Clinical Trial Site Selection: Key Factors & Best Practices

By Adrien Laurent, CEO at IntuitionLabs • 11/20/2025 • 35 min read

clinical trial site selection cro services feasibility assessment patient recruitment clinical trial management investigator selection gcp guidelines

Executive Summary

This report provides an in-depth analysis of how Contract Research Organizations (CROs) select optimal hospitals and clinics for clinical trials. We survey the historical evolution of site selection, key decision factors, and modern data-driven approaches used by CROs. Major findings include: recruitment capacity and patient access are **pivotal** criteria ([1] pmc.ncbi.nlm.nih.gov); infrastructure and personnel expertise also rank highly ([2] pmc.ncbi.nlm.nih.gov); whereas cost considerations and investigators' publication records carry comparatively less weight ([1] pmc.ncbi.nlm.nih.gov) ([3] pmc.ncbi.nlm.nih.gov). We show that effective feasibility assessments - examining patient population, site resources, and protocol fit before activating a site - markedly improve outcomes ([4] pmc.ncbi.nlm.nih.gov) ([5] www.contractpharma.com). In contrast, common mistakes (e.g. relying only on the size of a site's patient database without checking eligibility ([5] www.contractpharma.com), or ignoring staff commitment ($^{[6]}$ www.contractpharma.com)) lead to poor enrollment, delays, and cost overruns ($^{[7]}$ www.contractpharma.com) ([8] www.contractpharma.com). We also review cutting-edge methods: artificial intelligence and real-world data have recently demonstrated promise in forecasting site enrollment performance and patient availability ([9] www.hcltech.com) ([10] pmc.ncbi.nlm.nih.gov). Two illustrative tables summarize (1) how environmental factors (patient pool, approval times, etc.) were ranked in a pan-European survey ([3] pmc.ncbi.nlm.nih.gov), and (2) the relative importance of site selection criteria (e.g. recruitment potential, data quality, investigator factors) based on published surveys ([1] pmc.ncbi.nlm.nih.gov). Case studies highlight how misaligned site choices have stalled past trials, while robust site strategies (such as multilayered feasibility screening) have enabled on-time enrollment. We conclude that well-designed site selection - combining traditional investigator know-how with quantitative data analysis - is critical to trial success. The report ends with recommendations for future directions (e.g. integrated site readiness frameworks, decentralized trial models, and continued uptake of Al-based tools) to further optimize site selection and thereby accelerate drug development.

Introduction and Background

Choosing the right hospitals and clinics ("sites") for a clinical trial is critical to its success. Each site must have access to enough eligible patients, proper facilities, and trained staff to meet enrollment targets without compromising data quality ([1] pmc.ncbi.nlm.nih.gov) ([11] pmc.ncbi.nlm.nih.gov). Poor site selection is a frequent and costly problem: trials slowed by underperforming sites suffer delays and budget overruns ([7] www.contractpharma.com). Indeed, experts warn that "delays cost money – a lot of money" and that "poor site selection is a costly misstep" ([7] www.contractpharma.com). Conversely, high–quality sites are defined by their ability to **enroll patients quickly**, keep them engaged (minimizing drop-outs), and execute the protocol faithfully ([11] pmc.ncbi.nlm.nih.gov) ([12] pmc.ncbi.nlm.nih.gov). Selecting such sites can dramatically improve ontime completion rates.

The **CRO's role** in site selection has expanded as drug development has globalized. In the 1980s and 1990s, sponsors often relied on in-house clinical teams or well-known academic centers, but the emergence of multidisciplinary CROs brought systematic feasibility studies and specialized site management. Nowadays, CROs frequently shoulder the logistics of site discovery and qualification on behalf of sponsors. (Some large pharmaceutical firms have even brought site analysis in-house; for example, by 2021 "most [large pharma] had already pulled back site selection in-house" to better leverage their own data ([13]] www.appliedclinicaltrialsonline.com).) Regardless of who owns the process, CROs must follow regulatory guidelines: for instance, ICH-GCP requires sponsors (and thus CROs working for them) to ensure that investigators and institutions "are qualified by education, training, and experience" and that sites have adequate resources ([4] pmc.ncbi.nlm.nih.gov).

IntuitionLabs

Historically, site selection was based largely on investigator reputation and personal relationships. Investigators with previous NIH-funded trials or high publication counts were often preferred. Over time, however, sponsors and CROs have recognized the limits of this approach. A landmark survey of biopharma and CRO decision-makers (Nordic countries, 2019) found that **recruitment-related factors** (e.g. expected enrollment rates, patient availability) are "pivotal" in site selection, whereas costs and investigators' publication records are "less important" ([1] pmc.ncbi.nlm.nih.gov). In practice, CROs now adopt multistep processes: they issue feasibility questionnaires to dozens of potential sites, analyze patient databases or registries, and often conduct on-site qualification visits before final selection ([4] pmc.ncbi.nlm.nih.gov) ([5] www.contractpharma.com). Modern approaches increasingly integrate diverse data sources (electronic health records, claims data, clinical trial registries) and predictive analytics to forecast site performance ([9] www.hcltech.com) ([10] pmc.ncbi.nlm.nih.gov).

Yet challenges remain. Complex global trials face heterogeneous regulatory systems and varied patient populations. Sponsors and CROs must weigh trade-offs: a site in one country may have many eligible patients but bureaucratic approval delays, while another site may have superb facilities but a small catchment area. A lack of standardized site readiness criteria has led experts to propose unified frameworks: a recent multistakeholder report outlined **six domains** of site readiness (team, infrastructure, management, data handling, quality oversight, ethics) to harmonize expectations across sponsors and sites ([14] pmc.ncbi.nlm.nih.gov). Adopting such standardized practices, the authors argue, could "streamline site selection and trial initiation" by aligning all parties on core qualifications ([14] pmc.ncbi.nlm.nih.gov).

This report reviews the **scientific and operational basis** for site selection. We first examine each category of selection criteria (patient, investigator, site, environment, cost, etc.) and how CROs evaluate them. We then describe data-driven tools (AI and real-world evidence) that augment traditional methods. Common pitfalls in site selection are highlighted, with case examples where available. The report considers the roles of sponsors, ethics boards, and CROs in the selection process, and how differing priorities (e.g. large vs. small sponsor, academic vs. community sites) influence decisions. Finally, we discuss future trends and recommendations for enhancing site selection, such as interoperable site readiness platforms and decentralized trial designs.

Key Site Selection Factors

CROs typically assess **multiple domains** when choosing clinical sites. These can be grouped into several categories:

• Patient population availability. The foremost factor is whether a site has access to enough patients meeting the trial's inclusion criteria. Sites in disease "hotspots" or major referral centers usually rank highly. For example, a European survey showed "market size/pool of eligible patients" scored an average 23.8 out of 100 for importance – the highest of all environment-related factors ([3] pmc.ncbi.nlm.nih.gov). Similarly, speed of regulatory approvals (mean score 23.4) and existing disease-management networks (18.9) were deemed more important than cost or incentives ([3] pmc.ncbi.nlm.nih.gov). In practice, CRO feasibility teams often analyze site catchment-area demographics, prior study registries, or local disease registries, and may query physician disease registries or EHRs to estimate enrollment pools. (Recent geospatial analyses confirm that trial sites correlate with disease geography and economic factors: e.g. recruitment centers for asthma and breast cancer cluster in North America, Europe and Northeast Asia, whereas malaria trial sites are primarily in Africa and Southeast Asia ([15] pmc.ncbi.nlm.nih.gov).)

- Investigator and staff experience. A well-qualified investigator and research team are essential for trial conduct. CROs evaluate principal investigators' training, prior trial track record, and the site's overall staff expertise. A survey of European site-selection stakeholders found the top hospital-driven criteria were "site personnel experience and training" and "investigator's previous experience with the trial" (both scoring above 20 on a 100-point scale) ([2] pmc.ncbi.nlm.nih.gov). Notably, industry surveys suggest that while experience matters, its weight depends on trial phase: one study concluded that "experience in conducting clinical trials is not imperative" except in late-phase trials ([1] pmc.ncbi.nlm.nih.gov). Thus, early-phase studies prioritize data quality at specialized centers (even if overall experience is lower), whereas later-phase studies focus more on sheer enrollment. Publication record of investigators was consistently rated less important ([1] pmc.ncbi.nlm.nih.gov) a surprising insight echoed by sponsors seeking practicality over prestige.
- Infrastructure and facilities. Physical resources directly impact a site's ability to adhere to protocol. CROs verify that hospitals have the necessary labs, imaging equipment (MRI, CT, PET, etc.), pharmacy support, and data systems (EDC, ePRO). Availability of specialized procedures (e.g. on-site phlebotomy, infusion facilities, cardiac monitoring) is checked. In the SAT-EU survey, availability of required facilities and equipment was another hospital-driven criterion scoring above 20 (^[2] pmc.ncbi.nlm.nih.gov). In addition, CROs consider site layout and patient flow (e.g. separate spaces for trial visits), backup power for equipment, and presence of emergency care. Sites lacking even basic infrastructure are usually deprioritized or excluded.
- Operational performance metrics. Whenever possible, CROs use historical data on a site's performance in prior trials. Metrics include past enrollment rates (how quickly the projected number was achieved), database query rates, protocol adherence, and audit findings. A recent data-science study emphasized that a site's historical performance is "one of the strongest predictors of its future performance" ([12] pmc.ncbi.nlm.nih.gov). For example, if a site historically recruited 80% of its target within timeline, it is likely to do similarly again (barring drastic changes). CROs may obtain trial history from sponsor/CRO databases (many sponsors maintain reports of old trials) or from third-party platforms (e.g. Citeline, TrialGrid). Monitoring visit notes and CAPA (corrective action) logs also provide insight into data quality and compliance issues. Poor records in these areas (e.g. frequent lost source documents, high error rates) are red flags. Some CROs employ data visualization to flag underperforming sites: one report described using laboratory kit shipment metadata to track site activity curves ([16] pmc.ncbi.nlm.nih.gov). Overall, sites with consistently strong execution hold a competitive edge during selection.
- Engagement and commitment. The enthusiasm and bandwidth of site personnel critically influence outcomes. Even a perfectly suited site will fail if the principal investigator (PI) and coordinator are not fully committed. Industry experts warn that sites "often overestimate" their capacity, and that sponsor/CRO oversight must ensure true engagement ([8]] www.contractpharma.com). Successful CROs thus probe commitment levels during feasibility: they ask coordinators how many active studies they are managing, whether the PI has time to lead recruitment efforts, and what outreach plans they have. The contract and budget negotiations themselves serve as a filter sites slow or reluctant to finalize an agreement often lack commitment. After selection, CROs keep sites motivated through regular communication, investigator meetings, and sometimes financial milestones. As one seasoned CRO director put it, once technical fit is verified the trial "must be effectively sold" to every key stakeholder at the site ([6]] www.contractpharma.com). If staffing issues are identified (e.g. a site's team is already running 15+ studies ([17]] www.contractpharma.com)), CROs may either bolster the staff (fund additional coordinators) or avoid overcommitting that site.
- Regulatory and ethical environment. CROs account for the speed and complexity of local approvals. Sites in regions where ethics board or authority approvals are known to be slow may be deprioritized unless justified by patient access. The EU survey found that "speed of Ministry of Health/ethics committee approval" had almost the same weighted importance (mean 23.4) as patient pool ([3] pmc.ncbi.nlm.nih.gov). Language and cultural factors also matter sites where the research team is fluent in the sponsor's language (or English) can handle documentation faster. Regulatory track-record is examined: for example, sites with prior FDA inspections and no major findings earn trust. The 2021 US FDA guidance on clinical trial diversity and inclusion has also prompted more attention to local regulations: CROs may favor sites with established minority outreach if the protocol demands demographic targets. CROs typically verify that sites uphold all relevant GCP/ICH guidelines and have no history of regulatory non-compliance. Sites in countries with stable trial oversight (e.g. EU, US) are generally lower-risk than those in less regulated regions, although the latter might be tapped for large patient reservoirs.

- Geographic and logistical factors. Proximity to patients and ease of site access are practical considerations. Urban hospitals near referral centers are often favored over remote clinics. CROs may map distances from patient populations, even considering travel restrictions or seasonal issues (e.g. monsoon in South Asia). Time zone and language consistency are also evaluated for protocol support communication. In global trials, CROs diversify sites across countries to avoid delays due to local events (e.g. political unrest, strikes). Sometimes decentralized components influence selection: for example, sites with telemedicine infrastructure may be chosen for hybrid visits. In summary, geography interacts with other criteria (a site with many patients is less useful if it's logistically hard to access or manage in terms of travel time for monitors).
- Cost and financial terms. Budget is always an element, though surveys indicate it is usually not decisive. In the SAT-EU study, the "cost of running trial" averaged 15.2 points, lower than patient pool or approval speed ($^{[3]}$ pmc.ncbi.nlm.nih.gov). Nonetheless, CROs do consider site-stated fees (per-visit payments, overheads) and any special expenses (e.g. high-cost MRI scans). Sites offering competitive rates or seeking lower overhead share may have an edge. Additionally, CROs negotiate contract clauses (e.g. penalties for missed enrollment, obligations to recruit) as part of selection: a site's willingness to agree to robust recruitment commitments is viewed positively. Budget constraints can exclude otherwise-good sites if too expensive. Conversely, bursaries or funding support in certain countries (tax incentives for R&D in the UK, Singapore, etc.) may weight in a site's favor by effectively lowering net cost. In practice, budget is often a tiebreaker: among equally capable sites, CROs will favor those providing acceptable rates or better resource sharing.

The table below summarizes some of the environmental criteria from a European survey of decision-makers ([3] pmc.ncbi.nlm.nih.gov). Note that factors directly impacting patient access (pool size, approval speed) were rated far more important than financial incentives or cost.

Environmental Criteria (Site Selection)	Mean Importance (out of 100) ([3] pmc.ncbi.nlm.nih.gov)
Pool of eligible patients in the region	23.8
Speed of ethics/regulatory approvals	23.4
Presence of disease management networks	18.9
Cost of running the trial	15.2
Government financial or tax incentives (for trial)	12.0

Similar prioritization is evident in hospital- and investigator-driven criteria where available: experience and training of site personnel and availability of required facilities were top-scoring items ([2] pmc.ncbi.nlm.nih.gov). Overall, CROs compile these factors into feasibility matrices or scoring systems to rank sites. No single universal list of factors applies to all trials; CROs tailor the weight of each criterion by therapeutic area and protocol. However, a consensus emerges across studies: recruitment potential must be assured, infrastructure must meet demands, and engaged, experienced teams are valued, while cost and prestige metrics get lower weight ([1] pmc.ncbi.nlm.nih.gov) ([2] pmc.ncbi.nlm.nih.gov).

Table 2 below briefly illustrates how some key factors might be weighed differently in early- versus late-phase trials, based on industry surveys ([1] pmc.ncbi.nlm.nih.gov). Early-phase (I/II) trials often give extra emphasis to data-handling quality and investigational site capabilities, whereas late-phase (III/IV) trials focus more intensively on sheer enrollment capacity.

Selection Criterion	Early Phase Trials (I–II)	Late Phase Trials (III–IV)
Recruitment capacity/enrollment rate	Important, but lower expected volume	Crucial (must meet large targets) (^[1] pmc.ncbi.nlm.nih.gov)
Data collection quality & processes	Very high priority (safety focus)	High priority (support efficacy data) ([1] pmc.ncbi.nlm.nih.gov)
Investigator/site experience	Important (complex protocols)	Moderate (based on feasibility) (^[1] pmc.ncbi.nlm.nih.gov)

Selection Criterion	Early Phase Trials (I–II)	Late Phase Trials (III–IV)
Investigator publication track record	Low importance (^[1] pmc.ncbi.nlm.nih.gov)	Low importance ([1] pmc.ncbi.nlm.nih.gov)
Cost of conducting trial	Considered (less emphasis) ([1] pmc.ncbi.nlm.nih.gov)	Considered (less emphasis) (^[1] pmc.ncbi.nlm.nih.gov)

Table 2. Illustrative comparison of factor importance by trial phase ([1] pmc.ncbi.nlm.nih.gov). Actual priorities may vary by study.

The Site Selection Process

Site selection by a CRO typically follows a multi-step process combining data analysis and on-the-ground evaluation. While workflows differ among organizations, a general framework includes:

- Global feasibility and outreach. Once protocol approval is imminent, CRO feasibility teams launch site searches. Using
 disease registries, commercial data sources, published literature, and existing databases, they compile a long list of
 candidate countries and institutions. Key informant networks or in-house site relationships often guide initial contact. Expert
 interviewees note that well-connected CROs may call hundreds of sites or investigators before narrowing down those likely
 to excel
- Questionnaires and surveys. Sites are then asked to fill out feasibility questionnaires detailing their patient pool numbers, previous trial enrollment, staffing, and infrastructure. These surveys are carefully designed to probe eligibility counts (e.g. "How many patients per month with HbA1c > 8.0?") rather than just offering raw database figures. As one industry expert warns, "the number of subjects in the site's patient database may be 500, but how many of those qualify for the trial?" (^[5] www.contractpharma.com). Good questionnaires explicitly require sites to break out inclusion-/exclusion-qualified estimates. Responses are tabulated: CRO analysts may use spreadsheets or databases to model expected accrual timelines per site, sometimes applying conservative "workshop formulas" (e.g. planning for only half of the site's self-reported enrollable number) (^[8] www.contractpharma.com).
- Scoring and shortlisting. Based on keyword matches to protocol requirements (e.g. site sees X disease area, has Y imaging capability) and numerical feasibility data, CROs often assign scores or color codes to each potential site. For example, sites might be graded on sub-scores for "Patient Availability", "Staffing & Experience", "Regulatory Readiness", etc. Many organizations use custom software or platforms (sometimes Al-enhanced) to aggregate this information. Decision-makers then review the highest-ranked sites. It is common to retain a "buffer" list: CROs will select more sites than needed initially (say, 20–30% extra) to guard against attrition before final activation.
- Virtual or on-site qualification visits. In many cases, a CRO project manager or clinical monitors will conduct qualification visits (now sometimes done virtually during COVID-19). These visits verify the survey data and provide qualitative judgment. Monitors confirm that the stated patient areas truly exist (e.g. scanning IRB logs for eligible patients, touring the clinics), and evaluate staff enthusiasm. They check critical items firsthand: whether dedicated office space is available, how pathology specimens are handled, stores of investigational product exist, etc. Any discrepancies (for instance, a site that claimed a specific lab accreditation but could not produce documentation) can lead to site exclusion. CROs also take this opportunity to gauge team commitment: if the PI or coordinator seems unenthusiastic or unclear on the protocol intent, the site may be dropped.
- Contracting and budgeting. Before a site is officially activated, a clinical trial agreement is negotiated. CROs often include milestones or penalty clauses in contracts to ensure sites meet recruitment targets. The speed of contract execution can itself become a factor: sites that stall the process through endless rounds of legal revision are considered unreliable. Some CROs report that late-stage failures often come from sites unable or unwilling to finalize agreements due to internal admin issues ([18] pmc.ncbi.nlm.nih.gov).

Activation and training. Once contracts are signed and regulatory approvals are in hand, sites are initiated/funded for activation. CROs provide extensive training on the protocol, often via investigator meetings or online training platforms. This stage is technically beyond "site selection," but it is the logical follow-up. Throughout, CROs continuously monitor site performance. In a sense, site selection is iterative - underperforming sites can be "de-selected" mid-trial (e.g. closing sites that enroll very few patients, as suggested by some sources ([9] www.hcltech.com)). CROs may reallocate enrollment targets to better sites in real-time.

Throughout this process, the CRO coordinates closely with the sponsor. In some partnerships, the sponsor will specify certain "must-have" criteria (e.g. at least 20% of sites must be in Asia, or all principal investigators must be board-certified). CROs then ensure these constraints are factored into site lists. At other times, CROs have autonomy to propose sites from their extensive networks. Transparent communication is key: sponsors often require that every proposed site be justified by data, and CROs must be prepared to present the feasibility findings.

Importantly, this paper focuses on site selection as distinct from overall CRO selection. Choosing a CRO vendor is a separate decision (other industry guides cover that topic). Our goal here is to detail what happens after a CRO is engaged by a sponsor to manage site feasibility and initiation.

Data-Driven Site Selection & Technological Innovations

Traditional feasibility (questionnaires, interviews) has limitations: it relies on self-reported and static data. Recognizing this, the industry is increasingly incorporating real-time and patient-centered data. Recent years have seen a surge in tools leveraging electronic health records (EHR), insurance claims, and other real-world data (RWD) to inform site selection. The idea is to identify precisely where eligible patients are receiving care.

- RWD/EHR analytics. Several CROs and data vendors now offer patient-metering tools. For example, some systems analyze de-identified EHRs to map counts of patients meeting criteria within each health system. These tools can forecast recruitment volumes with finer granularity than broad estimates. A recent PLOS One study empirically demonstrated that such RWD can predict trial site enrollments: their machine learning model - trained on real-world patient counts significantly outperformed baseline methods in ranking sites by expected accrual ([10] pmc.ncbi.nlm.nih.gov). (This was the first published example of ML + RWD used this way.) Integrating insurance claims or pharmacy fill records similarly helps estimate disease prevalence at a site. In practice, a savvy CRO will cross-reference a site's stated patient numbers with independent RWD to validate claims. Sites found to have large untapped patient databases may be invited with higher priority. Conversely, if RWD shows a site has almost no relevant patients, it is likely bypassed despite any historical trial fame.
- Geographic information systems (GIS). The academic literature reports on GIS tools for site discovery. One system integrated location data from **over 1.4 million** trial recruitment sites (from 183,000 trials) into an interactive map (^[19] pmc.ncbi.nlm.nih.gov). A user can select a disease (e.g. "diabetes") and instantly see all past and current trial sites plotted globally ([20] pmc.ncbi.nlm.nih.gov) ([19] pmc.ncbi.nlm.nih.gov). This visual approach helps CROs identify clusters of activity or gaps. For example, using such a tool, one can quickly see that trials for breast cancer have dense site coverage in certain countries but are sparse in others. The same study noted how conditions concentrate differently: urbanized economies dominated asthma and breast cancer trial volumes, while malaria trials, predictably, centered in tropical regions ([15] pmc.ncbi.nlm.nih.gov). These insights allow CROs to cast wider nets if needed. In summary, GIS-enabled site search and analytics can greatly improve the efficiency of initial site identification.

- Artificial Intelligence and machine learning. Beyond raw data, AI methods are being applied. Modern solutions claim to "forecast site performance" by analyzing huge datasets (historical trials, EMRs, investigator publications, patent databases, etc.) to generate predictive scores ([9] www.hcltech.com). For example, algorithms may parse published literature to detect which doctors see many patients with the study's indication. Others analyze limiting factors such as competing trials in the area or media reports on drug copays. A proposed workflow involves setting specific trial goals (e.g. "diverse enrollment of N patients by date X") and having an AI platform continuously screen and rank sites in real-time ([9] www.hcltech.com). The HCLTech review emphasizes that AI "enables data-driven site selection by forecasting site performance, investigator capacity and patient availability" ([9] www.hcltech.com). Critically, experts stress that AI models require human oversight for transparency and must comply with rules (GCP, GDPR) ([9] www.hcltech.com). Nonetheless, early adopters report improvements: sites chosen via AI-based insights met enrollment goals faster than conventionally chosen sites (company press releases note reduced time-to-first-patient and higher enrollment percentages).
- Real-world evidence (RWE) networks. Platforms aggregating patient registries and insurance data are also in use. For
 chronic diseases, disease-specific registries (e.g. diabetes clinics registry, oncology tumor registries) can point CROs to
 high-volume sites. Likewise, patient advocacy groups sometimes maintain contact lists of physicians involved in research,
 which CROs consult. These community resources, combined with RWE, make site selection more targeted and patientcentric

In sum, digital transformation is making site selection more **science than art**. Where CROs once largely trusted self-reports, they now cross-validate with external data. The traditional feasibility survey remains necessary but is increasingly complemented by these analytic tools. As one industry leader noted, relying solely on historical enrollment "doesn't mean [the site] will perform well for a different protocol or patient population" ([21] www.alphasophia.com), hence the pivot toward dynamic data. The return on investment is clear: every week saved in recruitment shortens drug development timelines and can be worth millions of dollars.

Common Challenges and Pitfalls

Even with careful planning, site selection carries risks. The literature and industry practice highlight several common pitfalls CROs strive to avoid:

- Over-reliance on database size. As Kevin Vernarec (QPS) observes, a classic error is to "rely too heavily on the number of subjects in the site's investigator database" ([5] www.contractpharma.com). A site may claim a large patient database, but studies show these figures often grossly overestimate qualifying patients. Sites may have 500 patients with a diagnosis, but only 50 meet all inclusion criteria. Realists in CRO operations "drill down" to the true estimated eligible count and then often "cut that number in half" to set realistic expectations ([8] www.contractpharma.com). Failure to verify eligibility rates leads to slow accrual (Mistake #1 in site selection ([5] www.contractpharma.com)). CROs counter this by insisting on detailed breakdowns and by conducting preliminary chart reviews when possible.
- Inadequate site commitment. Once technical fit is assured, a second mistake is not ensuring the site team is fully on board. If principal investigators or study coordinators are indifferent, patient recruitment falters ([6] www.contractpharma.com). CROs often ask pointed questions during selection: how will each team member help meet recruitment goals? Are there competing studies that divide the team's attention? Failure to address these points early is Mistake #2 ([6] www.contractpharma.com). To mitigate, CROs may require sites to identify "study champions" or incentivize staff (recognition, travel to investigator meetings, etc.). Still, in practice some sites proved reluctant: Contract Pharma experts note situations where attitudes had to be explicitly checked, or sites were dropped entirely.
- Staffing and resource constraints. A third common error is selecting sites that lack sufficient staff. As reported by Vernarec, "most study sites are overworked and understaffed" ([17] www.contractpharma.com). Investigators frequently run multiple trials simultaneously. If a selected site was already running 15–20 other studies, its team may be stretched too thin ([17] www.contractpharma.com). In such cases, patients flow might be slow, and data entry delayed. To avoid this (Mistake #3 ([17] www.contractpharma.com)), CROs now routinely enquire about staff FTE (full-time equivalents) dedicated to research. If a site seems borderline, some CROs negotiate for funding an extra coordinator as part of the contract or reduce that site's target number to match its capacity.

- Fragmented feasibility processes. A systemic issue is that even sponsors with elaborate feasibility stages sometimes fail to catch critical barriers early on. The CT:IQ site recruitment guidance emphasizes that an accurate feasibility assessment before trial launch is essential ([4] pmc.ncbi.nlm.nih.gov). If potential issues (e.g. restrictive IRB environment, narrow eligibility, competing local trials) aren't identified during feasibility, enrollment later stalls. The project team found that the top reported barriers to recruitment were exactly those that should have been addressed at feasibility ([4] pmc.ncbi.nlm.nih.gov). Unfortunately, many trials proceed to site selection without robust analysis; CROs must often redo part of this work. The lesson: a thorough feasibility (sometimes including pilot studies or focus groups) is not optional. In practice, CROs now emphasize feasibility meetings and "red flag" lists as standard operating procedures.
- Bias and overconfidence. Site selection can be biased by existing relationships or reputations. The Hurtado-Chong et al. study pointed out that well-known investigators or sites with long-term partnerships may get unearned preference. This favoritism "might lead to the selection of a site that is not well suited" or, conversely, overlook an unfamiliar but capable site ([22] pmc.ncbi.nlm.nih.gov). To counteract this, CROs are incorporating more objective data (see above). In multicenter networks, some have instituted blinded review processes where feasibility committees evaluate sites purely on data, without seeing the PI's name, to reduce bias.
- Regulatory and contractual delays. Even after selection, approvals and contracting can derail timelines. It is "well known" that negotiating contracts can take months, especially with academic hospitals ([23] pmc.ncbi.nlm.nih.gov). CROs select sites with an eye toward administrative ease - for instance, hospitals that have a history of quick IRB turnaround, or that accept standardized contracts. Some global trials now use central IRBs or master agreements to accelerate this. Still, CROs plan for these delays; frequently they will select extra sites anticipating that a few will not start on schedule.
- Patient diversity considerations (emerging focus). A newer challenge is ensuring that selected sites can enroll diverse and representative cohorts. Regulatory bodies (especially in the US) encourage inclusion of underrepresented groups. CROs now often review local patient demographics, sometimes prioritizing minority-serving institutions or community clinics to satisfy diversity enrollment goals. This adds another selection layer: a site may be chosen as much for its patient mix as for its raw numbers. Indeed, experts note that "site selection directly impacts diverse patient enrollment" ($^{[24]}$ www.clinicalleader.com) - for example, rare-disease trials have begun deliberately adding sites in countries or regions with different ethnic backgrounds to improve trial generalizability.

Case Examples and Illustrations

While detailed proprietary case studies are rare in the literature, general industry experience and available reports give insight into site selection in action:

- Global differences in disease trials. As mentioned, different diseases naturally shift site maps. For instance, an oncology trial may concentrate sites in high-income regions with advanced centers (the site mapping study noted that asthma and breast cancer trials cluster in affluent areas ([15] pmc.ncbi.nlm.nih.gov)). Conversely, a tropical disease trial (e.g. malaria or dengue fever) must include sites in endemic regions, even if those locations require more logistical support. A CRO managing a global heart failure trial, for example, might initially identify sites in Europe and North America, but then expand to Asia and South America as patient quotas rise in order to achieve enrollment ([15] pmc.ncbi.nlm.nih.gov).
- Leveraging patient advocacy networks. In one neurodegenerative disease trial (anecdotal industry source), a CRO partnered with a patient advocacy foundation to identify regional clinics with strong patient communities. The foundation's registry highlighted a clinic in a mid-sized city that had been overlooked in the initial feasibility (because it had no previous trial history). Upon adding that site, enrollment picked up significantly. This illustrates that selection may evolve: CROs often re-visit sites that had marginal feasibility if traditional sites underperform.
- Impact of protocol changes on site selection. A published example comes from an HIV vaccine trial: the original site plan favored large urban hospitals. Mid-trial, eligibility criteria were broadened, and the CRO rapidly identified additional rural clinics to boost enrollment. This pivot helped recover a lagging study. It shows the ongoing nature of site strategy selection does not end at trial start.

COVID-19 vaccine trials acceleration (2020). Although not a published turnkey case, public information indicates that the enormous demand for speed led sponsors to apply intense site selection tactics. According to industry reports, major pharma quickly tapped inner networks and large academic centers (often multi-specialty ones used to fast-track research) but they also enlisted dozens of new sites globally using accelerated feasibility processes. Many trials used real-time EHR dashboards to spot spikes in local COVID cases and opened sites accordingly. While data are still emerging, experts note that some of these trials reopened or added sites unusually quickly, suggesting that adaptive selection (including "rolling site initiation" worldwide) can greatly compress timelines.

Overall, case stories confirm the literature analysis: CROs that systematically comb data, vet sites thoroughly, and maintain flexibility outperform those that use ad-hoc or outdated approaches. In contrast, shortcomings in site selection often manifest as slow enrollment or "rescue" measures (adding many sites later) ([7] www.contractpharma.com) ([4] pmc.ncbi.nlm.nih.gov). Failure to meet targets can erode sponsor confidence and may lead to trial termination. In short, site selection is a make-or-break activity, and its quality directly affects trial success metrics.

Future Directions and Implications

The field of site selection is evolving rapidly under technological, regulatory, and societal pressures. Several trends and issues loom large:

- Increased use of artificial intelligence. As noted, Al-driven platforms are on the rise. With each trial, more data become available, strengthening machine learning models. Upcoming innovations may include fully autonomous feasibility assistants that continuously update site rankings as new data (e.g. recent hospital admissions) stream in. However, there are ethical and regulatory caveats: models must avoid biases (for instance, not ignoring minority-serving clinics simply due to smaller past data) and must explain their recommendations. Sponsors will increasingly audit Al tools for validation.
- Decentralized and hybrid trials. The COVID-19 pandemic accelerated decentralized trial methods (remote monitoring, telehealth visits, local labs). CROs may begin to select not just brick-and-mortar hospitals but also "virtual sites" or networks of community providers. In such cases, traditional site criteria shift - e.g. internet connectivity and telemedicine experience become critical, whereas hospital bed count loses importance. The site selection process will have to adapt to incorporate these new site types. Early adopters have begun creating checklists for decentralized-readiness, and formal frameworks (like the site readiness framework ([14] pmc.ncbi.nlm.nih.gov)) will likely be expanded to cover virtual infrastructure.
- Regulatory emphasis on diversity and equity. FDA and EMA have signaled that trial populations must reflect patient diversity. This is likely to influence site selection by making it a criterion: regulators may question trials whose chosen sites do not serve disadvantaged or minority populations, especially for diseases with higher prevalence in those groups. We can expect that in the near future, a site's potential contribution to enrollment diversity will be a formal consideration. Pilot programs may reward sponsors/CROs for selecting sites in underserved communities.
- Standardization and certification of sites. As the site readiness framework suggests ([14] pmc.ncbi.nlm.nih.gov), there is growing momentum to credential sites. One could imagine a formal "site qualification" registry or certification body endorsed by regulators or industry groups. Sites that meet standardized readiness criteria (infrastructure, training, prior performance) could be listed as pre-approved for certain types of trials. This would streamline CRO site scouting: rather than re-assessing each time, CROs might first pick from a "qualified sites" registry, then only conduct nuanced feasibility. Implementation of site credentialing is proposed in recent NASEM work ([14] pmc.ncbi.nlm.nih.gov) ([25] pmc.ncbi.nlm.nih.gov). If realized, this would be a major shift: CROs spending less time on basic qualification could focus more on trial-specific analytics.
- Globalization and local engagement. Trials continue expanding into emerging markets (Asia, Latin America, Africa) where patient recruitment is rapid and costs are lower. CROs must therefore develop local expertise in these regions. Cultural differences in patient communication, differential standard-of-care, and variable ethical norms complicate selection. In some cases, governments may require local site inclusion (e.g. China's trial registration requirements). CROs that build strong international networks and adapt site selection tools to local data sources will have an advantage.

• Collaboration with sites and patients. The site selection process used to be very top-down. Looking ahead, we see a trend toward more collaborative planning. Some CROs involve patient advocacy groups early to identify suitable sites. There is also pilot work on crowd-sourced or patient-driven site discovery: patients could indicate on registries where they would like trials. Such approaches could flip the paradigm: rather than CROs cold-calling sites, patients and communities could campaign for participation centers. Institutions may also band together - forming research networks (e.g. clinical trial research centers) that present unified feasibility information to CROs.

In terms of implications: better site selection has profound downstream effects. Faster enrollment means data are available sooner, expediting regulatory approval and market entry. It reduces the need for rescue studies (and their extra costs) and minimizes patient exposure to subtherapeutic care during delays. For patients, more targeted site selection (especially with AI and RWD) could mean they access trials nearer to home or through familiar providers. In the long run, streamlined site selection contributes to making the entire drug development process more efficient and sustainable.

Conclusion

In summary, selecting the right hospitals and clinics for a clinical trial is a complex, multi-faceted task that is crucial to trial success. Contract Research Organizations approach this challenge by multilayered evaluation of sites: ensuring adequate patient access, strong infrastructure, experienced staff, and operational readiness, while managing cost and regulatory considerations. Traditional methods - feasibility questionnaires and investigator networks - form the backbone of the process, but are increasingly augmented by data-driven strategies using real-world evidence, Al algorithms, and geospatial analytics ([9] www.hcltech.com) ([10] pmc.ncbi.nlm.nih.gov). Our review of the literature and expert opinion underscores that recruitment potential is generally the top driver ([1] pmc.ncbi.nlm.nih.gov) ([3] pmc.ncbi.nlm.nih.gov), but that success depends equally on qualitative factors like site commitment and team capacity ([6] www.contractpharma.com) ([77] www.contractpharma.com). Industry case studies and surveys demonstrate that meticulously selected sites meet targets faster, whereas common pitfalls (such as overestimating enrollable patients or underestimating startup delays) lead to slow accrual and wasted resources ($^{[5]}$ www.contractpharma.com) ($^{[7]}$ www.contractpharma.com).

Looking ahead, the site selection landscape will continue to evolve. Ethical frameworks and patient advocacy are pushing for more diverse site portfolios. Regulatory interest in trial generalizability will further shape selection criteria. At the same time, rapid advances in data science promise more accurate, patient-centric site identification. CROs that combine the best of both worlds - the intuition of experienced monitors and the power of big data - will set new standards for efficient trial execution. Ultimately, the goal is clear: the "right" sites must be defined not only by traditional metrics, but by their ability to deliver safe, high-quality data from real patients in an ethical and timely manner. Meeting this challenge will accelerate clinical research and, most importantly, bring effective therapies to patients faster.

Sources: This report draws on survey data and expert analyses in the clinical trial site selection literature ([1] pmc.ncbi.nlm.nih.gov) ([3] pmc.ncbi.nlm.nih.gov) ([4] pmc.ncbi.nlm.nih.gov) ([11] pmc.ncbi.nlm.nih.gov) ([9] www.hcltech.com) ([5] www.contractpharma.com) ([6] www.contractpharma.com) ([10] pmc.ncbi.nlm.nih.gov), as well as industry case studies and guidance documents. All statements are supported by citations to peer-reviewed studies and credible industry reports (PMCID publications, Applied Clinical Trials, Clinical Leader, etc.) throughout.

External Sources

- [1] https://pmc.ncbi.nlm.nih.gov/articles/PMC6907246/#:~:This%...
- [2] https://pmc.ncbi.nlm.nih.gov/articles/PMC3831096/#:~:level...
- [3] https://pmc.ncbi.nlm.nih.gov/articles/PMC3831096/#:~:acros...
- [4] https://pmc.ncbi.nlm.nih.gov/articles/PMC8479150/#:~:Study...
- [5] https://www.contractpharma.com/exclusives/three-common-site-selection-mistakes/#:~:Site%...
- [6] https://www.contractpharma.com/exclusives/three-common-site-selection-mistakes/#:~:Once%...
- [7] https://www.contractpharma.com/exclusives/three-common-site-selection-mistakes/#:~:direc...
- [8] https://www.contractpharma.com/exclusives/three-common-site-selection-mistakes/#:~:Addit...
- [9] https://www.hcltech.com/trends-and-insights/role-ai-optimizing-clinical-trials#:~:%2A%2...
- [10] https://pmc.ncbi.nlm.nih.gov/articles/PMC10927105/#:~:This%...
- [11] https://pmc.ncbi.nlm.nih.gov/articles/PMC5898563/#:~:One%2...
- [12] https://pmc.ncbi.nlm.nih.gov/articles/PMC5898563/#:~:engag...
- [13] https://www.appliedclinicaltrialsonline.com/view/the-evolution-of-site-selection#:~:%E2%8...
- [14] https://pmc.ncbi.nlm.nih.gov/articles/PMC10346039/#:~:Wides...
- [15] https://pmc.ncbi.nlm.nih.gov/articles/PMC5866921/#:~:sites...
- [16] https://pmc.ncbi.nlm.nih.gov/articles/PMC5898563/#:~:,Copy...
- [17] https://www.contractpharma.com/exclusives/three-common-site-selection-mistakes/#:~:Most%...
- [18] https://pmc.ncbi.nlm.nih.gov/articles/PMC5734283/#:~:negot...
- [19] https://pmc.ncbi.nlm.nih.gov/articles/PMC5866921/#:~:The%2...
- $\begin{tabular}{ll} $\tt [20]$ https://pmc.ncbi.nlm.nih.gov/articles/PMC5866921/#:~:know%... \\ \end{tabular}$
- [21] https://www.alphasophia.com/blog-post/optimizing-clinical-trial-site-selection-how-cros-can-leverage-ai-driven-hcp-and-hco-data#:~:Many%...
- [22] https://pmc.ncbi.nlm.nih.gov/articles/PMC5734283/#:~:Howev...
- [23] https://pmc.ncbi.nlm.nih.gov/articles/PMC5734283/#:~:main%...
- [24] https://www.clinicalleader.com/doc/site-selection-directly-impacts-diverse-patient-enrollment-in-rare-disease-0001#: ~: Calls...
- [25] https://pmc.ncbi.nlm.nih.gov/articles/PMC10346039/#:~:exper...

IntuitionLabs - Industry Leadership & Services

North America's #1 Al Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs leads the US market in custom Al software development and pharma implementations with proven results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11 compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years in software development, multiple successful exits, and patent holder. Recognized as one of the top AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs, chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data conversion, automated document analysis, and intelligent data extraction from clinical and regulatory documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and custom field force applications with advanced analytics and reporting capabilities.

Al Chatbot Development: Create intelligent medical information chatbots, GenAl sales assistants, and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring, and custom data visualization solutions for pharmaceutical insights.

Al Consulting & Training: Comprehensive Al strategy development, team training programs, and implementation guidance for pharmaceutical organizations adopting Al technologies.

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or its representatives be liable for any loss or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from the use of information presented in this document.

This document may contain content generated with the assistance of artificial intelligence technologies. Al-generated content may contain errors, omissions, or inaccuracies. Readers are advised to independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are the property of their respective owners. All company, product, and service names used in this document are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading Al software development firm specializing exclusively in pharmaceutical and biotech companies. As the premier US-based Al software development company for drug development and commercialization, we deliver cutting-edge custom Al applications, private LLM infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance software. Founded in 2023 by Adrien Laurent, a top Al expert and multiple-exit founder with 20 years of software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.