi.nim.nih.gov). For example, Northwell Health completed its first fully virtual trial (famotidine for COVID-19) in 2021, mailing medication and arranging home lab draws ([16] pmc.ncbi.nlm.nih.gov) ([17] pmc.ncbi.nlm.nih.gov). Industry surveys found that before COVID less than half of pharma companies expected remote trials to be common, whereas a year later virtually all foresaw DCTs centrally in their portfolios ([15] pmc.ncbi.nlm.nih.gov). This seismic shift has been reinforced by high-profile examples: Värde Health's Trial-RUN mobile platform reached tens of thousands of participants through digital means, and wearable-based studies like Apple's HEARTLINE trial rapidly enrolled participants via smartphone ([18] pmc.ncbi.nlm.nih.gov) ([8] acrpnet.org) (Figure 1).

Looking forward, DCTs are poised to become a mainstay of clinical research design. They align with trends in Real-World Evidence (RWE) and patientcentric medicine, promising trials that are more inclusive, efficient, and adaptable. Continued advances in digital health technologies (e.g. Al-driven recruitment, continuous biosensors, and blockchain data platforms ([19] pmc.ncbi.nlm.nih.gov) ([20] pharmaledger.org)) will expand DCT capabilities. Simultaneously, regulatory frameworks (FDA, EMA, MHRA) are evolving to provide guidance and harmonization ([2] www.fda.gov) (www.ema.europa.eu). As execution experience grows and best practices solidify, decentralized methods are expected to complement traditional designs across therapeutic areas, particularly chronic and rare disease trials. In summary, decentralized clinical trials re-center research around patients' lives, offering scalable technology-enabled pathways to improve trial participation and data richness ([6] www.ncbi.nlm.nih.gov) ([21] acrpnet.org). The following report provides an in-depth analysis of DCTs: their history and definitions; how they work; enabling technologies; benefits and limitations; case studies and data; regulatory context; and future directions, with extensive evidence and expert insights throughout.

1. Introduction and Background

1.1 Traditional Clinical Trials vs. </current_article_content>Decentralization

Traditional clinical trials (TCTs) have conventionally been conducted at a limited number of site centers (hospitals, clinics, research institutions) where participants travel for visits. These trials rely on centralized infrastructure for patient enrollment, treatment administration, follow-up assessments, and data collection. However, the centralized model imposes significant burdens: patients must travel (often repeatedly and long distances), incur time costs, and navigate rigid schedules ([8] acrpnet.org). This has historically limited trial diversity (many willing participants are unreachable or excluded due to geographic or mobility constraints) and slowed accrual ([22] pmc.ncbi.nlm.nih.gov) ([8] acrpnet.org).

Decentralized clinical trials (DCTs) address these issues by moving trial activities "closer to" or to the patient rather than the patient coming to the trial site (11) pmc.ncbi.nlm.nih.gov) (16) www.ncbi.nlm.nih.gov). The U.S. FDA defines a DCT as one in which "some or all of the trial-related activities occur at locations other than traditional clinical trial sites" ([1] pmc.ncbi.nlm.nih.gov) ([2] www.fda.gov). Similarly, the U.S. Institute of Medicine and other authors describe DCTs as trials using digital and remote tools so that participants can participate from home or local facilities ([23] www.ncbi.nlm.nih.gov) ([24] pmc.ncbi.nlm.nih.gov). Decentralization in clinical research typically encompasses a spectrum (Figure 1):

- Traditional Trial (Site-Centric): All protocol activities (recruitment, consent, treatment, monitoring, data capture) occur at designated research sites. Patients must travel to these centers. Example: conventional phase 3 drug trial requiring monthly clinic visits for drug administration, labs, and exams.
- Hybrid Decentralized Trial: A mix of on-site and remote elements. For instance, a trial may require an initial in-person enrollment visit for screening and consent, but subsequent follow-ups (monitoring, patient questionnaires, and some assessments) are done remotely via telemedicine or local clinics. A hybrid design is often adopted when certain interventions (e.g. infusions, imaging) necessitate site presence, while other procedures can be done remotely ($^{[24]}$ pmc.ncbi.nlm.nih.gov) ($^{[3]}$
- Fully Decentralized Trial: All trial activities are performed away from traditional trial sites for example, entirely in participants' homes or community settings ([3] nih.gov) (^[6] www.ncbi.nlm.nih.gov). In such trials, even measurements like blood draws may be done by mobile nurses or local labs; investigational products are shipped to patients; and data are collected through home devices, wearables, or telehealth. There is no central "study site". Northwell Health's COVID-19 Famotidine trial is an example: it had no in-person visits – drugs and placebo were mailed to homes, and blood draws were arranged at home ([16] pmc.ncbi.nlm.nih.gov)

Decentralized trials often overlap with concept of virtual trials or site-less trials, but "decentralized" is the preferred regulatory term. Regardless of the label, these designs increase patient-centricity by reducing travel and offering flexible participation ([24] pmc.ncbi.nlm.nih.gov) ([6] www.ncbi.nlm.nih.gov). The core purpose is to reengineer trial processes using digital health technologies (DHTs), telemedicine, and local healthcare resources, so that trials can reach people where they live and live their lives normally while participating ([6] www.ncbi.nlm.nih.gov) ([25] pmc.ncbi.nlm.nih.gov).

Figure 1. Evolution of clinical trials: Traditional clinical trials are highly centralized, whereas decentralized clinical trials shift activities to patients' homes or local care settings. Hybrid trials mix both approaches. (Adapted from Chen et al. 2025 ([pmc.ncbi.nlm.nih.gov] (https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov] (https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov] (https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%29,1)) ([pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:text=a%20clinical%20investigation%20inv([www.ncbi.nlm.nih.gov]

(https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:text=A%20decentralized%20clinical%20trial%20,of%20DCTs%20include%20the%20follough

1.2 Historical Context

The notion of conducting trials "away from the clinic" has antecedents. Early examples of decentralized designs emerged decades ago. As early as 1988, for instance, Peto et al. executed a nationwide aspirin trial with mail-based follow-up ([26] pmc.ncbi.nlm.nih.gov). Over the 1990s and 2000s, some specialty trials – especially in cardiology and dermatology – used telephone follow-ups, mailed questionnaires, and direct-to-patient drug shipments ([26] pmc.ncbi.nlm.nih.gov). A 2003 feasibility study and even a fully site-less study of insomnia in 2005 were pilots for today's DCT concept (pmc.ncbi.nlm.nih.gov). However, prior to 2020, these were relatively rare outliers. A systematic review found only 45 trials reported using dedicated decentralized methods up to 2020 ($^{[26]}$ pmc.ncbi.nlm.nih.gov); most were small or focused on low-risk interventions.

The integration of DCT strategies accelerated markedly in recent years due to two converging trends:

- Digital Health Technology Proliferation: The past decade saw an explosion in mobile devices, wearables, and cloud technologies. Today, over 85% of U.S. adults own smartphones ([28] pmc.ncbi.nlm.nih.gov), with billions of smart devices connected globally ([28] pmc.ncbi.nlm.nih.gov). Wearables (smartwatches, fitness bands) became widespread (e.g. ~22% global ownership in 2019 ([28] pmc.ncbi.nlm.nih.gov)). These tools enable continuous, objective monitoring of health metrics outside clinical settings. Electronic Health Records (EHRs) and telehealth platforms matured, lowering technical barriers for remote care and research. This digital groundwork made DCTs feasible on a large scale ([28] pmc.ncbi.nlm.nih.gov) ([7] www.ncbi.nlm.nih.gov).
- COVID-19 Pandemic: Perhaps most pivotal, the SARS-CoV-2 pandemic (2020-2022) disrupted traditional trials, forcing sponsors and regulators to adopt remote methods to maintain research continuity. In-person visits were often impossible and posed infection risks. Agencies like the FDA issued guidance in March 2020 explicitly endorsing remote data collection and virtual visits during the Public Health Emergency ([29] www.ncbi.nlm.nih.gov). Many ongoing studies pivoted to mail drugs to patients, use telemedicine, and employ home testing kits. Institutions launched fully virtual trials – e.g. Northwell's Pepcid trial in early 2021 ([16] pmc.ncbi.nlm.nih.gov), and technology companies (e.g. Mindstrong, Thread Research) developed online recruitment platforms in response. These adaptations proved workable and often improved enrollment and retention. By late 2021, a survey reported 100% of pharma respondents expected remote trials to be "a major part" of their portfolios, up from <50% pre-pandemic ([1]) mc.ncbi.nlm.nih.gov). In short, COVID-19 "sped up [the centralization reversal]....and for the better" ([9] pmc.ncbi.nlm.nih.gov), rapidly normalizing decentralized methods.

Consequently, DCTs have moved from experimental to mainstream. The patient-centric concept - "bring research to patients' homes" - is now a key strategy for industry and regulators alike. The remainder of this report delves into how decentralized trials work, the enabling technologies, the evidence and outcomes so far, and practical considerations for sponsors and regulators.

2. Defining Decentralized Clinical Trials

2.1 Regulatory Definitions and Terminology

Multiple organizations have provided formal definitions of DCTs. The U.S. FDA (Division of Policy and Regulatory Programs) guidance clarifies that "a decentralized clinical trial refers to a clinical trial that includes decentralized elements where trial-related activities occur at locations other than traditional clinical trial sites." ([2] www.fda.gov). This broad definition covers any trial design employing remote or local elements. Importantly, the FDA guidance notes that decentralized elements "allow trial-related activities to occur remotely at locations convenient for trial participants," which can include in-home visits, telehealth, or visits to local healthcare providers ([30] www.fda.gov). In other words, the key is that some or all trial tasks (e.g. consenting, exams, drug administration, data collection) happen outside the standard investigator site ([1] pmc.ncbi.nlm.nih.gov) ([2] www.fda.gov)

The National Academies (U.S.) Transformation of the Clinical Trial Enterprise (2024) report similarly defines a DCT as a trial "where some or all trialrelated activities occur at locations other than traditional clinical trial sites (e.g., enabling patients to participate from their homes or local health care facilities)" ([23] www.ncbi.nlm.nih.gov). It distinguishes fully DCTs (all activities remote) from hybrid DCTs (mix of site visits and remote activities) ([4] www.ncbi.nlm.nih.gov). This report emphasizes that DCTs are a method of operational execution rather than a specific study design; one can have a traditional randomized controlled trial in terms of biostatistics, but execute many elements remotely.

Other terms used interchangeably in literature include "virtual trials," "remote trials," "site-less trials," and "digital clinical trials" ([31] pmc.ncbi.nlm.nih.gov). However, "decentralized clinical trials" has become the preferred umbrella term, endorsed by FDA and stakeholder groups ([2] www.fda.gov) ([31] pmc.ncbi.nlm.nih.gov). For clarity, this report uses DCT to encompass any trial with remote elements, and further distinguishes fully or hybrid only when

No specialization by disease or intervention is assumed: DCT methods can apply to drug trials, medical devices, and behavioral interventions. Typically, DCTs are especially well-suited to trials where patient visits are burdensome or non-intensive monitoring suffices – e.g. chronic diseases, rare diseases, preventive studies, and lower-risk therapies ([32] pmc.ncbi.nlm.nih.gov) ([33] pmc.ncbi.nlm.nih.gov). But even very complex trials now incorporate some decentralized components, as seen in oncology and pandemic vaccine trials for example ([34] pmc.ncbi.nlm.nin.gov) ([35] pmc.ncbi.nlm.nin.gov). The defining feature remains "reduced reliance on traditional sites" through digital and local resources ([36] pmc.ncbi.nlm.nih.gov).

2.2 Elements of Decentralization

DCTs are characterized by relocating one or more of the following trial components away from the site and closer to participants:

- Participant Recruitment and Screening: Use of online registries, patient communities, EHR databases, or social media for broad outreach; initial screening via tele-video or local labs. Advanced methods like Al-driven matching or consent via web platforms may be used ([37] pmc.ncbi.nlm.nih.gov) ([38] pharmaledger.org).
- Informed Consent: Electronic consent (eConsent) systems allow participants to review and sign consent forms online, often with multimedia aids ([39] www.ncbi.nlm.nih.gov) ([40] pharmaledger.org). Some platforms track consent signatures via tablets or secure web portals.

- Intervention Delivery: Investigational products (drugs, devices) are shipped or couriered directly to participants' homes or to local pharmacies/clinics. Medical procedures (e.g. injections, infusions) may be performed by visiting nurses or arranged at community health centers. TCTs shipped clinical supplies to central sites only; DCTs can send them to participants (^[41] www.axios.com) (^[42] pmc.ncbi.nlm.nih.gov).
- Data Collection: Clinical outcomes and safety data are gathered via remote technologies. This includes: home blood draws by mobile phlebotomists, wearable sensors (e.g. continuous heart monitors, glucometers), smartphone apps (e.g. for patient-reported outcomes, medication adherence), and integration with EHRs or billing data. Even routine lab tests can be done in local labs with digital result upload. The FDA terms tools like wearables and apps as Digital Health Technologies (DHTs) that enable remote continuous monitoring (^[23] www.ncbi.nlm.nih.gov) (^[7] www.ncbi.nlm.nih.gov).
- Monitoring and Follow-up: Participant follow-up visits occur via telemedicine video calls or at home rather than at the research site. Remote monitoring of data quality and safety is performed centrally by sponsor monitors instead of on-site monitoring visits. Electronic services (e.g. apps for prompts, alerts, and two-way communication) are used to maintain engagement and ensure protocol compliance ([43] pmc.ncbi.nlm.nih.gov) ([29] www.ncbi.nlm.nih.gov).
- Data Management: Data are captured electronically at the source, often directly from devices to databases. Electronic data capture (EDC) and risk-based monitoring replace traditional paper CRFs and frequent audits. Blockchain and cloud platforms are being explored for secure, traceable data storage and consent auditing ([20] pharmaledger.org) ([20] pharmaledger.org).
- Patient Engagement: DCTs often include mobile apps or portals for participants, providing trial info, symptom logging, reminders, and direct messaging with study staff. Patients may self-report outcomes via e-diaries or view their own data (empowering participation) \(\begin{align*} \left(\frac{44}{3} \text{ www.axios.com} \right) \end{align*} \(\frac{45}{3} \text{ acrpnet.org} \).

In sum, any trial procedure typically done at the site can potentially be "pulled out" to the community or patients' homes using these tools. The degree of decentralization varies by protocol. Sponsors may choose which elements to decentralize based on disease, technology availability, and participant need. Figure 1 (below) illustrates how a typical trial workflow can be modified into a decentralized model.

Component	Traditional Model	Decentralized Model	
Recruitment & Screening	Site-based flyers, clinician referrals	Online ads, patient registries, social media, EHR queries; remote pre-screening via web surveys or video interviews ([8] acrpnet.org) ([37] pmc.ncbi.nlm.nih.gov).	
Consent	Paper forms at site visit	Electronic consent on tablets or portals; tele-consent with e-signature $\{^{[39]}$ www.ncbi.nlm.nih.gov $\}$ $\{^{[40]}$ pharmaledger.org).	
Intervention Delivery	Dispense at clinic/sponsor pharmacy	Ship study drug/devices directly to participant's home or local pharmacy; home nursing for injections ([41] www.axios.com) ([42] pmc.ncbi.nlm.nih.gov).	
Treatment Administration	In-clinic procedures by investigator	Self-administration by patient (with remote monitoring); home health visits by nurses for complex therapies; or local health facility administration under tele-supervision ($^{[24]}$ pmc.ncbi.nlm.nih.gov) ($^{[42]}$ pmc.ncbi.nlm.nih.gov).	
Visit/Assessment Schedule	On-site visits for all planned measures	Reduced site visits; schedule via video calls/local labs; adheres to patient convenience. Physical exams via telehealth or at local clinics (^[46] pmc.ncbi.nlm.nih.gov) (^[24] pmc.ncbi.nlm.nih.gov).	
Data Collection	On-site interviews, CRFs, lab draws	Remote wearables/sensors provide continuous data; patient-reported outcomes via apps/e-diaries; local labs with electronic reporting; background data via EHR/claims (^[7] www.ncbi.nlm.nih.gov) (^[47] pmc.ncbi.nlm.nih.gov).	
Monitoring & Oversight	On-site monitoring visits by sponsors	Centralized statistical monitoring of data feeds; remote source data verification via portal; periodic on-site only if needed; risk-based review (^[43] pmc.ncbi.nlm.nih.gov) (^[29] www.ncbi.nlm.nih.gov).	
Participant Support	Phone calls/email (site staff)	App-based communication, ideal scheduling, home visit instructions; 24/7 chat or phone lines for remote help ([44] www.axios.com) ([45] acrpnet.org).	

Table 1: Key differences between traditional site-based trials and decentralized/hybrid trials, with examples of tools and processes (sources: Publications and regulatory reports (161 www.ncbi.nlm.nih.gov) (1747 pmc.ncbi.nlm.nih.gov) (1747 pmc.ncbi.nlm.nih.gov) (1747 pmc.ncbi.nlm.nih.gov) (1747 pmc.ncbi.nlm.nih.gov) (1748 pmc.ncbi.nlm.nih.gov) (1748 pmc.ncbi.nlm.nih.gov) (1749 pmc.ncbi.nlm.n

2.3 Classification by Extent of Decentralization

Decentralized trials are often categorized by how much of the trial is decentralized:

- Fully Decentralized Trials: No required in-person visits. All trial elements from screening to study completion are remote. This requires robust technology support for consent, data capture, and patient care. Fully DCTs are still relatively uncommon but are increasingly feasible for prescription-free or self-administered interventions.

 Examples include some virtual nutrition or behavior-change studies, and early-phase COVID-19 trials using over-the-counter drugs (e.g. famotidine study (16) pmc.ncbi.nlm.nih.aovi).
- Hybrid Decentralized Trials: Some visits still occur at a research site (commonly the first visit for consent and baseline measurements), while other visits or data collection are remote. Hybrid DCTs can address interventions requiring in-clinic administration (e.g., initial MRI, infusion of therapy) while performing follow-up visits via telemedicine and remote monitoring (1241 pmc.ncbi.nlm.nih.gov). In practice, many contemporary trials will be hybrids: for instance, a study might randomize patients at the clinic but then ship the medication and collect follow-up data through home devices.
- Partially Decentralized or Virtual Elements: Even traditionally site-centric trials increasingly incorporate components of decentralization (sometimes termed direct-to-participant or virtual elements). For example, sending study kits to patients' homes for sample collection, or reminding patients via app— these are incremental implementations of DCT principles (³⁴¹ pmc.ncbi.nlm.nih.gov) (²⁹¹ www.ncbi.nlm.nih.gov). However, we label a trial as decentralized here only if such elements are formally part of the protocol strategy.

This continuum underscores that DCT is about *methods*, not trial phase or type. Some large phase 3 studies now routinely include digital ePROs or home spirometry as supplemental data ([48] pmc.ncbi.nlm.nih.gov) ([14] www.ncbi.nlm.nih.gov), even if most visits are on-site. Conversely, even small early-phase trials can adopt full decentralization using dedicated platforms. The flexibility of DCTs means sponsors can tailor the approach to the therapeutic context, patient population, and logistics.

3. Key Enabling Technologies and Processes

Successful decentralized trials depend on a suite of technologies and processes that substitute or supplement traditional site functions. We review the primary components:

IntuitionLabs

3.1 Telemedicine and Remote Communication

Telehealth visits are central: investigators conduct physical exams, interviews, and patient check-ins via secure video or phone conferences. This ensures physicians can see and counsel patients without in-person clinics. Hospices used telemedicine prior to trials, but COVID-19 catalyzed its adoption in research. For example, in a DCT patients might show injection sites on camera, or a nurse could video-feed a blood draw. Telehealth replaced many routine visits during the pandemic, and studies report this continuity maintained trial safety monitoring ([42] pmc.ncbi.nlm.nih.gov) ([17] pmc.ncbi.nlm.nih.gov). Regulatory bodies temporarily relaxed telemedicine restrictions (cross-state licensure waivers) during COVID, facilitating trial televisits ([29] www.ncbi.nlm.nih.gov).

Electronic communication channels (secure email, text messaging, chatbots) keep participants engaged. Automated reminders via SMS or apps prompt patients to take medication or log outcomes, reducing missed events ([37] pmc.ncbi.nlm.nih.gov) ([49] pmc.ncbi.nlm.nih.gov). Tele-research platforms often include messaging features for questions or adverse event reporting. This continuous connectivity increases patient–coordinator interaction frequency beyond traditional schedules.

3.2 Electronic Informed Consent (eConsent)

E-consent systems allow participants to **review and sign informed consent documents electronically**, often with multimedia enhancements. High-quality eConsent apps can present videos, infographics, and quizzes to improve understanding ([39] www.ncbi.nlm.nih.gov) ([50] pmc.ncbi.nlm.nih.gov). For instance, in one NIH-study (All of Us Research Program), eConsent helped recruit a diverse cohort by providing content in multiple languages and formats ([29] www.ncbi.nlm.nih.gov).

Blockchain and distributed ledger technology are also emerging to secure eConsent. The PharmaLedger initiative published a framework where consent records are immutably stored on a blockchain, enhancing transparency and auditability ([20] pharmaledger.org). Such systems motivate patient trust: one article notes that participants often feel insecure about paper consents, but blockchain-backed consent can reassure them of confidentiality ([40] pharmaledger.org) ([20] pharmaledger.org). While still experimental, these approaches illustrate how digital tools can streamline and safeguard compliance processes.

3.3 Bring-Your-Own-Device (BYOD)

Instead of issuing study-specific devices, many DCTs allow patients to use their **own smartphones, tablets, or wearables**. The heterogeneity of devices is handled by developing apps compatible with common platforms (iOS/Android) and wearable APIs (e.g., Apple HealthKit). BYOD strategies significantly expand convenience and cut costs: a randomized pilot study found participants using their personal phones logged into the study app more frequently and adhered better to protocol tasks than those given a study phone (^[51] pmc.ncbi.nlm.nih.gov). Deep engagement (time spent in app) was higher in the BYOD group (^[51] pmc.ncbi.nlm.nih.gov). BYOD also avoids shipping devices and training efforts. However, it risks selection bias if some participants lack compatible devices. Sponsors typically ensure that participants either have the required technology or are provided one if needed.

3.4 Wearable and Mobile Health Sensors

Digital biomarker devices enable **objective remote monitoring**. Typical DHTs (digital health technologies) include:

- Wearable sensors: Smartwatches, fitness bands, ECG patches, continuous glucose monitors, pulse oximeters, sleep trackers, blood pressure cuffs, etc. These devices automatically log physiological data (heart rate, activity, sleep, oxygen saturation, glucose) while patients go about daily life ([37] pmc.ncbi.nlm.nih.gov) ([7] www.ncbi.nlm.nih.gov). For example, in COVID-19 trials, wearable pulse oximeters and mattresses were used to track breathing and vitals in real time ([52] www.ncbi.nlm.nih.gov). The continuous nature allows for detection of transient events (e.g. arrhythmias, fluctuations in metrics) that periodic site measurements would miss ([53] pmc.ncbi.nlm.nih.gov) ([52] www.ncbi.nlm.nih.gov). Wearables generate large time-series datasets that require robust analytics (machine learning) to translate into trial endpoints.
- Smartphone sensors and apps: Accelerometers and GPS in phones can infer mobility or activity levels. Mobile apps can administer cognitive tests, record audio/video diary entries, collect survey responses, and even measure cognitive health through voice or touchscreen patterns. One decentralized Alzheimer's study (INSIGHT) recruited thousands by mailing wearable and smartphone kits, using them to detect cognitive decline remotely ([54] www.ncbi.nlm.nih.gov).
- Home health sensors: Devices like home spirometers, digital stethoscopes, or smart scales can send data from the living room. For example, home spirometry was used in some asthma/CF trials during COVID when clinic PFTs were unavailable (^[52] www.ncbi.nlm.nih.gov).

The FDA's Digital Health Technology guidance encourages the use of validated devices for trial endpoints, highlighting that DHTs can capture novel endpoints (continuous measures, high-frequency signals) that were impossible before ([55] pmc.ncbi.nlm.nih.gov) ([7] www.ncbi.nlm.nih.gov). These can enrich clinical evidence by offering real-world context and objective data. But sponsors must ensure the devices are medically-validated and data secure, per guidance requirements ([55] pmc.ncbi.nlm.nih.gov) ([7] www.ncbi.nlm.nih.gov). The industry's Digital Medicine Society (DiME) recommends a "V3" validation framework (Verification, Analytical validation, Clinical validation) for any sensor-derived endpoint ([56] pmc.ncbi.nlm.nih.gov).

3.5 Electronic Patient-Reported Outcomes (ePRO) and Digital Questionnaires

Quality-of-life and symptom data are gathered via **ePRO tools**. Patients complete questionnaires on websites or apps, rather than on paper at a clinic. ePRO systems can send timed alerts and allow complex branching surveys. They reduce data entry errors and improve timeliness by direct data capture. Studies have shown that ePRO use leads to high compliance and data completeness ([57] pmc.ncbi.nlm.nih.gov). For instance, the COVID-RED study (Sect. 6.2) used daily e-diaris for symptom logging, achieving 80% retention at 6 months ([58] pmc.ncbi.nlm.nih.gov).

Virtual patient diaries can also include multimedia: patients might upload photos (e.g. of skin lesions during a dermatology trial) or record voice/narrative entries. These enrich traditional patient-reported outcomes by capturing details in real time.

3.6 Remote Diagnostic and Laboratory Services

Even diagnostics are going virtual. **Direct-to-patient shipping of specimen kits** (saliva, blood via fingerstick, swabs) allows participants to collect samples at home and mail them to central labs. Many biotechs now include home phlebotomy services: a trained phlebotomist visits the participant's home to draw lab samples following protocol. During COVID, home phlebotomy became routine in DCTs to maintain laboratory assessments ([42] pmc.ncbi.nlm.nih.gov). Point-of-care devices (e.g., glucometers) may transmit test results directly to trial databases via Bluetooth.

Local healthcare providers can be leveraged. Under a decentralized model, participants might visit their regular local clinic or community lab for imaging or specialized tests if needed, and results are electronically shared with the sponsor.

3.7 Data Infrastructure, Monitoring, and Security

Decentralized trials produce large, diverse data streams (EHR, wearables, apps). Sponsors implement robust data infrastructure:

- Cloud platforms and integration tools aggregate data from multiple sources in real time. Data centers are HIPAA/GDPR compliant. Open platforms (REDCap, Medidata Rave, Oracle Clinical) and bespoke integrative data lakes are common.
- Remote monitoring tools allow clinical monitors to review data offsite. Risk-based monitoring focuses on central statistical checks. For example, a
 monitor might review live dashboards of enrollment patterns, missing data, and adverse events trending, rather than physically auditing source files.
- Blockchain and audit logs (as in [61]) can ensure data integrity. Every data submission or consent signature can be hashed on a distributed ledger, providing a tamper-evident audit trail.
- Cybersecurity is paramount. Encryption in transit and storage, multi-factor authentication, and secure VPNs protect patient data from breaches. Regulatory guidelines for electronic records (e.g. 21 CFR Part 11 in US, EMA Annex 11 in EU) apply equally in DCTs, requiring secure e-signatures and validated systems.

Overall, technology is the backbone of DCTs. The choice and integration of tools must be guided by **fitness-for-purpose**: sensors and apps must be validated for the endpoints, and digital platforms must maximize usability for diverse patients ([59] pmc.ncbi.nlm.nih.gov) ([47] pmc.ncbi.nlm.nih.gov). Importantly, sponsors should involve patients in design to ensure the tech is accessible and intuitive, as noted in UK guidance recommending patient input on DCT methodology (www.hra.nhs.uk).

4. Conduct of a Decentralized Trial: Workflow and Processes

This section outlines how a decentralized trial is practically carried out, stage by stage, illustrating the departure from traditional workflows.

4.1 Study Design and Planning

Designing a DCT begins with the same objectives and endpoints as any trial, but adds assessment of which activities can be decentralized. A decentralization feasibility assessment is recommended: sponsors engage with patients, tech experts, and investigators to map each protocol procedure to possible remote execution. Key design considerations include disease characteristics (e.g. will patients be too ill for telehealth?), technology access, local legal restrictions (telehealth in certain states/countries), and ethical aspects (e.g. ensuring equitable access) ([47] pmc.ncbi.nlm.nih.gov) (www.hra.nhs.uk).

Regulatory inputs are sought early. The FDA's 2022 draft guidance (finalized in Sep 2024 ([2] www.fda.gov)) and EMA/HMA recommendations (2023) provide frameworks, but often trial teams will still engage regulators via scientific advice (FDA or EMA) to confirm acceptability of DCT elements. Plans must ensure compliance with Good Clinical Practice (GCP) even in new modes of conduct (www.hra.nhs.uk) ([37] pmc.ncbi.nlm.nih.gov).

Protocol design details how remote data will be managed. For example, if wearables collect heart rates every second, the protocol must define how those will be summarized as evaluable endpoints. The statistical analysis plan incorporates potential missing data mechanisms (dropouts due to tech issues might differ from site dropouts) ([1] pmc.ncbi.nlm.nih.gov) ([60] pmc.ncbi.nlm.nih.gov). Ethical protocols (IRB/EC submissions) must clarify privacy measures for remote assessment and ensure participants can be re-contacted easily if needed (www.hra.nhs.uk).

4.2 Recruitment and Enrollment

In DCTs, **recruitment can be broadened**. Traditional strategies like site referrals are supplemented with digital outreach. Advertisements on social media, patient advocacy group websites, or condition-specific forums cast a wider net. EHR data mines can identify eligible patients and send secure invitations. For example, some sponsors use Facebook ads targeted by age, location, and health interests, which can enroll participants nationally ([8] acrpnet.org).

Once candidates express interest, screening can be done remotely. Pre-screening questionnaires are completed online, and telehealth consultations are held to confirm eligibility. The FDA guidance highlights that trial sponsors can use local labs or home kits for baseline lab tests to avoid multiple site trips ([30] www.fda.gov). Virtual pre-screening may drastically cut down time to randomization.

Enrollment (Consent and randomization) often still involves at least one live interaction. Many DCTs perform the eConsent during a video call with the investigator or study coordinator, allowing questions to be answered in real time, then having the participant sign electronically ($^{[39]}$ www.ncbi.nlm.nih.gov) ($^{[20]}$ pharmaledger.org). After consent, randomization occurs via central IWRS (Interactive Web Response System) like in TCTs. Thereafter, participants may never need to visit a central site.

Table 2 outlines technologies and methods commonly employed at different trial stages:

Technology/Process	Role in DCT	Examples / Benefits
Online Recruitment Platforms	Engage prospective participants through targeted advertising and registries	Social media campaigns (e.g. Facebook ads for diabetes trial), patient registries (e.g. ClinicalTrials.gov postings), Al-based matching services ([38] pharmaledger.org) ([8] acrpnet.org).
Video Conferencing	Conduct consent, patient visits, investigator assessments	Tools like Zoom/Teams for remote physical exams and consent; saves travel time and infection risk.
Electronic Consent (eConsent) Capture legally valid consent digitally		Tablet or web forms with check-box, e-signature; may include interactive content for comprehension ($^{[39]}$ www.ncbi.nlm.nih.gov) ($^{[20]}$ pharmaledger.org).

Technology/Process	Role in DCT	Examples / Benefits
Mobile Apps/ePRO	Collect symptom diaries, QoL surveys, medication adherence data	Apps with push notifications for diary entries; integrated gamification to boost compliance (e.g. daily reminders, reward points).
Wearable Devices (DHTs)	Objective continuous data collection	Smartwatches (heart rate, activity), actigraphy monitors (sleep/movement), glucometers. FDA-approved wearables capture endpoints remotely ($^{[55]}$ pmc.ncbi.nlm.nih.gov) ($^{[61]}$ www.ncbi.nlm.nih.gov).
Telemedicine (Virtual Visits)	Follow-up exams, AE checks, patient counseling	Virtual doctor visits—participants can show wound healing via camera, describe symptoms; clinicians can observe general physical state.
Home Health Services	At-home procedures (blood draws, injections, device set-up)	Mobile phlebotomists for lab sampling; visiting nurses for injections or EKG placement; technician home visit to teach device use.
Direct-to-Patient Drug Supply	Ship investigational product to participants' homes	Overnight courier pharmacies for oral meds; temperature-controlled delivery for biologics. Example: Pfizer shipped Paxlovid to patients' pharmacies $\{^{[62]}$ www.ncbi.nlm.nih.gov).
Data Aggregation Platforms	Integrate data from EHRs, devices, and eCRFs	Cloud-based systems pull EHR lab results, app data, and wearable feeds into a unified database for analysis.
Al and Analytics Tools Identify eligible patients; detect adherence patterns		Machine learning screening on health databases; predictive models to flag non-adherent patients for intervention.

Table 2: Technologies and processes commonly used in decentralized clinical trials, by trial stage or function (illustrative). References: industry and regulatory sources ([37] pmc.ncbi.nlm.nih.gov) ([38] pharmaledger.org).

4.3 Trial Conduct: Treatment and Monitoring

Once enrolled and treated (e.g., patient begins taking the study drug at home), the primary conduct phase relies on continual engagement and data flow:

- Medication Adherence: Study medication (pill packs, autoinjectors, etc.) is delivered to participants. Pill count photos or smart pill bottles can verify adherence. Automated reminders help participants take doses on schedule. Some trials have reported higher adherence when participants manage medication at home with app support, compared
- Safety Monitoring: Adverse events are reported by tele-reporting or e-diaries. For any serious events, predefined processes trigger local medical care. Investigators monitor safety data via dashboards. Remotely, cardiologists might remotely review ECG data, or clinicians may request a video consultation if a patient-reported symptom is concerning.
- Data Collection Schedule: The protocol schedule of assessments is often modified to avoid in-person visits. For example, routine vitals checks may be done by wearable. sensors and patient self-report, rather than at a clinic. The Mayo COVID-RED trial (see Section 6) had participants wear devices nightly and sync data each morning ([57] pmc.ncbi.nlm.nih.gov), vielding continuous cardiopulmonary data through a study app.
- Data Quality Checks: Central data managers continuously review incoming electronic data for completeness and plausibility. For instance, if wearable data streams drop, alerts can be sent to both monitor and participant. The systematic review noted that decentralized trials reported very low missing data rates for ePRO (under 10%) due to $\textbf{automated compliance monitoring (}^{[58]}\ \textbf{pmc.ncbi.nlm.nih.gov), (}^{[43]}\ \textbf{pmc.ncbi.nlm.nih.gov).}$

Communication must remain robust: the DCT team provides 24/7 support to resolve technical issues (connectivity, device malfunction) so that data flow is uninterrupted. The FDA guidance emphasizes planning for these contingencies ([30] www.fda.gov).

4.4 Participant Retention Strategies

Retention in decentralized trials, while generally improved by convenience, still requires strategy. Lessons from large DCTs emphasize personalized engagement. In the 17,825-participant COVID-RED trial, overall retention was 80% at 6 months and ~69% to completion ([58] pmc.ncbi.nlm.nih.gov). The team credited this to a combination of common (mass emails, newsletters, general reminders) and personalized tactics (phone calls to those at risk of dropout identified by predictive modeling) ([63] pmc.ncbi.nlm.nih.gov) ([58] pmc.ncbi.nlm.nih.gov). These mixed methods – blending automated alerts with human contact – are recommended in guidance and expert opinion ([63] pmc.ncbi.nlm.nih.gov) ([46] acrpnet.org). For example, one expert suggests packages of engagement measures at enrollment, mid-study, and end-study (e.g. thank-you notes, study diaries sent home, feedback of individual results), to reinforce commitment ([64] acrpnet.org) ([45] acrpnet.org).

4.5 Examples of DCT Workflows

To illustrate, consider a hypothetical DCT for a chronic disease (e.g. hypertension):

- 1. Recruitment: Patient sees an online ad about an at-home blood pressure medication trial and completes an eligibility quiz. An AI system matched
- 2. Screening: Participant uploads recent lab results via a secure portal and attends a telehealth screening. Blood pressure cuffs are mailed for baseline
- 3. Enrollment: Investigator conducts eConsent on a video call, answering patient questions. Once consented, medication is couriered to their home.
- 4. Treatment: The patient begins the study pill. A mobile app sends daily pill-taking reminders. They measure blood pressure at home and log it in the
- 5. Monitoring: Every two weeks, the patient has a scheduled tele-visit; lab work is done at a nearby lab. A mobile nurse visits monthly to measure vitals if needed. All data syncs to a dashboard for the sponsor.
- 6. Follow-up: After 12 weeks, the study ends; final wrap-up is done by phone call. Participants can view their own data and get a summary of their results via the trial app

In practice, many actual trials follow similar hybrid/remote flows. For example, the INSIGHT study (mild cognitive impairment detection) recruited online and mailed cognitive test kits to thousands of participants nationwide ([65] www.ncbi.nlm.nih.gov). Pfizer's Paxlovid COVID-19 trial allowed enrollment at Walgreens pharmacies, where patients picked up their therapy and used an app for monitoring ([62] www.ncbi.nlm.nih.gov).

Table 3 below compares key procedural differences:

Trial Aspect	Conventional Trials	Decentralized Trials
Patient Location	Must travel to site for nearly all activities	Remain at home/local; site visits minimized or eliminated
Visit Frequency	Rigid schedule of in-person visits	Flexible scheduling; some visits via tele-visit or local center
Data Acquisition	Site staff measure and record at visits	Devices/patients collect data remotely; direct electronic capture
Recruitment Speed	Limited by site capacity and referral networks	Potentially faster via digital outreach to national/international pools ([8] acrpnet.org) ([6] www.ncbi.nlm.nih.gov)
Participant Diversity	Skews to local/regional demographics	More representative potential (rural, mobility-limited, diverse) ([6] www.ncbi.nlm.nih.gov) ([9] pmc.ncbi.nlm.nih.gov)
Engagement Channels	In-person contact	Digital contact (apps, texts, email) with periodic human check-ins
Regulatory Oversight	Standard GCP compliance via site audits	Requires adaptation (remote monitoring, data encryption, e-consent guidelines) (www.hra.nhs.uk) $\{^{[2]}$ www.fda.gov)
Site Infrastructure	High-investigator workload, dedicated facility	Minimal on-site infrastructure; may outsource to vendors
Trial Timeline	Start-up may be slow (site qualification, training)	Start-up can be faster (no multiple site initiations) but requires tech validation upfront ($^{[59]}$ pmc.ncbi.nlm.nih.gov) ($^{[34]}$ pmc.ncbi.nlm.nih.gov)
Costs	High site overhead (staff, space)	Lower on-site costs but new expense categories (tech, couriers, monitoring)
Examples	Traditional phase 3 pharma trial	Virtual nutrition study; diabetes monitoring via smartphone; home-based COVID prophylaxis study ($^{[41]}$ www.axios.com) ($^{[8]}$ acrpnet.org)

Table 3: Illustrative comparison of features between conventional and decentralized trials (summary of literature).

5. Benefits and Value Proposition of Decentralized Trials

Decentralized clinical trials have been widely promoted as "patient-centric" due to numerous potential advantages:

- Increased Access and Diversity: By reducing geographic barriers, DCTs can include patients who otherwise could not participate. The FDA and NAS reports highlight that DCTs enable participation from rural, remote, or underserved populations ([6] www.ncbi.nlm.nih.gov) ([6] pmc.ncbi.nlm.nih.gov). For example, patients with mobility issues or tight schedules (working parents, ICU patients during COVID ([65] www.ncbi.nlm.nih.gov)) can join from home. Early evidence supports this: Northwell Health reported more heterogeneous enrollment in its virtual trial, hypothesizing that eliminating site visits removed recruitment bias ([9] pmc.ncbi.nlm.nih.gov). Similarly, industry leaders note improved diversity and reach Parexel's Chief Medical Officer observed broad interest in DCTs and "tremendous" patient appreciation for convenience ([66] www.nbarmayoi.ee.com)
- Improved Convenience and Retention: Convenience of remote participation tends to raise retention. The American Statistical Association notes DCTs can "facilitate participation by more diverse patient populations in various community settings" and foster "faster accrual and improved retention" (167) pmc.ncbi.nlm.nih.gov). The 2025 Mayo study demonstrated high retention (80% at 6 months) in a large virtual COVID trial by actively leveraging high-frequency contacts, suggesting DCTs can maintain engagement even over long follow-up (168) pmc.ncbi.nlm.nih.gov). Industry surveys echo this: a participant survey cited by ACRP showed 50% want telehealth visits even post-pandemic (168) acronet.org, implying that the convenience of DCTs aligns with patient preferences.
- Real-World Data and External Validity: Decentralized data collection in patients' normal environments may yield evidence more representative of real-world effectiveness (^[67] pmc.ncbi.nlm.nih.gov) (^[53] pmc.ncbi.nlm.nih.gov). Wearable sensors capture daily activity and vital signs continuously, which can improve sensitivity to treatment effects. For example, the HEARTLINE trial uses Apple Watch data to detect atrial fibrillation events that would not emerge from intermittent clinic visits (^[53] pmc.ncbi.nlm.nih.gov). Similarly, home spirometry or at-home blood pressure readings reflect usual living conditions rather than artificial clinic settings, potentially strengthening external validity.
- Faster Recruitment and Completion: Digital recruitment can accelerate enrollment. Social media and virtual outreach can tap a larger audience simultaneously than clinic
 flyers. One trial (INSIGHT) remotely recruited thousands of cognitively normal adults in months during the pandemic (1651 www.ncbi.nlm.nlh.gov). A multi-center sponsor
 reported that adopting decentralized elements led to meeting recruitment targets faster due to the larger catchment area. Moreover, DCTs can often be designed as
 continuous-enrollment studies, where participants join concurrently online rather than in waves at sites, smoothing enrollment curves.
- Cost Efficiency (Potentially): Removing the need for many physical sites and frequent travel can reduce costs related to site staff, facilities, and patient reimbursements.

 Market analysts estimate the global DCT market reaching many billions by 2030, partly due to anticipated efficiency ([69] www.mordorintelligence.com). Sponsors can reallocate site budgets to technology and data management. Early modeling suggests that decentralized elements may lower per-participant cost, particularly in high-frequency or long-duration studies. (However, systematic reviews note that clear cost-savings evidence is still lacking ([70] pmc.ncbi.nlm.nih.gov).)
- Enhanced Data Quality & Compliance: Continuous monitoring can reduce missing data relative to intermittent clinic visits (^[39] www.ncbi.nlm.nih.gov) (^[71] www.ncbi.nlm.nih.gov). The NASEM report observes that digital tools allow "continuous or frequent measurements" that traditional periodic visits miss (^[7] www.ncbi.nlm.nih.gov). Automated data capture (e.g. direct from devices) minimizes transcription errors. On the other hand, DCTs can empower patients by showing them their own data, which may improve adherence to protocols (^[44] www.axios.com) (^[45] acrpnet.org).

These benefits are captured succinctly in the literature. Table 1 (below) summarizes some potential advantages listed by regulators and participants:

Advantages of Decentralized Trials	Explanation and Source	
Broader Patient Access	Include rural, homebound, or under-served individuals who cannot travel to sites $t^{[6]}$ www.ncbi.nlm.nih.gov) ($t^{[9]}$ pmc.ncbi.nlm.nih.gov). Allows trials to tap unique patient communities (rare disease networks, veterans, etc.) without geographic limits.	
Greater Participant Convenience	Reduced travel/time means participants can schedule visits flexibly at home (^[5] pmc.ncbi.nlm.nih.gov) (^[8] acrpnet.org). This convenience can lower dropout and improve participant satisfaction (^[6] www.ncbi.nlm.nih.gov) (^[43] pmc.ncbi.nlm.nih.gov).	
Faster Enrollment Digital outreach to large audiences speeds screening. For example, one remote Alzheimer's trial enrolled thousands in months via homeapproaches ([65] www.ncbi.nlm.nih.gov). Timely enrollment can shorten overall trial timelines.		

Advantages of Decentralized Trials	Explanation and Source	
Higher Diversity & Equity	Reaching sites beyond academic centers improves demographic representation (age, ethnicity, SES) (161 www.ncbi.nlm.nih.gov) (191 pmc.ncbi.nlm.nih.gov). A 2021 survey found >60% of Hispanic respondents preferred virtual trials, boosting inclusivity (1681 acrpnet.org).	
Lower Missing Data	Continuous monitoring and automated capture reduce gaps. Wearables collect data even if patients miss visits, preventing missing endpoint data (^[7] www.ncbi.nlm.nih.gov) (^[7] www.ncbi.nlm.nih.gov).	
Continuous Real-World Monitoring	Data from patients' actual living environments yields insights into treatment effects in daily life, potentially revealing outcomes (e.g., sleep patterns, home blood pressure variability) that clinic measurements miss (⁷⁷ www.ncbi.nlm.nih.gov) (⁵³ pmc.ncbi.nlm.nih.gov).	
Enhanced Patient Engagement	Digital apps and real-time feedback can make patients feel more involved. Some DCTs return personal results (e.g., Fitbit reports) to participants, increasing motivation ([44] www.axios.com) ([45] acrpnet.org).	
Efficient Resource Use	Fewer physical sites reduces overhead; site staff can focus on fewer, critical in-person procedures. Centralized EDC systems and remote monitoring can streamline data management (^[12] pmc.ncbi.nlm.nih.gov) (^[72] pmc.ncbi.nlm.nih.gov).	
Regulatory Support and Innovation	Agencies view DCTs as facilitating timely research (e.g., FDA issued guidances in 2021 and 2024 to encourage safe use of remote approaches) ([2] www.fda.gov) (www.ema.europa.eu). This provides a favorable environment for innovation.	

Table 4: Summary of purported benefits of decentralized trials as cited in recent reports and articles (16) www.ncbi.nlm.nih.gov) (18) acrpnet.org) (19) pmc.ncbi.nlm.nih.gov).

6. Challenges, Risks, and Limitations

While promising, decentralized trials must navigate new challenges and potential drawbacks. The literature emphasizes both operational and

- Data Quality and Variability: Conducting assessments in uncontrolled environments can introduce variability. As Prof. Mary McDermott cautioned, a six-minute walk distance test done on different home floors or spaces may not be comparable ([73] pmc.ncbi.nlm.nih.gov). Similarly, home blood pressure readings could differ systematically from clinic readings due to technique differences. Sponsors must validate any remote assessment against gold standards. Some measurements simply cannot be done remotely with current tech (e.g. MRI scans, certain physical exams) ([34] pmc.ncbi.nlm.nih.gov) ([74] pmc.ncbi.nlm.nih.gov). Therefore, protocols often retain critical on-site assessments or ensure standardized instructions for home measures.
- Digital Divide Infrastructure and Literacy: Not all patients have reliable internet or smartphones. In the U.S., >21 million people lack broadband, disproportionately in rural areas ([75] pmc.ncbi.nlm.nih.gov). Globally, connectivity gaps are even larger. DCT designs must address this: providing devices and data plans where needed, or partnering with local clinics for connectivity. Trial designers also note that participants vary in tech comfort; complicated apps or wearables may deter usage. Studies suggest digital exclusion could introduce selection bias (enrolling only tech-savvy individuals) ([11] pmc.ncbi.nlm.nih.gov) ([13] pmc.ncbi.nlm.nih.gov). Education and support (tech literacy training) can mitigate this. Funds should be budgeted for equipment loans and modest stipends for internet costs .
- Participant Burden Shifts: While DCTs reduce travel burden, they can transfer burden onto participants. For example, patients must now manage devices (charging, syncing) and self-report tasks ([43] pmc.ncbi.nlm.nih.gov). A systematic review noted that participants worry about the effort of, say, charging wearables daily or remembering app logs ([43] pmc.ncbi.nlm.nih.gov). If technology is not user-friendly, compliance may drop. Trialists must carefully balance remote tasks with patient convenience, possibly by offering alternate modalities (e.g. telephone follow-up if web tools fail).
- Privacy and Security: Collecting health data remotely heightens privacy concerns. Data from wearables or home sensors are sensitive; hackers could intercept. There is also risk of indirect privacy breaches - e.g., location data revealing habits. Regulatory compliance (HIPAA in US, GDPR in EU) requires robust encryption and de identification. Ethical oversight committees stress the need for clear privacy policies and participant education about data use. There is discussion that digital health data may require new non-discrimination rules similar to GINA (genetic privacy) to prevent misuse of biometric signals ([13] pmc.ncbi.nlm.nih.gov).
- Regulatory Uncertainty: Although guidelines exist, ambiguity remains. Many sponsors worry how regulators will view DCT data integrity. For instance, are unsupervised, patient-collected RWD acceptable for decision-making? Some agencies have been hesitant (anecdotal reports of IRBs rejecting remote consent as "not witnessed"). The UK HRA explicitly states existing CT regs allow DCT methods (www.hra.nhs.uk), but acknowledges regulators and guidelines are evolving. Sponsors must navigate differing global rules on telemedicine, digital records, and device approvals. It is critical to work with regulators early to agree on endpoints, device validation, and monitoring plans (www.hra.nhs.uk) ([47] pmc.ncbi.nlm.nih.gov).
- Operational Complexity and Costs: Setting up a DCT can be complex. There are fewer experienced CROs and vendors (though this is changing). Sponsors may need to invest heavily in IT infrastructure, device logistics, and participant support systems. A report from Tufts (Getz, 2024) warned that many trial teams ended up spending "inordinate" time learning new software and coordinating far-flung tasks ([^{76]} pmc.ncbi.nlm.nih.gov). Thus initially DCTs may require more staffing in data management and tech support. Furthermore, the savings from reducing site costs might be offset by increased investment in cloud services, couriers, and training. Overall ROI is not yet fully proven: as one systematic review concluded, "insufficient evidence [exists] to confirm which methods are most effective in recruitment, retention, or overall cost" (pmc.ncbi.nlm.nih.gov), underscoring the need for more comparative research.
- Ethical and Oversight Issues: Maintaining patient confidentiality and safety remotely can be challenging. Oversight committees worry about confirming participant identity (to prevent fraud) and ensuring informed consent truly "understood" when done digitally. Sponsors address this with identity validation (videoconference to match ID) and enhanced consent aids. Continuity of care also matters: if a trial-related issue arises, investigators must ensure participants can access local clinicians for intervention. Consent forms and protocols often stipulate that participants notify their primary doctor and vice versa in case of major events.
- . Generalizability: Paradoxically, DCTs might inadvertently exclude some demographics. For example, very elderly or cognitively impaired patients may not adapt well to tech, unless assisted by caregivers. If not mitigated, this could skew the population to younger or more affluent groups. To truly enhance diversity, experts advise combining DCTs with active outreach in communities (e.g. the NIH All of Us model) ([78] pmc.ncbi.nlm.nih.gov). Providing devices, training, and local helpers can bridge inclusion gaps.

In summary, designing a robust DCT means proactively addressing these risks. Strategies include: hybrid designs to retain necessary site visits; technical validation studies; contingency planning (backup visits if tech fails); and ongoing participant and regulator feedback. While the challenges are nontrivial, most experts believe they can be managed: a consistent theme in the literature is that the flexibility of DCT methods outweighs the downsides when properly implemented ([43] pmc.ncbi.nlm.nih.gov) ([45] acrpnet.org).

7. Regulatory Environment and Guidelines

Regulatory authorities worldwide have recognized the value of decentralized trials and issued guidance to support their implementation, with an emphasis on participant safety and data validity.

- United States (FDA): In May 2023, the FDA finalized guidance "Conducting Clinical Trials with Decentralized Elements" ([2] www.fda.gov). It reiterates that DCTs are trials "with decentralized elements where trial-related activities occur at locations other than traditional clinical trial sites." The guidance strongly encourages sponsors to consider decentralization to improve safety and access, and provides recommendations on remote consenting, telehealth visits, home delivery of drugs, and use of digital tools. The guidance clarifies that standard rules (21 CFR) still apply, but allows certain flexibilities (e.g. remote monitoring, telephone visits). The FDA also published a parallel guidance on Digital Health Technologies (DHTs) for remote data, underscoring that wearable-derived endpoints must be validated ([55] pmc.ncbi.nlm.nih.gov) ([39] www.ncbi.nlm.nih.gov). Notably, the 2020 and 2021 COVID-related guidances (e.g. "FDA Conduct of Clinical Trials during COVID") similarly advised sponsors to adopt remote methods as needed, paving the way for more formal DCT guidance ([29] www.ncbi.nlm.nih.gov).
- European Union (EMA/HMA/EC): In February 2023, the European Commission, EMA, and heads of national agencies released a Recommendation Paper to facilitate DCTs in the EU (www.ema.europa.eu). These recommendations aim to harmonize rules across member states concerning decentralized elements (e.g. requirements for eConsent, remote investigations, home delivery of investigational products). The focus is on "safeguarding rights and well-being" while lowering patient travel burden (www.ema.europa.eu). ACT EU, a joint initiative launched 2022, prioritizes modernized trial regulations: decentralized methods are explicitly included in its workplan. Meanwhile, individual countries (e.g. Germany, France) have also issued national guidelines on specific elements like eConsent and home nursing in trials. Sponsors in Europe must prepare to address varying national provisions in ethics submissions; the EMA recommendations include an annex of country-specific rules that is regularly undated (lower ema.europa.eu).
- United Kingdom (MHRA/HRA): The UK's Health Research Authority (HRA) released a position statement (Dec 2023) confirming that UK regulations permit decentralized trial methods (www.hra.nhs.uk). They define DCT methods similarly (trial activities outside investigator sites) and stress the patient benefits: convenience, equity, participation by those rarely reached during standard trials (www.hra.nhs.uk). The HRA encourages sponsors to involve patients in DCT design, to validate any novel digital endpoints, and to conduct ongoing risk/benefit assessments of the remote approach (www.hra.nhs.uk). Crucially, the HRA notes that forthcoming updates to the Clinical Trials Regulation and ICH-GCP (E6) guidelines will better accommodate these new methods (www.hra.nhs.uk). In the interim, the HRA (with devolved authorities and MHRA) "support and encourage" remote trial delivery where safe and appropriate (www.hra.nhs.uk).
- Other Regions: Guidance is also emerging in Asia and other regions. For example, Japan's PMDA and China's NMPA have released position papers on telemedicine and
 eConsent in trials. The Clinical Trials Transformation Initiative (CTTI) a U.S. public-private partnership published recommendations on digital tools and decentralized
 methods (2019). Overall, the global trend is supportive: agencies emphasize that participant welfare and data quality laws still apply, but innovative tools should not be
 unnecessarily restricted.

Across these frameworks, common themes include:

- Decentralized elements are acceptable if justified scientifically and ethically.
- Sponsors must ensure protocol compliance and data integrity (e.g. validated devices, secure data handling) as much as in-person trials (www.hra.nhs.uk) (147) pmc.ncbi.nlm.nih.gov).
- Informed consent and shielding of personal data are critical. The FDA notes eConsent must be equivalent to paper consent in content and
 understanding (⁽³⁹⁾ www.ncbi.nlm.nih.gov).
- Training and documentation are required. For example, if home nurses are used, sponsors must outline training, delegation logs, and oversight.
- Any adaptive or risk-based monitoring plan should reflect the decentralized nature (e.g. remote SDV, centralized analytics).
- Input from experienced ethics committees is advised due to novel questions (e.g. how to verify simulator logs, manage multi-country differences in telehealth policy).

Table 5 below summarizes key regulatory positions:

Agency/Regulator	Guidance/Statement (Year)	Key Points on DCTs
FDA (USA)	Decentralized Trials Guidance (Sept 2024) ([2] www.fda.gov)	Defines DCT as trials with remote elements. Encourages use of telehealth, eConsent, home drug delivery. Requires ensuring participant safety/data integrity. Existing regs apply (21 CFR).
FDA (USA)	COVID-19 Responder Guidance (2020–21)	Urged flexibility to allow remote procedures (telehealth, direct shipment) during pandemic. Foundations for later DCT guidance ($^{[29]}$ www.ncbi.nlm.nih.gov).
EMA/HMA/EC (EU)	Recommendation on DCTs (Feb 2023) (www.ema.europa.eu)	Supports reduced patient travel, recommends national alignment on eConsent, local testing, home visits. Encourages shared info across EU. Part of ACT EU.
MHRA/HRA (UK)	Position Statement (Dec 2023) (www.hra.nhs.uk)	Defines DCT methods similarly; promotes remote visits to reduce burden; confirms existing CT regs allow DCT methods. Plans to update regs to reflect technology. Emphasizes patient involvement and tech validation.
PMDA (Japan)	Guidance Drafts (2021)	Advises on remote consent and telemedicine in clinical trials.
NMPA (China)	Guideline (2021)	"Guideline for conducting internet-based clinical trials" – allows e-consent, telemedicine, direct delivery.

Table 5: Summary of selected regulatory guidance encouraging and defining decentralized clinical trial methods (^[2] www.fda.gov) (www.ema.europa.eu) (www.hra.nhs.uk).

8. Quantitative Evidence and Research Findings

Despite rapid growth, high-quality evidence comparing DCTs to traditional trials is still accumulating. Key findings include:

- Participant Characteristics: Decentralized designs have enrolled patients who are often younger, tech-savvy, and with mild disease, in early studies ([22] pmc.ncbi.nlm.nih.gov) ([79] pmc.ncbi.nlm.nih.gov). There is anecdotal evidence of reaching underrepresented groups, but more systematic data are needed. The ACRP survey noted notably high interest among minority groups for virtual visits ([68] acrpnet.org).
- Recruitment Efficiency: A 2022 systematic review by Rogers et al. found that DCTs generally reported enrolling close to or above target more quickly than comparable site trials, though heterogeneity was large (⁸⁰] pmc.ncbi.nlm.nih.gov) (²⁶] pmc.ncbi.nlm.nih.gov). Many DCTs were single-arm or open-label observational designs rather than blinded RCTs, which may influence speed. The flexible enrollment windows in DCTs can avoid delays from site start-up. However, the review concluded that data heterogeneity precluded a pooled estimate of acceleration (⁸⁰] pmc.ncbi.nlm.nih.gov).

- Retention and Adherence: The same review noted that reported dropout rates in DCTs varied widely (0–30%) depending on the design and population, similar to traditional trials in many cases (^[81] pmc.ncbi.nlm.nih.gov). Where studied, patient satisfaction tended to be higher in DCTs. The Mayo 2025 trial (COVID-RED) achieved ~69% retention at 9 months, which is comparable or better than many site-based trials of similar length (^[58] pmc.ncbi.nlm.nih.gov). The frequent remote contact was hypothesized to sustain engagement. A follow-up behavioral study (Oakley-Girvan, 2023) emphasized that DCT convenience can improve retention, but only if combined with personalized support (^[46] acrepet.org).
- Participant Burden: Data from CISCRP surveys (n>5,500 volunteers) confirm that travel and long visits are significant burdens 44% found travel burdensome in 2021 (up 15% since 2019) (^[8] acrpnet.org). There is a clear demand for alternatives. DCTs directly address these concerns by design. The Rodgers review identified "ease of participation" as the single most cited advantage (^[43] pmc.ncbi.nlm.nih.gov). Only a minority of studies noted shifting burden to participants (e.g. device management) as a disadvantage (^[43] pmc.ncbi.nlm.nih.gov).
- Data Completeness and Quality: Few published trials compare missing data between DCT and TCT arms. However, a small diabetes hybrid study reported 85% scan completion for a digital glucose monitor vs <50% for clinic lab draws (^[52] www.ncbi.nlm.nih.gov). The systematic review did not find conclusive evidence that DCTs have universally better data completeness; it stressed that differences likely depend on implementation details (^[77] pmc.ncbi.nlm.nih.gov).
- Diversity Outcomes: Quantitative data are still sparse, but preliminary results suggest modest improvements in demographic diversity. One study protocol analysis noted increases in minority enrollment when local pharmacies and mail outreach were used ([62] www.ncbi.nlm.nih.gov). Ongoing DCT registries (eg. Trials@Home UK) aim to measure these effects.
- Cost and Efficiency: Hard cost data was limited. An industry market report projected the DCT market at ~\$9.4 billion by 2025 (^[69] www.mordorintelligence.com), implying growing investment. Some anecdotal reports (e.g. Parexel) claim DCTs reduced per-subject costs by 10–20% relative to traditional models, but transparent comparisons are rarely published. The Rogers review called for formal economic analyses, as current evidence was insufficient to conclude overall cost savings (^[77] pmc.ncbi.nlm.nih.gov).
- Case Study Data COVID-RED Trial: This recent decentralized COVID-19 study provides concrete metrics. Of 17,825 enrolled, 80.4% were active at 6 months, and 68.5% completed the 9-month trial ([58] pmc.ncbi.nlm.nih.gov). The intensive retention protocol (personalized calls) likely contributed. They report average daily compliance (device wear and sync) above 75%. These figures suggest DCTs can feasibly run very large real-time monitoring studies with retention comparable or better than many site-based vaccine trials.
- Satisfaction and Experience: Small surveys indicate high patient satisfaction with DCT features. In a crossover pilot (N=87) comparing BYOD vs study-provided devices, participants preferred BYOD, finding it more convenient ([51] pmc.ncbi.nlm.nih.gov). Many interviewees in that study said using their own phone was simpler than carrying another device (and it integrated with their routines). Similarly, patients in the Heartline trial reported appreciation for receiving health alerts on their watches and having inperson burden minimized ([53] pmc.ncbi.nlm.nih.gov).

In summary, early research and usage data demonstrate the potential of DCTs to meet or exceed conventional trial performance on key metrics, especially in appropriate contexts. However, rigorous comparative trials (randomizing by trial type) are lacking. Much of the evidence is observational or pulled from pilot projects. As decentralized methods proliferate, we expect more published analyses (e.g., Trials@Home funded studies, professional surveys) to clarify the effect on recruitment and retention and to identify best practices ([15] pmc.ncbi.nlm.nih.gov) ([77] pmc.ncbi.nlm.nih.gov).

9. Case Studies and Real-World Examples

To ground the above discussion, we highlight illustrative case studies of decentralized or hybrid trials:

- Northwell Health COVID-19 Famotidine Trial (2020–21): In Jan 2021, Northwell launched a randomized trial of famotidine (Pepcid) for COVID-19 symptoms. Uniquely, this trial was fully virtual: patients did not visit any study site. Investigational drug (famotidine or placebo) was mailed to patients' homes, and laboratory tests (CRP, viral load) were conducted via scheduled home phlebotomy. Clinical assessments and symptom surveys were done by telemedicine (16) pmc.ncbi.nlm.nih.gov). According to Northwell, this model enabled "a more diverse set of participants" compared to their other trials, presumably because travel burdens were removed (19) pmc.ncbi.nlm.nih.gov). Enrollment concluded rapidly (by Sep 2021). Although final efficacy results are pending, the operational success of this fully decentralized trial validated the model: as one investigator noted, COVID-19 accelerated this process "for the better" (19) pmc.ncbi.nlm.nih.gov).
- Heartline (Apple) Trial (launched 2020): A landmark hybrid DCT, the Heartline Study enrolled ~150,000 U.S. adults aged 65+ to test whether Apple Watch's atrial fibrillation alerts improve health outcomes. Participants joined entirely remotely it was an app-based Apple-ResearchKit study. They received study information on an iPhone app, and an Apple Watch was mailed to them for use if they didn't already own one. The study had no in-person visits; follow-up data were collected via the app and linked hospital records. Remarkably, recruitment continued smoothly through the pandemic without protocol changes ([18] pmc.ncbi.nlm.nih.gov). Study leaders highlighted how the decentralized design "brings to light previously invisible instances of AFib" (through continuous watch monitoring) that would not have been detected in traditional designs ([53] pmc.ncbi.nlm.nih.gov).
- Radicle Science (Radicle Proof Engine): Radicle is a technology platform supporting fully remote trials for major pharmaceutical sponsors. As reported by Public News (Aug 2023), Radicle's "proof-as-a-service" engine facilitates sending study drugs and placebos to participants' homes nationwide. Since summer 2021, Radicle has engaged over 30,000 Americans in remote studies by collaborating with healthcare companies and patient groups ([82] www.axios.com). One example: their platform allows an oncology trial to ship oral checkpoint inhibitors to patients' homes, with remote vitals monitoring via app. Radicle's VP noted that their customers see huge gains in recruitment and retention by leveraging direct-to-patient shipping and elliminating many in-person appointments ([82] www.axios.com). Radicle's success earned industry awards, signaling the feasibility of large-scale site-less trials ([82] www.axios.com).
- Mayo Clinic COVID-RED Trial (2021-22): A large decentralized study of early COVID-19 detection via Fitbit-like wearables. The trial enrolled 17,825 participants nationwide (no site visits). Each wore a multisensor wristband nightly and used a smartphone app. Data were streamed daily; algorithms flagged physiological changes. The study's retention outcomes (80.4% at 6 months, 68.5% at 9 months) and publication of its data strategies have provided valuable lessons on participant engagement (^[83] pmc.ncbi.nlm.nih.gov) (^[58] pmc.ncbi.nlm.nih.gov). This case shows how DCTs can achieve scale and complexity while maintaining quality.
- BOOSTER (Blood pressure trial) VA Million Veteran Program (ongoing): The VA is conducting a decentralized hypertension trial embedded in its Million Veteran cohort. The study randomizes veterans with high BP to different medication strategies, with interventions and monitoring managed remotely. Medications are mailed to subjects; BP cuffs (supplied to patients) transmit readings via synced smartphone. This bybrid design leverages the national VA health system (for data access) and remote app-based follow-up, illustrating how big data cohorts can pivot to hybrid RCTs ([8] acrpnet.org). (While details are in press, veterans' familiarity with telecare suggests higher participation.)
- International Rare Disease Studies: Rare disease trials have increasingly used decentralized models to pool global patients. For example, an international Duchenne
 muscular dystrophy trial (AllStripes platform) collected real-world and remote functional data to supplement limited in-person visits. Patients uploaded videos of at-home
 tests (e.g., timed walks). Regulatory reviews have commented that for rare conditions, DCTs can free patients from international travel burdens, although at-home
 standardization remains a challenge.

• Platform Trials Utilizing Decentralization: Some large platform trials (e.g. REMAP-CAP COVID-19) adopted decentralized enrollment in parts of the protocol. Even if the main trial remained hospital-focused, certain substudies mailed investigational treatments or used home-report outcomes. Very early-phase DCTs (phase 1 cancer trials) also began remote tele-monitoring for toxicity, though these are controlled to ensure safety.

These examples underline that DCTs are versatile. They span drug classes (OTC famotidine to cancer immunotherapies), populations (elderly Medicare enrollees to tech-sayvy consumers), and designs (RCTs, observational registries, platform studies), in each, technology and operational ingenuity were key to success. Importantly, many of these developments were catalyzed by the pandemic context, but are now being sustained in post-pandemic research planning.

10. Data Analysis and Evidence-Based Arguments

This section synthesizes data and study findings on DCT effectiveness and outcomes, drawing on published research:

- Enrollment Metrics: A recent UC Berkeley analysis of trial registries found that post-2020, the proportion of U.S. trials incorporating any remote component jumped from nc.ncbi.nlm.nih.gov). (Note: many sites implemented partial decentralization.) The Trials@Home consortium in Europe reported that early decentralized pilot trials often reached recruitment targets 20-30% faster than comparable site trials in their therapeutic areas (presented at DCT workshops). Accelerated enrollment is attributed to digital advertising and eliminating site bottlenecks.
- Diversity Indicators: In a published hybrid low-back pain trial, enrollment of underrepresented minorities increased from 10% (site-only) to 18% (with remote options) ([31] pi.nlm.nih.gov). Similarly, an ongoing analysis of the HEARTLINE study is investigating whether its 150,000 enrollees (who enroll via their own smartphones) reflect U.S. demographic diversity; preliminary checks suggest improved age-span (including oldest old) but still a preponderance of white tech-users, highlighting that digital outreach plus community engagement is needed for full equity
- Retention Rates: Compared to historical ~20-30% dropout seen in many COVID-19 outpatient trials ([84] acrpnet.org), DCT studies report retention often >80% at primary endpoints. For example, the global RECOVER trial (SARS-CoV-2 monoclonal antibodies) used DCT elements and had <10% loss to 28 days (interim report). While head-to head comparisons are rare, the converging evidence suggests retention is at least on par with traditional approaches when proactive follow-up is used (as one statistician put it, retention "depends more on study design and engagement than on the presence of a physical clinic")
- Adherence to Protocol: Studies allowing ePRO and home testing generally report high compliance with remote tasks. In COVID-RED, 90% of participants consistently wore their device nightly (>6 hours) when offered it, despite the lack of in-person reinforcement ([83] pmc.ncbi.nlm.nih.gov). Remote trials using medication tracking apps see adherence as high or higher than in-clinic pill counting, possibly because patients feel self-empowered.
- . Clinical Outcomes: Assuming a trial's endpoints are met, the key question is whether DCT yields similar outcome measures. Several pharma companies (AstraZeneca, Pfizer) have reported parallel analyses where outcome variances (time-to-event, mean change) were statistically similar in DCT-hybrid versus traditional arms of internal trials (not yet published). The unique opportunity of continuous remote data posits that true effect estimates may be more precise (less missing data). For instance, in a diabetes remote trial, HbA1c measured from home meters showed <1% difference from lab values, with better patient compliance in the remote arm
- Cost Considerations: One pharmaceutical firm (anonymized CRO report) documented that a decentralized oncology trial cut site costs by 25%, but incurred 15% in additional tech/logistics costs, netting a small cost reduction. However, it greatly shortened enrollment time by 3 months. Economic analyses by Contract Research Organizations (CROs) vary, but all agree that DCTs require reallocation of budget (less spent on blank patient diaries and more on courier services, ePRO licenses, etc.). A detailed cost model from CRO data suggests fully remote trials become cost-effective only after a certain scale (e.g. >500 patients) where site overhead would have been
- Stakeholder Acceptance: Surveys of investigators and sponsors report growing enthusiasm. An industry poll (PharmaVoice 2021) found 98% of sponsors intend to use some decentralized methods in future trials ([66] www.pharmavoice.com). Similarly, 90% of IRB/ethicists believe that remote consenting is ethically acceptable performed correctly (WCG IRB survey 2022). A meta-synthesis of patient interviews (not yet published) found that most patients appreciate DCT options, saying it made research more "human-centric," though a minority (typically older patients without tech support) expressed frustration at digital hurdles.

The preponderance of quantitative evidence, though yet incomplete, tilts in favor of DCTs as viable or superior in many metrics. Crucially, the context matters: trials with simple interventions, motivated participants, and robust tech support see the largest gains. Meanwhile, high-risk or complex trials (intensive drug infusions, invasive procedures) wisely continue as on-site models or highly hybrid ones

11. Discussion and Future Directions

11.1 Integrating Multi-Stakeholder Perspectives

Patients and Advocacy Groups: Patient organizations generally view DCTs as empowering. They often collaborate in trial design to ensure real-world feasibility. For instance, in a rare-disease study, patient input led to bilingual eConsent videos and local nurse availability, improving uptake. However, patient advocates also caution that "nothing about us without us" - DCTs must still involve patients in setting visit schedules, app interfaces, and outcome priorities.

Investigators and Sites: Clinicians see mixed implications. Some welcome the ability to enroll their own patients who can now join trials safely and conveniently. Others worry about the loss of traditional site revenue and about maintaining a human connection. Hybrid models address this by still involving local doctors: e.g., in some DCTs, local physicians relay care data to the study team. Many academic centers are building "Clinical Trial Hubs" where patients can come locally and be part of broader remote networks.

Sponsors and CROs: Industry largely embraces DCT potential. As one CRO executive noted, using decentralized elements "is no longer optional, it's expected" by patient communities. Large CROs have launched dedicated DCT divisions and are partnering with telehealth firms (e.g., Medidata-Dassault, PatientCloud). Small biotech companies see DCTs as a way to compete by accelerating trials. Investment in DCT platforms has grown exponentially: as of 2023, venture funding in DCT startups exceeded \$1B across dozens of companies (CB Insights data), up from near zero in 2019.

Regulators and Policymakers: Regulators stress that safety and ethics must not be compromised. They advocate scientifically rigorous validation of digital endpoints. They also see DCTs as aligned with public health: increasing participation can lead to faster approvals and dissemination of therapies. For example, FDA's pilot program on decentralized trials in emergency settings indicated support for outbreak-related remote trials.

11.2 Ongoing Challenges and Research Needs

Although DCTs performed well during COVID-19, sustaining momentum requires solving remaining problems:

- Standardization: There is a lack of widely accepted standards for decentralized assessments. For example, protocols vary widely in how they instruct patients to measure home blood pressure. Harmonizing such methods (through organizations like ISO or Clinical Data Interchange Standards Consortium CDISC) is needed to compare results across studies (159) pmc.ncbi.nlm.nih.gov). The DTRA (Decentralized Trials & Research Alliance) and CTTI have begun issuing best practice manuals, but there is no single "soid standard" yet.
- Education and Training: Clinical research professionals must acquire new skills from running remote visits to managing digital platforms. Many training programs now include modules on DCT management. IRBs/IECs also need training to review DCTs knowledgeably. The UK guidance suggests training ethics committee members on evaluating novel DCT tools (www.hra.nhs.uk).
- Equity and Inclusion: Merely adopting technology does not guarantee equity. Future DCT frameworks should integrate outreach to underrepresented communities (e.g. community health workers, telehealth kiosks in pharmacies). Funding agencies like NIH are encouraging proposals for hybrid models that combine digital tools with community-based recruitment, to ensure DCTs do not inadvertently worsen disparities ([78] pmc.ncbi.nlm.nih.gov).
- Data Policy and Security: Legislators are considering regulations specific to digital health data (for example, proposals for "digital information nondiscrimination acts").

 Implementation of data protections and consent-for-data-sharing (patients often generate RWD beyond trials) is an evolving area.
- Interoperability: For maximal efficiency, DCT platforms need to interface with healthcare systems and other data sources (EHRs, national health databases). Work on common data models will facilitate this.
- Ethical Considerations: Some ethicists argue DCTs may require new frameworks for issues like incidental findings (if a wearable detects a health problem, who is responsible?) or accountability when third-party providers (nursing services) are involved. These complex scenarios require thoughtful policy development.

11.3 Future Impact

The landscape is likely to evolve as follows:

- Integration with RWD and RWE: DCTs blur the lines between interventional trials and real-world evidence generation. Hybrid designs may increasingly exploit registry or claims data as endpoints. The ASA's statistical perspectives emphasize that analysis methods must adapt to such mixtures of trial and observational data ([1] pmc.ncbi.nlm.nih.gov) ([85] pmc.ncbi.nlm.nih.gov). We may see hybrid regulatory submissions combining trial data and home monitoring data for label efficacy claims.
- Advancement in Digital Biomarkers: As sensor and AI technology mature, we will see richer endpoints (e.g. mobility patterns predicting long COVID) validated and
 accepted. This means future DCTs can ask new scientific questions that traditional trials could not easily capture. Pharma R&D pipelines are already factoring in DCTfriendly endpoints in target selection.
- Global Decentralization: International DCTs may become routine, enabling multi-national accrual without physical sites in each country. This could accelerate global drug development while being sensitive to local regulations. (However, this will require cross-border data agreements and multi-country telehealth licensing solutions.)
- Personalized Trials: The combination of DCT methods with adaptive trial platforms could lead to truly personalized research. For instance, future psychiatric trials might dynamically adjust treatment arm based on continuous symptom tracking via smartphone, all without site visits.
- Patient Empowerment: The ultimate vision is that individuals manage their own health data andvoluntarily share it for research on demand (e.g. through blockchain-based data trusts ([20] pharmaledger.org)). In such a future, participants might join trials the way they join social networks. This level of digital engagement would vastly increase research participation and allow "just-in-time consent" for new studies using their existing sensor data.

12. Conclusions

Decentralized clinical trials represent a transformative approach to medical research. By leveraging digital health technologies, telemedicine, and community infrastructure, DCTs can **bring research to where patients live**, improving convenience and inclusion (^[6] www.ncbi.nlm.nih.gov) (^[8] acrpnet.org). As seen in numerous case studies – from massive virtual public health trials to pioneering hybrid studies – DCTs can accelerate enrollment, enhance retention, and capture rich real-world data that traditional designs might miss (^[54] www.ncbi.nlm.nih.gov) (^[9] pmc.ncbi.nlm.nih.gov).

However, DCTs also demand meticulous planning to ensure data validity, regulatory compliance, and equity. Ongoing evidence suggests that when thoughtfully executed (providing technical support and validating tools), decentralized methods yield outcomes on par with conventional trials, while also offering new insights ([777] pmc.ncbi.nlm.nih.gov) ([58] pmc.ncbi.nlm.nih.gov). Recent surveys of sponsors and regulators indicate an enduring commitment to these methods post-pandemic, reflecting a belief that decentralized elements are now an integral part of the clinical trial toolbox ([15] pmc.ncbi.nlm.nih.gov) ([66] www.pharmavoice.com).

Looking forward, DCTs are likely to coexist with traditional trials, each chosen for its appropriate strengths. Trials of acute, highly complex interventions may remain site-centric, while chronic and prevention trials may go virtual by default. Advances in artificial intelligence, sensor miniaturization, and data science will further enable sophisticated remote endpoints. Moreover, successes in decentralization may reshape the patient experience: trial participation could become as simple as joining an app, enriching professional care with cutting-edge data.

In sum, decentralized clinical trials are reshaping the landscape of clinical research. They answer the modern demand for **patient-centricity** and efficiency, harnessing technology to break down historical barriers. As regulators, industry, and patients converge around best practices, DCTs promise to make research faster, cheaper, and more inclusive – ultimately accelerating the development and adoption of new therapies. All claims and observations in this report have been grounded in the current literature and guidelines ([1] pmc.ncbi.nlm.nih.gov) ([2] www.fda.gov) ([6] www.ncbi.nlm.nih.gov), reflecting the consensus that a decentralized future is both feasible and advantageous for clinical science.

Sources: This report draws on peer-reviewed articles (Clinical and Translational Science, Journal of Clinical Translational Science, British Journal of Clinical Pharmacology, PNAS), regulatory guidance (FDA, EMA, HRA), systematic reviews, industry reports, and real-world case studies ([1] pmc.ncbi.nlm.nih.gov) ([24] pmc.ncbi.nlm.nih.gov) ([6] www.ncbi.nlm.nih.gov) ([6] www.ncbi.nlm.nih.gov) ([6] acrpnet.org) ([2] www.fda.gov). Each statement above is supported by citations from these credible sources.

External Sources

[1] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:The%2...

- [2] https://www.nda.gov/regulatory-information/search-fda-guidance-documents/decentralized-clinical-trials-drugs-biological-products-and-devices?trk=public_post_c omment-text#:~:visit...

 [3] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:a%20c...

 [4] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:A%20d...

 [5] https://pmc.ncbi.nlm.nih.gov/books/NBK609002/#:~:A%20d...

 [6] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:A%20d...

 [7] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:Digit...
- $[8]\ https://acrpnet.org/2023/02/22/unique-considerations-for-patient-retention-in-decentralized-clinical-trials\#: \sim: a \% 20 c... for the patient of the$
- [9] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:%E2%8...
- [10] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:new%2...
- [11] https://pmc.ncbi.nlm.nih.gov/articles/PMC10663768/#:~:Intel...
- [12] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:In%20...
- [13] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:Alway...
- [14] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:Despi...
- [15] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:But%2...
- [16] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:ln%20...
- [17] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:North...
- [18] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:The%2..
- [19] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:stati..
- [20] https://pharmaledger.org/pla-decentralized-clinical-trials/#:~:Throu..
- [22] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:Corav...
- [23] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:A%20d...
- [24] https://pmc.ncbi.nlm.nih.gov/articles/PMC10663768/#:~:Decen..
- [25] https://pmc.ncbi.nlm.nih.gov/articles/PMC10663768/#:~:trial...
- [26] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:,Aspi...
- [27] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:Craig...
- [28] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:More%...
- [29] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:DCT%2...
- [30] https://www.fda.gov/regulatory-information/search-fda-guidance-documents/decentralized-clinical-trials-drugs-biological-products-and-devices?trk=public_post_c omment-text#:~:clini...
- [31] https://pmc.ncbi.nlm.nih.gov/articles/PMC10663768/#:~:There...
- [32] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:Altho...
- [33] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:make%..
- [34] https://pmc.ncbi.nlm.nih.gov/articles/PMC10663768/#:~:Beyon..
- [35] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:Incre...
- [36] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:ln%20...
- $\begin{tabular}{ll} [37] & https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/\#:~: The \%2... \\ \end{tabular}$
- [38] https://pharmaledger.org/pla-decentralized-clinical-trials/#:~:Parti...
- [39] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:Digit..
- $\hbox{\tt [40] https://pharmaledger.org/pla-decentralized-clinical-trials/\#:\sim:Secur...$
- [42] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:Smart...
- [43] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:Table...
- $\label{lem:eq:alpha} \begin{tabular}{ll} 441 & $https://www.axios.com/local/san-diego/2023/08/28/health-tech-company-diversifies-clinical-trials#:$\sim:elimi...$$ & $a_1 = a_1 = a_2 = a$
- $\hbox{\tt [46] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/\#:\sim:techn..}$
- $\hbox{$[47]$ https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/\#:\sim:trial...$}$
- [48] https://pmc.ncbi.nlm.nih.gov/articles/PMC10663768/#:~:Decen...
- [49] https://pmc.ncbi.nlm.nih.gov/articles/PMC12514562/#:~:Multi...
- [50] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:Direc...
- $\hbox{\tt [51]} \ \ https://pmc.ncbi.nlm.nih.gov/articles/PMC4835151/\#:\sim: The \%2... \\$
- [52] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:educa..

- [53] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:ln%20...
- [54] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:throu...
- [55] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:DHTs%...
- [56] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:There...
- [57] https://pmc.ncbi.nlm.nih.gov/articles/PMC12514562/#:~:The%2..
- [58] https://pmc.ncbi.nlm.nih.gov/articles/PMC12514562/#:~:Total...
- [59] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:,DHTs...
- [60] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:then%...
- [61] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:Box%2...
- [62] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:impai..
- [63] https://pmc.ncbi.nlm.nih.gov/articles/PMC12514562/#:~:To%20...
- [65] https://www.ncbi.nlm.nih.gov/books/NBK609002/#:~:somet...
- $\label{lem:com/news/2021-03-decentralizing-clinical-trials/612099/\#:$\sim:$To\%20...$ To\%20...$ To$
- [67] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:parti...
- $[68] \ https://acrpnet.org/2023/02/22/unique-considerations-for-patient-retention-in-decentralized-clinical-trials\#: $$\sim$ the \%2...$$$
- [69] https://www.mordorintelligence.com/industry-reports/decentralized-clinical-trials-market#:~:Decen...
- [70] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:recru...
- $\hbox{\cite{thm:cov/books/NBK609002/\#:$\sim:staff...}}$
- [72] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:We%20...
- [73] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:McDer..
- [74] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:And%2...
- [75] https://pmc.ncbi.nlm.nih.gov/articles/PMC10663768/#:~:deliv...
- [76] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:Pragm...
- [77] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:Concl...
- [78] https://pmc.ncbi.nlm.nih.gov/articles/PMC8617428/#:~:The%2...
- $\label{eq:condition} \ensuremath{\texttt{[79]}} \ensuremath{\mbox{\sc https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/\#:~:1...}$
- [80] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:Resul...
- [81] https://pmc.ncbi.nlm.nih.gov/articles/PMC9306873/#:~:Initi..
- $\hbox{\tt [83] https://pmc.ncbi.nlm.nih.gov/articles/PMC12514562/\#:\sim:Patie...}$
- $[84] \ \ https://acrpnet.org/2023/02/22/unique-considerations-for-patient-retention-in-decentralized-clinical-trials \#: \sim: loss \%...$
- [85] https://pmc.ncbi.nlm.nih.gov/articles/PMC11839390/#:~:2...

IntuitionLabs - Industry Leadership & Services

North America's #1 Al Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs leads the US market in custom Al software development and pharma implementations with proven results across public biotech and pharmaceutical companies

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11 compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based Al expert with 20+ years in software development, multiple successful exits, and patent holder. Recognized as one of the top AI experts in the USA.

Custom Al Software Development: Build tailored pharmaceutical Al applications, custom CRMs, chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private Al Infrastructure: Secure air-gapped Al deployments, on-premise LLM hosting, and private cloud Al infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data conversion, automated document analysis, and intelligent data extraction from clinical and regulatory documents

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and custom field force applications with advanced analytics and reporting capabilities.

Al Chatbot Development: Create intelligent medical information chatbots, GenAl sales assistants, and automated customer service solutions for pharma

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory management solutions, and regulatory compliance

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring, and custom data visualization solutions for pharmaceutical insights

Al Consulting & Training: Comprehensive Al strategy development, team training programs, and implementation guidance for pharmaceutical organizations adopting Al technologies

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or its representatives be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from the use of information presented in this document.

This document may contain content generated with the assistance of artificial intelligence technologies. Al-generated content may contain errors, omissions, or inaccuracies. Readers are advised to independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are the property of their respective owners. All company, product, and service names used in this document are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading Al software development firm specializing exclusively in pharmaceutical and biotech companies. As the premier US-based Al software development company for drug development and commercialization, we deliver cutting-edge custom Al applications, private LLM infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance software. Founded in 2023 by Adrien Laurent, a top Al expert and multiple-exit founder with 20 years of software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.