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Big Data Technologies in Pharma: Use Cases,

Implementation, and Comparisons
The pharmaceutical industry generates vast and diverse datasets – from genomic sequences and clinical trial results to regulatory

documents, safety reports, and supply chain logs. Data engineers in pharma must choose appropriate big data technologies to

store, process, and analyze this information at scale. This report explores key technologies – Hadoop (HDFS, Hive, HBase),

Apache Spark, Cassandra, MongoDB, Snowflake, AWS Redshift, Azure Synapse Analytics, Azure Data Lake, Google

BigQuery, Neo4j, TigerGraph, Veeva Vault, Informatica, DNAnexus, and Illumina BaseSpace – and how they are applied across

major use cases. Each section focuses on a specific use case (e.g., genomics, clinical trials, regulatory management,

pharmacovigilance, manufacturing and supply chain, sales and marketing analytics), detailing the technologies commonly used,

their technical implementation, distinguishing features, and concrete examples. Comparisons are provided in tables for attributes

like scalability, cost, performance, integration ease, compliance, and adoption, to help data engineers evaluate solutions.

Genomics Data Analysis and Bioinformatics Pipelines

Genomic and multi-omics data analysis in pharma involves processing massive sequencing outputs (DNA/RNA reads, variant files)

and integrating results for drug discovery or precision medicine. Key challenges include scalability (handling petabytes of

sequencing data), processing speed (aligning reads or calling variants on thousands of genomes), flexible analysis pipelines, and

compliance (handling potentially identifiable genetic data securely). Data engineers leverage a mix of on-premises big data

frameworks and specialized cloud platforms:

Hadoop Distributed File System (HDFS) for large-scale storage: Genomic files (FASTQ, BAM, VCF, etc.) are often enormous. HDFS

provides distributed storage across clusters, making it feasible to store and access terabytes of sequence data in parallel. For example,

biomedical research projects have utilized Hadoop to manage large volumes of NGS data and clinical results (Maximizing pharmaceutical

innovation with data engineering tools - Secoda). Apache Hive (SQL-on-Hadoop) can be used to structure genomic variant data in tables for

query, and HBase (Hadoop’s NoSQL store) can enable fast random access to genomic data (e.g. keying by gene or variant ID) in big

genome annotation datasets. While Hadoop’s batch-oriented MapReduce model was historically used (e.g. early tools like Crossbow for

sequence alignment), modern pipelines have shifted to more efficient in-memory processing.

Apache Spark for distributed computing: Spark is a general-purpose cluster computing engine ideal for iterative algorithms and large-scale

analytics. In genomics, Spark accelerates variant analysis pipelines by parallelizing tasks across cores or nodes. Spark is embedded in tools

like GATK4 from the Broad Institute, where “Spark” versions of variant callers (e.g. HaplotypeCallerSpark) allow processing a genome across

a cluster, drastically reducing runtime. Importantly, Spark can run on Hadoop clusters (using YARN) or in cloud-managed environments

(Databricks, Amazon EMR, Google Dataproc). ADAM and Hail are examples of genomics frameworks built on Spark, enabling scalable

analysis of genomic variants and genotypes. The in-memory computing of Spark yields performance gains over Hadoop MapReduce,

which is why it’s considered “one of the most promising technologies for accelerating pipelines”. Spark’s machine learning libraries (MLlib)

can also assist in genomic prediction models.

Cloud Data Warehouses (Snowflake, BigQuery, Redshift) for multi-omics integration and analysis: While Hadoop/Spark handle raw data

processing, cloud data warehouse platforms excel at aggregating results and enabling interactive analytics on genomic data combined

with other data (clinical phenotypes, compound libraries, etc.). Snowflake has emerged as a powerful option for bioinformatics data

warehousing. Researchers have demonstrated using Snowflake to manage diverse biological datasets and perform integrated analysis like

disease variant filtering and in-silico drug screening. Snowflake’s multi-cloud architecture and near-zero maintenance appeal to pharma

R&D – it runs on AWS, Azure, or GCP with a unified experience, avoiding vendor lock-in. Its features like automatic scaling, secure data

sharing, and zero-copy cloning make collaboration easier (e.g. safely sharing a subset of genomic data with a partner without duplicating

it). Meanwhile, Google BigQuery is leveraged for large genomic datasets, aided by Google’s ecosystem – for instance, BigQuery has native

support for public genomic data like The Cancer Genome Atlas (TCGA) and integrates with Google’s AI/ML tools (TensorFlow, Vertex AI) for

tasks like protein folding analysis. Amazon Redshift is often chosen if a company’s infrastructure is AWS-centric – it can integrate with

AWS services (S3 for storage, AWS Batch or SageMaker for analysis pipelines) to facilitate genomic data processing. Redshift now supports

semi-structured data and offers RA3 nodes with managed storage, but it may require more tuning than Snowflake/BigQuery for peak

performance. In practice, pharma companies might stage genomic data files in a cloud data lake (S3 or Azure Data Lake) and use external

tables or services like Redshift Spectrum or Synapse to query them as needed.

NoSQL and graph databases in genomics: Though less common than in other use cases, certain genomic applications use NoSQL stores.

For example, MongoDB can store experiment metadata or gene annotation JSON documents. If a project requires rapid queries by gene or

variant ID, a key-value store like HBase or DynamoDB could be employed. Graph databases like Neo4j appear in drug discovery knowledge

graphs (linking genes, diseases, compounds), which we discuss later, but they can also capture gene interaction networks or pathway data

relevant in genomics. These allow researchers to traverse relationships (e.g., find connections between a gene variant and known drug

targets) which is difficult with relational schemas.
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Specialized Genomics Platforms: Many pharma companies use domain-specific platforms such as DNAnexus or Illumina BaseSpace for

genomic data. DNAnexus is a cloud-based bioinformatics platform where users can run end-to-end NGS pipelines, perform variant

analysis, and manage datasets collaboratively. It is designed to handle population-scale genomics – as of 2023, DNAnexus manages and

supports over 80 petabytes of multi-omic data for pharma, clinical diagnostics, and research organizations (Fabric Genomics and

DNAnexus Team Up to Improve Scale and Speed of Data Analysis for Genomic Medicine - Fabric Genomics). It provides a secure, compliant

environment (HIPAA, CLIA, GDPR compliant) with workflow languages (WDL, Nextflow) and versioned apps, so data engineers can

implement complex workflows without building all infrastructure from scratch. Illumina BaseSpace Sequence Hub is another such

platform: it connects directly to Illumina sequencing instruments to stream data to the cloud, then offers storage, analysis apps (including

Illumina’s DRAGEN pipelines), and sharing capabilities. BaseSpace is engineered for regulatory compliance (ISO 27001, HIPAA) and high

performance, enabling labs to “build a secure, compliant, and high-performing genomic sequencing operation” (Genomic & NGS Data

Storage - Illumina) without worrying about underlying servers. While BaseSpace is Illumina-specific, DNAnexus and others are instrument-

agnostic and allow integration of custom analysis tools (using Docker containers).

Example: A pharmaceutical research team might sequence thousands of genomes in a drug discovery project. They could use

Illumina sequencers streaming data to BaseSpace for initial alignment and variant calling (leveraging Illumina’s optimized

pipelines). The resulting variant data could be exported to a Snowflake data warehouse where it’s combined with clinical data to

identify genotype-phenotype correlations. Data engineers might use Spark on a Databricks cluster to perform a heavy compute task

– e.g., joint variant calling or variant quality recalibration across all samples – reading from and writing to an Azure Data Lake. Once

processed, summary tables (like variant frequencies, gene associations) land in Snowflake for analysts to query. If they need to

cross-reference public knowledge (gene networks, literature), they might load data into a Neo4j knowledge graph that connects

those variants to known pathways and publications, enabling complex queries (e.g., find any known drug targets in pathways

affected by our top variant hits).

Comparison: Technologies for Genomics Data

Technology Scalability Performance
Integration

Ease

Compliance

Features

Adoption in

Genomics

Hadoop

(HDFS/Hive/HBase)

High horizontal

scalability (add

nodes to store

PBs). Suitable for

on-prem or IaaS

clusters.

Good for batch

throughput;

MapReduce slower

for iterative tasks

(Spark now

preferred for

speed).

Requires

significant

setup and

expertise

(Java, cluster

management).

Hive/HBase

integrate with

Hadoop

ecosystem,

but not plug-

and-play.

Secure setup

possible

(Kerberos,

Ranger) but

heavy to

validate. Full

control of

data on-prem

can aid

compliance if

managed

properly.

Historically

high for large

genomics

(e.g., 1000

Genomes

used HDFS).

Usage now

declining in

favor of cloud

services.

Apache Spark

Scales across

cluster nodes; in-

memory processing

limits per-node

memory needs but

can spill to disk.

Excellent for large-

scale data

transforms and ML

(much faster than

MapReduce for

many tasks). Utilizes

memory for speed.

Flexible

integration:

runs on

Hadoop,

Mesos,

Kubernetes, or

cloud-

managed

platforms.

Connectors

for many data

sources

(HDFS, S3,

JDBC, etc.).

No built-in

compliance –

depends on

environment

(can run on

secure

clusters or in

HIPAA-

compliant

cloud). Fine-

grained audit

needs custom

tooling.

Strong

adoption in

genomics

analytics (e.g.,

GATK4 uses

Spark). Widely

used via

Databricks,

GCP

Dataproc,

AWS EMR for

bioinformatics.

Snowflake Near-infinite auto-

scalability

(compute clusters

High performance

columnar engine;

automatic tuning

Very easy

integration:

standard SQL,

Strong

compliance:

HIPAA-,

Rapidly

growing in

pharma R&D.
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Technology Scalability Performance
Integration

Ease

Compliance

Features

Adoption in

Genomics

can be resized on-

demand; multi-

cluster warehouses

handle

concurrency).

and result caching.

Excels at complex

SQL on large data.

many BI tool

connectors.

Supports

stages to load

data from

S3/Azure/GCS.

Cross-cloud

data sharing is

unique.

GDPR-ready;

can encrypt

data, fine-

grained

access

control. Can

be validated

for GxP use.

Secure data

sharing

without

copies.

Used for

multi-omics

data

warehouses

(e.g., disease

variant

analysis and

drug

discovery use

cases).

Google BigQuery

Massive serverless

scalability

(Google’s

infrastructure

handles

sharding/parallelism

automatically).

Excellent at

scanning huge

datasets quickly;

fully managed. May

have slightly higher

latency on very

small queries due to

overhead.

Easy via SQL.

Integrates

natively with

Google Cloud

Storage, and

has public

genomic

datasets

(TCGA, etc.)

accessible.

Standard

ODBC/JDBC

for tools.

Google Cloud

is HIPAA-

compliant;

BigQuery has

fine ACL

controls. Data

is encrypted

at rest and in

transit by

default.

Used in large-

scale

genomics and

health

analytics (e.g.,

storing

population

genomics with

built-in ML

tools). Often

chosen for AI

integration

(TensorFlow

on data).

AWS Redshift

High scalability up

to petabytes. New

RA3 instances

separate storage on

S3 for virtually

unlimited storage.

Concurrency

scaling adds

clusters on

demand.

Fast for analytical

queries if tuned

(distribution keys,

sort keys).

Spectrum enables

querying S3 data

directly. Slightly

older architecture

than

Snowflake/BigQuery.

Good with

AWS

ecosystem:

easy to ingest

from S3,

integrate with

AWS Glue,

QuickSight,

SageMaker for

ML. Standard

SQL interface.

AWS offers

HIPAA-

eligible

services;

Redshift data

encryption,

VPC isolation

available.

Audit logging

to CloudTrail.

Often part of

validated

AWS

environments.

Widely

adopted by

pharma on

AWS, e.g., for

aggregating

clinical and

genomic data

in a

warehouse.

Some

migrating to

Snowflake for

ease-of-use.

DNAnexus Highly scalable

cloud platform

(built on

AWS/GCP).

Manages PB-scale

data and complex

pipelines with

horizontal scaling in

cloud.

Optimized for NGS

pipelines – can spin

up large compute

clusters for heavy

workloads. High

throughput for file

I/O to cloud storage.

Integration via

APIs/SDKs and

workflow

languages

(WDL,

Nextflow). Can

import from

cloud buckets

or instrument

Designed for

compliance:

meets strict

standards

(audit trails,

access

control,

HIPAA,

GDPR)

Moderate

adoption:

used by

genomics

initiatives (UK

Biobank,

precision

medicine

projects) and
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Technology Scalability Performance
Integration

Ease

Compliance

Features

Adoption in

Genomics

outputs. Less

standard than

SQL

interfaces.

(Fabric

Genomics

and

DNAnexus

Team Up to

Improve Scale

and Speed of

Data Analysis

for Genomic

Medicine -

Fabric

Genomics).

Many pharma

use it in

validated

environments

for clinical

genomics.

pharma

needing

turnkey NGS

analysis.

Growing as

data volumes

grow.

Illumina BaseSpace

Scales to many

sequencers and

large data volumes

by leveraging

Illumina’s cloud.

Storage scales with

Illumina Cloud

infrastructure.

High for Illumina’s

use cases (fast

secondary analysis

with DRAGEN

hardware-

accelerated

pipelines either on-

site or cloud). Not a

general compute

platform beyond

provided apps.

Seamless for

Illumina

instruments.

Limited

integration

outside

Illumina

ecosystem

(APIs exist but

primarily used

with Illumina’s

own pipeline

and analysis

apps).

Built-in

compliance:

ISO 27001,

HIPAA, GDPR

compliance

features. Data

encrypted at

rest and in

transit,

regional data

centers for

compliance

needs.

High adoption

in sequencing

labs (many

clinical

genomics labs

and biotech

use it for

ease-of-use).

In pharma,

often used in

early research

or clinical

sequencing

with Illumina.

Why these distinctions matter: For genomics, a data engineer might use Spark on HDFS when performing a one-time heavy

reprocessing of raw reads (leveraging existing on-prem clusters), then use Snowflake or BigQuery to warehouse the processed

results for easy querying by scientists. If the team values a fully managed, end-to-end solution, they might lean on DNAnexus or

BaseSpace to reduce engineering overhead, especially in clinical genomics where compliance is critical. The choice often depends

on existing infrastructure and skills (e.g., an organization with strong AWS skills might combine S3 + Redshift + AWS Batch for

genomics, whereas another might choose a cross-cloud Snowflake solution to avoid cloud lock-in).

Clinical Trials Data Management and Analytics

Clinical trial data is diverse – patient enrollment info, electronic case report forms (eCRFs), lab results, medical images, sensor data

from wearables, and more. These data come from different systems (EDC – Electronic Data Capture, LIMS, hospital EMRs, patient

apps) often in varying formats. A data engineer’s goal is to integrate and curate trial data for analysis (to monitor trial progress,

ensure data quality, or combine results from multiple trials). Key requirements include flexibility to handle semi-structured data,

scalability to manage many studies or high-frequency patient data, and compliance with regulations (clinical data must be handled

under GCP and 21 CFR Part 11 rules, requiring audit trails and access control).

Technologies commonly used in this domain:
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MongoDB for flexible clinical data storage: Clinical trial datasets can be highly heterogeneous – different trials collect different variables,

and protocols change over time. MongoDB’s document model is well-suited for such evolving schemas. A trial’s patient records can be

stored as JSON documents, allowing new fields or forms to be added without altering a rigid schema. This flexibility was demonstrated by

the FIMED project (a biomedical data management tool), which chose MongoDB as the core to manage clinical trial data for its schema-less

design and ability to handle semi-structured data (Integration and analysis of biomedical data from multiple clinical trials). MongoDB allows

dynamic forms and varying data per patient, which would be cumbersome in a traditional SQL schema. Scalability is another reason –

MongoDB can be clustered (sharded) across multiple servers, supporting large datasets and high throughput. In fact, MongoDB “has been

designed to operate using a cluster configuration, making it a great choice if scalability… is required” in clinical trial data contexts

(Integration and analysis of biomedical data from multiple clinical trials). With proper sharding (e.g. by study or site), it can handle

concurrent data ingestion from many trial sites. Data engineers also appreciate MongoDB’s querying and indexing for semi-structured data,

and its ability to store files (with GridFS) – for example, PDFs of patient consent forms or images can be stored alongside data.

Hadoop and Spark for large-scale trial data processing: When dealing with large aggregated datasets (e.g., a pharma company analyzing

all past trial data for patterns), Hadoop and Spark come into play. HDFS might be used to store raw dumps of clinical trial data (CSV files,

JSON logs, even PDFs), forming a clinical data lake. Apache Spark can then be used to clean and transform this data at scale – e.g.,

parsing millions of eCRF records or merging datasets for a meta-analysis. Spark’s distributed SQL engine (Spark SQL) and DataFrame API

let engineers join and filter big data sets from multiple trials efficiently. For instance, if ingesting data from a wearable device in a trial (say

daily heart rate readings from hundreds of patients), Spark could process these time-series in parallel to derive summary metrics per

patient. Spark is also useful for machine learning on clinical data – e.g., training a model to predict patient dropout using trial data.

Cloud Data Warehouses (Snowflake, Redshift, Synapse) for integrated analytics: After collecting and cleaning trial data, a common

practice is to load it into a centralized data warehouse for analysis by statisticians and data scientists. Snowflake is often used to create a

unified view of clinical data across studies – it can easily ingest structured outputs (e.g., CSV extracts from EDC systems or the results of

Spark processing) and make them queryable with SQL. Analysts can then use BI tools or Python/R to query Snowflake for interim analysis,

patient safety signals, etc. A concrete example is using Snowflake to ingest XML data from ClinicalTrials.gov (a public registry) and analyze

it with a BI tool: one team demonstrated loading trial data (in XML) into Snowflake and then using ThoughtSpot for search/analytics on it.

This highlights Snowflake’s ability to handle semi-structured data (it has JSON and XML functions) and work with external analytics tools

seamlessly. AWS Redshift plays a similar role for companies deep in the AWS stack – for example, a company might copy clinical data to S3

and use Redshift’s COPY command or Spectrum to bring it into a warehouse. Redshift can then join clinical data with other operational data

(finance, etc.) for comprehensive reporting. Azure Synapse Analytics is another contender, especially if data is already stored in an Azure

Data Lake. Synapse can combine a data lake store (where raw data from devices or logs are kept) with a SQL analytics engine for curated

datasets. Microsoft provides integration between Synapse and tools like Power BI for visualization. A case study described a pharmacy

chain using Azure Synapse to unify inventory and supplier data for trials supply management, demonstrating Synapse’s use in syncing and

analyzing data in real-time for operational efficiency (e.g., ensuring trial sites have drug supply). In general, these cloud warehouses provide

scalability (to handle many trials’ data), good performance for complex analytical queries, and features like encryption and role-based

access crucial for compliance (with fine-grained access so only authorized personnel see certain sensitive data).

Informatica for data integration and ETL: Informatica’s tools are widely used to extract, transform, and load clinical data from source

systems into a central repository. For instance, Informatica can pull data from an EDC (like Medidata Rave or Oracle Clinical) via connectors,

apply transformations (mapping coded values, combining datasets), and load into a warehouse or data lake. It excels at building reusable,

auditable data pipelines – important in a regulated trial context where you must trace how data moves. Master Data Management (MDM)

from Informatica might be used to maintain a master list of investigators, trial sites, or patients (using de-identified IDs) so that data from

different trials can link on common entities. Pfizer provides an example of modernizing data integration for R&D: they migrated from legacy

ETL to a cloud-native integration using Informatica Intelligent Cloud Services with Snowflake, automating 99% of data mappings from

on-premise sources to the cloud. This allowed Pfizer to rapidly scale processing and focus on analysis rather than plumbing. In a clinical trial

context, such integration ensures data from lab systems, clinical databases, and patient diaries all end up in one consistent format for

analysis.

Graph databases for study relationships and metadata: Graph technology is emerging in clinical research to link disparate data and

support complex queries, though it’s not yet as common as the above tools. One novel use is modeling the connections between studies,

investigators, sites, and outcomes as a graph. For instance, a Neo4j knowledge graph could link clinical trial entries (from registries and

internal data) with related data like compounds, targets, and outcomes. Neo4j was used at Novartis to ingest and connect the latest

biomedical research for drug discovery, indicating its usefulness in linking trial data with external knowledge. In clinical operations, a graph

could help identify investigators who have worked on similar studies or find hidden patterns (like a network of sites with faster enrollment).

Knowledge graphs can also enforce standards – e.g., linking data elements to CDISC standards (SDTM, ADaM) as nodes, to ensure trial

data complies with submission standards. This approach can facilitate metadata-driven automation in clinical data management.

Veeva Vault for clinical content and data: Veeva Vault is a cloud platform specifically built for life sciences, and while it is more a

content/document management system than a “big data” engine, it is crucial in clinical trial operations data management. Vault provides

applications like eTMF (electronic Trial Master File), CTMS, and study startup on a unified platform. Data engineers might not use Vault

for heavy analytics, but they will integrate data from Vault (such as trial documentation status or site activation metrics) into warehouses for

reporting. Vault’s advantage is that it’s pre-validated and compliant – it meets GxP requirements out of the box, with audit trails and role-

based security. For example, Vault CTMS manages operational data about trial progress, and Vault EDC captures patient data – these

systems can export data to a data lake or warehouse. The Vault Platform underneath is an object store and content management system

that can scale to an enterprise’s needs, with robust APIs. Vault ensures high performance and security for regulated content, but it’s used in

combination with analytic platforms (Vault’s reporting is limited, so data is often exported for advanced analysis).

Example: Consider a large Phase III clinical trial collecting data via an EDC system, a wearable ECG device, and lab test results from

a central lab. A possible pipeline: Data engineers set up Informatica jobs to regularly extract new EDC data and lab data, using
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mapping rules to a common schema. This data lands in an Azure Data Lake as raw files. A scheduled Spark job (e.g., on Azure

Synapse Spark pool or Databricks) cleans and combines these with wearable data (ingested via IoT pipelines into the Data Lake).

The curated data (patient visits, adverse events, biomarker readings) is then loaded into Azure Synapse Analytics where a

fact/dimension schema (data mart) allows fast analysis of, say, adverse event frequency by patient subgroup. Throughout, patient

identifiers are consistent via an MDM system, and access is controlled. The clinical operations team also pulls data from Veeva

Vault CTMS (via API or export) about site performance (enrollment numbers, queries, etc.), which is integrated into the warehouse.

On Synapse or Snowflake, the company can run SQL analytics to identify sites with high query rates or to compare efficacy signals.

They can also generate submission-ready datasets (CDISC SDTM/ADaM) by using these integrated data and ensure those outputs

comply with standards. If they use a knowledge graph approach, they might also load the data relationships into Neo4j, linking the

study, patients, drugs, and outcomes, enabling complex queries like “find all trials where a similar adverse event profile was

observed for drugs targeting the same pathway.”

Comparison: Technologies for Clinical Trial Data

Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

MongoDB (document DB)

Extremely flexible

schema – can handle

evolving case report

forms. Scales out with

sharding for large

multi-trial data. Fast

query performance on

JSON data with

indexes. Developers

can iterate quickly

without schema

migrations (Integration

and analysis of

biomedical data from

multiple clinical trials)

(Integration and

analysis of biomedical

data from multiple

clinical trials).

Lacks built-in analytics (no JOINS

across collections like RDBMS;

though aggregation pipeline is

powerful). Complex transactions

are limited (usually OK for logging

trial data). Requires careful data

modeling to avoid inconsistent

entries.

Used in platforms

for managing trial

data with flexible

forms (e.g.,

storing patient

records and

eCRFs). Sanofi’s

translational

medicine platform

reportedly uses

MongoDB to unify

research and

clinical data (for

its flexibility).

Many startups

use Mongo for

healthcare apps

that need quick

iteration.

Hadoop & Spark Ideal for batch

processing of large trial

datasets (combining

data from many studies

or processing high-

frequency data like

wearables). Spark

provides fast in-

memory computation

for tasks like data

cleaning and ML on

patient data. Hadoop

(HDFS) can store raw,

unstructured dumps

cost-effectively.

Hadoop ecosystem has steep

learning curve; not typically used

by clinical ops teams, so data

engineers must bridge gap. Batch

processing means results are not

real-time. On-prem Hadoop may

face validation hurdles. Spark jobs

need to be monitored for failures in

pipelines.

Employed by

organizations

doing secondary

analysis on

aggregate trial

data. E.g., using

Spark to process

a million records

from a long-term

outcomes study

overnight.

Hadoop clusters

were used

historically to

store large clinical

datasets, though

cloud data lakes

Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

© 2025 IntuitionLabs.ai. All rights reserved. Page 7 of 105

https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=1,structure%20of%20dynamic%20form%20schemas
https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=1,structure%20of%20dynamic%20form%20schemas
https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=1,structure%20of%20dynamic%20form%20schemas
https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=1,structure%20of%20dynamic%20form%20schemas
https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=2,Big%20Data%20technologies%20to%20handle
https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=2,Big%20Data%20technologies%20to%20handle
https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=2,Big%20Data%20technologies%20to%20handle
https://riuma.uma.es/xmlui/bitstream/handle/10630/26156/TD_HURTADO_REQUENA_Sandro_jose.pdf?sequence=1&isAllowed=y#:~:text=2,Big%20Data%20technologies%20to%20handle
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf


Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

are now more

common.

Cloud Warehouse

(Snowflake/Redshift/Synapse)

Provides a unified,

performant analytics

environment. Handles

structured trial data at

scale, enabling complex

SQL (joins between

patient, site, drug

tables). Easy

connectivity to BI tools

for dashboards (e.g.,

enrollment metrics,

safety signals). Security

and role management

to restrict sensitive

data access (e.g.,

blinded data).

Snowflake in particular

simplifies maintenance

(no indexing needed)

and can ingest semi-

structured data like

JSON (for ingesting

things like

questionnaires).

Synapse offers an end-

to-end workspace (data

ingestion, SQL, even

Spark in one platform)

which is convenient for

Azure-based pharma.

Primarily for structured/processed

data – raw unstructured inputs

often need pre-processing before

loading. Cost can grow with very

large data or complex queries

(engineers must optimize load and

query patterns). Redshift requires

choosing distribution keys and may

need tuning as data volume grows.

Synapse and Snowflake both

require careful data partitioning for

very large tables to maintain

performance.

High adoption:

Nearly all large

pharma have a

data warehouse

for clinical data.

Snowflake is

increasingly

popular for cross-

trial data marts

and sharing data

with partners.

Companies in

AWS use Redshift

or migrating to

Snowflake for

trials. Azure-

focused

companies use

Synapse (e.g., as

the basis of

modern data

warehouse for

trial and real-

world data at

Novartis or Novo

Nordisk).

Informatica (ETL/MDM) Excellent for integrating

multiple data sources –

connectors for clinical

databases (e.g., Oracle

Clinical), flat files,

spreadsheets. GUI-

based data mapping is

auditable and can be

reused for each trial.

Informatica MDM can

maintain golden

records for key entities

(patients, investigators)

to de-duplicate and link

data across systems.

Offers data quality tools

(to validate ranges,

codes) which is critical

Enterprise cost can be high.

Setting up mappings initially is

time-consuming (but pays off over

time). Cloud-based alternatives

(like Azure Data Factory or AWS

Glue) exist and might suffice for

simpler pipelines. Needs

integration with source system

APIs or DBs which might require IT

involvement.

Very high

adoption in

pharma: e.g.,

Takeda and Pfizer

modernized their

data pipelines

with Informatica

to handle clinical

and commercial

data integration.

Often, legacy ETL

for trials is built in

Informatica

PowerCenter (on-

prem) and

gradually shifting

to Informatica

Cloud or similar.
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

for clinical data

cleaning.

Used to populate

data warehouses

and also feed

operational

dashboards.

Neo4j / Graph DB

Captures relationships

that are hard to see in

tables – e.g., linking

investigators to trials to

publications, or patients

to all their treatments

and outcomes in long-

term studies. Enables

complex traversals:

“find trials with similar

eligibility criteria to my

trial” or identify hidden

connections (as

knowledge graphs can

link multi-omics and

trial data). Neo4j has a

relatively simple query

language (Cypher) for

such queries. Can help

ensure standards by

linking data points to

ontology nodes (like

adverse event terms to

MedDRA hierarchy in a

graph).

Not traditionally used for core trial

data analysis (which relies on

statistics and set operations more

than graph traversal). Adds an

extra technology that requires

graph modeling expertise.

Performance could suffer if naively

used for very large graphs

(TigerGraph might handle larger

scale). Potentially redundant if

relational approach suffices for the

problem.

Emerging

adoption: Some

pharma R&D

teams experiment

with knowledge

graphs for

integrating

research data

with trial data

(e.g., linking trial

results to gene

targets and

literature).

Regulatory

informatics teams

might use graphs

to model

relationships

between

regulations,

studies, and

filings. Still

relatively niche

compared to

mainstream

relational

approaches.

Veeva Vault (Clinical) Purpose-built for

managing clinical

operations data and

documents. Vault’s

CTMS, eTMF, etc., unify

trial management

processes with built-in

compliance. It ensures

audit trails and Part 11

compliance with

minimal configuration.

Scales to enterprise

(global trials across

many sites). Integration

via Vault API allows

pulling structured data

(like study statuses)

into other systems.

Vault is not an analytics platform –

its reporting is basic, so you often

need to export data for advanced

analysis. Being proprietary, you

must use Veeva’s interface or API –

direct database access is not

possible. Costs can be significant,

and it’s a SaaS (less control over

underlying DB). Data engineers

mostly consume data from Vault;

they don’t get to tweak the

platform much.

Very high

adoption in

pharma for trial

management

content – top

pharma

companies use

Vault eTMF and

CTMS. For data

engineers, Vault is

a source of truth

for certain data

(like milestones,

document

completion)

which they

integrate with

performance
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

Using Vault

dramatically reduces

the need for custom-

built solutions for trial

documents and site

management.

dashboards.

Vault’s presence

ensures any

solution they

build must

interface well with

it (often via API or

flat file exports).

In summary, clinical trial data management benefits from a hybrid approach: NoSQL (MongoDB) for flexibility at the data capture

stage, ETL tools (Informatica) for integration, big data tools (Spark/Hadoop) for heavy lifting on raw data, and cloud warehouses for

serving curated data to analysts. A critical consideration is always compliance: these systems must maintain patient privacy (often

using de-identified IDs) and provide audit logs for any data changes, which is why specialized systems like Veeva Vault and careful

data governance with tools like Informatica are so prevalent.

Regulatory Data Management and Compliance

Pharmaceutical companies must manage vast amounts of regulatory data and content: submission dossiers (hundreds of PDF

documents like study reports, manufacturing details), health authority correspondence, product registration data across countries,

and internal compliance documentation. Unlike other use cases, regulatory data is often more document-centric (unstructured or

semi-structured content) and requires strict version control, traceability, and security (to comply with FDA, EMA regulations and GxP

quality guidelines). Data engineers focus on ensuring that this content and associated metadata can be stored, retrieved, and linked

efficiently, and that data flows (for example, between regulatory and clinical systems) are integrated.

Key technologies and approaches:

Veeva Vault (Regulatory Information Management): Veeva Vault is a cornerstone in many pharma regulatory IT landscapes. It provides

applications for RIM (Regulatory Information Management), including modules for tracking product registrations, managing submission

content, and archiving submission packages. Vault’s Regulatory Submissions module, for instance, manages the assembly of submission

content (like the CTD – Common Technical Document – sections) and can publish in formats like eCTD. What makes Vault stand out is that

it’s built for compliance and content management on a single platform, meaning it was designed to meet the performance and validation

requirements of the life sciences industry from the ground up. Vault ensures that all documents are versioned, all user actions are audited,

and that it meets 21 CFR Part 11 (electronic records/signatures) compliance. Data engineers might not manipulate Vault’s internals (as it’s a

SaaS), but they will integrate it: for example, extracting metadata about approvals, or linking Vault content with data warehouses. Vault’s

underlying technology stack uses a NoSQL content store and an object-oriented data model that scales globally (Veeva hosts Vault in the

cloud with data centers in multiple regions). It can handle thousands of users and millions of documents, which is essential for large

companies with dozens of products and global operations. Vault also provides APIs and integration hubs so that, for example, when a

submission is approved, that information can flow to other systems (like manufacturing or ERP to trigger product launch). In terms of big

data, Vault may not be about large-scale computation, but it is about centralizing authoritative data and content so it can feed analytics.

Modern RIM analytics involve pulling structured data (like lists of approved indications, or timelines for each submission) out of Vault and

into a warehouse for metrics.

Relational and Data Warehouse solutions for regulatory data: While documents live in systems like Vault, the structured facets (e.g., lists

of all global filings, status of each, commitment due dates, etc.) are often stored in relational databases or warehouses for reporting. For

example, companies might use an Oracle or PostgreSQL database (sometimes part of older RIM solutions) to store registration data.

Increasingly, they are moving this to cloud warehouses like Snowflake or Azure Synapse to integrate with other enterprise data. A data

engineer might create a data mart of regulatory KPIs (e.g., time from submission to approval, number of pending queries by agency) by

blending data from Vault (via exports) and other sources. The technology choice here is driven by the need for joinable, queryable data –

hence SQL databases or warehouses are common. Snowflake’s secure data sharing could even allow a scenario where a pharma company

shares certain regulatory data with a partner (under strict controls) during a co-development project.

Hadoop/Spark for text mining of regulatory documents: Regulatory affairs departments increasingly use NLP and text mining on

submissions and health authority feedback to glean insights (like identifying all documents where a particular risk is mentioned). For such

use cases, big data frameworks come into play. A cluster using Hadoop or Spark can be employed to index and analyze thousands of

PDF/XML documents from past submissions. For example, Spark with an NLP library can parse through narratives in clinical study reports to

find key information requested by regulators. Hadoop’s scalability allows processing large corpora of regulatory correspondence (which

could be many gigabytes of text) in parallel. Data engineers might set up an index (Elasticsearch) for these documents, with an upstream

Spark job populating it. While this is not yet ubiquitous, it’s a growing area as companies realize the value of the unstructured data locked in

their archives.
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Graph databases for regulatory knowledge: Regulatory data is highly interconnected – a single drug product is linked to many

submissions in different countries, which in turn link to commitments, variations, manufacturing sites, and so on. Representing this as a

graph can be intuitive. Neo4j or TigerGraph can be used to build a regulatory knowledge graph: nodes might be “Product”, “Submission”,

“Regulatory Authority”, “Manufacturing Site”, etc., and edges capture their relations (submitted-to, approved-by, supplies, etc.). This can

help answer complex questions, like “Which approved products would be impacted if a particular manufacturing site’s license is revoked?”

by traversing the graph. Neo4j has been discussed as a way to model and query such regulatory networks for impact analysis. Additionally,

linking regulatory data to external knowledge (like linking an indication approved in a label to published clinical evidence) is a kind of multi-

relational query that graphs handle well. TigerGraph, with its emphasis on fast deep link analytics, could handle very large regulatory graphs

(spanning all products and regions) if needed, ensuring performance for queries that might traverse many hops (e.g., through multiple levels

of supply chain and approval relationships). However, these uses are still emerging – many companies rely on conventional databases and

manual processes for regulatory tracking, but we foresee more graph utilization as data volume and complexity grow.

Informatica and data governance: In regulatory data, data quality and governance are paramount – a mistake in a submitted data point

can be costly. Informatica’s data quality tools might be used to validate structured regulatory data (e.g., ensure all required fields for a

submission are present and follow the standards). Master Data Management could also apply: for instance, maintain a master list of global

health authority IDs or a dictionary of standardized regulatory terms. Informatica is investing in industry-specific solutions (Informatica has

an “Industry Data Bundle” for life sciences) that could ease managing things like controlled vocabularies. Ensuring consistency (such as

using the same drug name across all submissions) is a place where these tools help.

Compliance features of cloud platforms: When regulatory data is moved to the cloud for analysis, ensuring the platform is compliant is a

major consideration. Tools like Snowflake, Azure, AWS all have options for compliance (audit logging, data encryption, region locality).

Azure’s offerings like Azure Synapse and Azure Data Lake Storage are often configured in GxP-qualified environments for pharma. Data

engineers might work with validation specialists to qualify these environments. For example, using Azure Data Lake to store regulatory data

would involve setting up proper access controls (Azure AD integration, perhaps container-level access policies) to ensure only authorized

regulatory personnel can access certain data. Compliance requirements also influence design: for instance, if using a data lake to store

submission archives, one might need to implement retention policies and legal hold capabilities.

Example: A regulatory operations team manages all submission documents in Veeva Vault RIM. Every time they submit to FDA or

EMA, the submission content (dozens of files) and metadata (submission date, approval date, etc.) are stored in Vault. A data

engineering team sets up a nightly job to extract key metadata from Vault via the API – for example, an export of all submission

records and their statuses. This data is loaded into a Snowflake table that accumulates the company’s regulatory history. On

Snowflake, they also integrate data from other sources: perhaps a spreadsheet of regulatory commitments (post-marketing study

requirements) tracked by another team, or manufacturing changes from a quality system. By combining these, they produce

dashboards that show, say, all upcoming regulatory milestones or how long approvals are taking in each region. Meanwhile, another

use case: They want to leverage historic submission text to improve future ones. The engineers use Spark on an Azure Databricks

cluster to perform NLP on hundreds of past reviewer reports (text documents) to see common deficiencies cited. They store the

parsed text in an index for search, and also connect some data points (like product names, issues) in a Neo4j graph linking to the

respective submissions. This graph might reveal, for instance, that multiple products had stability data questions from Health

Authority X, indicating a systemic issue to address. Through all this, the data remains in secure environments: the documents stay in

the controlled Vault repository (Spark might access them via secure API or a dump placed in a secure storage), and any cloud

analysis environment is validated for regulatory use.

Comparison: Technologies for Regulatory Data Management

Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

Veeva Vault (RIM)

Central platform for

regulatory documents and

data (submission content,

product registrations,

correspondence). Provides

workflows for authoring,

reviewing, and approving

documents. Serves as the

authoritative source for all

submission dossiers and

tracking data.

Differentiators: Purpose-built

for life sciences – includes

domain-specific features (e.g.,

eCTD structure management).

Highly compliant: validated

SaaS, Part 11-ready (audit

trails, electronic signatures).

Integrates content and data

(the Vault platform links

document records with

structured fields like product,

country, submission type).

Scalable across global orgs.

Standard in industry: Most

big pharma use Vault or

similar (like Documentum-

based systems) for

regulatory. Vault’s cloud

nature and frequent updates

have made it popular.

Companies like Gilead,

Boehringer Ingelheim, etc.,

have publicly adopted Vault

for RIM. Data engineers often

must pull data from Vault for

reporting since it’s the main

source of truth.
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Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

SQL/Cloud

Databases

Store structured regulatory

metadata: product lists,

country registrations,

approval dates,

commitments. Useful for

reporting and analytics

beyond the document-

centric view. Often the

backend of RIM tools or

custom tracking

databases.

Traditional RDBMS are reliable

and well-understood, and can

enforce data integrity

(constraints, referential

integrity) which is useful for

critical reg data. Cloud

warehouses (Snowflake, etc.)

can hold this data and allow

linking with other enterprise

data (like sales, to correlate

approvals with launch dates).

They also offer robust security

and can be partitioned by

region for data sovereignty.

High adoption: Even with

Vault, many companies

extract to or maintain a

relational store for cross-

system joins. Some have

legacy RIM on Oracle

databases they now integrate

with cloud platforms for

analysis. Snowflake and

Synapse are beginning to

host regulatory data marts

where teams analyze

workload and performance

metrics (e.g., number of

submissions per year, agency

query response times).

Hadoop/Spark

(Text Analytics)

Applied to large collections

of regulatory text

(submission documents,

labels, health authority

queries) for insight

extraction. Spark can

distribute NLP tasks (e.g.,

finding all mentions of a

certain adverse event

across hundreds of PDFs).

Hadoop HDFS can hold a

corpus of documents in a

distributed way for

processing.

Allows leveraging big data

techniques (NLP, ML) on

unstructured data that was

traditionally not analyzed at

scale. This can reveal patterns

or help in preparation of

submissions (e.g., learn which

words regulators flag). Spark’s

ability to use libraries (like

spaCy or Spark NLP) and run in

parallel is key for timely

processing.

Growing adoption

(experimental): Big pharmas

have begun pilot projects to

analyze regulatory text using

data science. E.g., using

Spark to parse FDA briefing

documents to see common

concerns. Not yet a routine

part of regulatory ops, but

likely to increase as data-

driven approaches penetrate

this area.

Graph DB

(Neo4j/TigerGraph)

Model complex

relationships: product–

submission–approval–

manufacturing–variation

networks. Helpful for

impact analysis and

connecting regulatory info

with other domains (safety

signals, manufacturing

changes). TigerGraph

could handle very large,

complex regulatory graphs

with deep link analytics

(like tracking an issue

across a network of

suppliers and products).

Graphs excel at

interdependency analysis,

which is crucial in regulatory

change management. A graph

query can quickly find all

submissions that included a

certain manufacturing site or all

products that would be

affected by a guideline change.

TigerGraph’s performance on

multi-hop queries means even

complex supply

chain+regulatory queries could

be run in real-time. From a

compliance perspective,

graphs would be an internal

tool; they’d need same access

controls as other DBs if

containing regulated data.

Limited but emerging: Some

companies use Neo4j for

pharmacovigilance

compliance (linking drug-

event-case for signal

detection). For regulatory, a

few forward-looking teams

might use graphs to map

processes. Example: FDA

itself has explored graph-

based representations of the

drug review process. Pharma

adoption is still early, but

interest is growing in using

knowledge graphs to unify

regulatory and scientific data.
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Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

Informatica &

Governance

Ensures data consistency

and quality across systems

– e.g., if the drug name or

indication must exactly

match between the clinical

database and the

submission, Informatica

can enforce or correct it.

Helps migrate legacy

regulatory data into new

systems (ETL). Data

cataloging tools document

data lineage (important for

audit/inspection).

The strength is trust in data –

using data quality rules to

catch errors (like a missing

submission date or a mismatch

in country codes). Informatica’s

governance aids compliance by

providing lineage: one can

show an inspector how data

from a trial flows into a

submission data set. It also can

automate some processes, e.g.,

notify if a new approval appears

in one system but not yet

logged in another.

High adoption (indirectly):

While a reg affairs user might

not see Informatica, IT uses it

behind the scenes. Pharma

companies that migrated to

Vault often used Informatica

to load legacy data. Pfizer’s

integration of cloud data

(with Snowflake) likely

includes regulatory data

moving with Informatica’s

help. Overall, Informatica is a

trusted backbone for

ensuring all these

interconnected systems stay

aligned.

In regulatory data management, the emphasis is on single source of truth, traceability, and compliance. Technologies like Vault

address these by providing a controlled environment for content, whereas data platforms (databases, warehouses) ensure the

information can be analyzed and reported. The choice of technology leans more toward specialized platforms (Vault) and stable

databases, with big data tools being used in supporting roles (e.g., text mining or linking data). A data engineer’s challenge is often

integrating these without violating compliance – for instance, if using Spark to analyze documents, one must be careful to not create

unapproved copies of controlled documents. Thus, integration patterns (APIs, secure data lakes) and proper governance are as

important as the tools themselves.

Pharmacovigilance and Drug Safety Analytics

Pharmacovigilance (PV) involves monitoring and analyzing data on drug safety – adverse event (AE) reports, side effects in clinical

use, literature reports, and sometimes social media signals – to detect any potential risks associated with pharmaceutical products.

This domain generates large volumes of data (spontaneous reports like FDA’s FAERS database contain millions of records) that are

both structured (case report fields) and unstructured (narrative descriptions). Data engineers in PV work on ingesting diverse safety

data sources, performing signal detection algorithms, and enabling queries to find correlations between drugs and adverse events.

Important considerations are scalability (processing millions of records quickly), real-time or frequent analysis (for signal

detection runs), and strong compliance/privacy (patient data in safety cases must be protected; PV data is subject to regulatory

audits).

Key technologies and their use in PV:

Apache Hadoop and Spark for large-scale adverse event data analysis: Many pharmacovigilance teams have turned to big data

frameworks to handle public and internal safety datasets. For example, the FDA’s FAERS (Adverse Event Reporting System) data is publicly

available (~130 GB, ~12 million records). Spark is highly suitable for crunching this data: Open-source projects have used PySpark to ingest

and analyze FAERS on HDFS. In one case, analysts built a Spark pipeline on Google Dataproc to transform FAERS data and apply

disproportionality algorithms (like reporting odds ratios or the Bayesian proportional reporting ratio) in minutes. This same task might take

hours on a single machine. Spark’s ability to distribute computations allowed using methods like the likelihood ratio test with Monte Carlo

simulation to identify drug-event pairs that occur disproportionately. Similarly, Hadoop MapReduce has been used historically to count

drug-AE co-occurrences and detect signals, although Spark is now preferred for its ease and speed. In addition to FAERS, companies ingest

adverse event data from global sources (EudraVigilance, VigiBase) and even from patient support call centers – these can stream into an

HDFS or cloud data lake, then Spark jobs aggregate and analyze them regularly. HBase or Cassandra might also be used to store the

processed safety signals for quick lookup (for instance, a wide-column store keyed by drug name containing a list of associated significant

adverse events).
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NoSQL for case management systems: The primary PV case processing systems (like Oracle Argus, ArisGlobal) typically use relational

databases, but there’s a trend towards scalable data stores for certain aspects. For instance, if capturing real-time adverse event feeds (like

social media or IoT medical device alerts), a NoSQL solution could be used for ingestion. Cassandra is suitable where high-velocity inserts

are needed – imagine a scenario where thousands of patient devices send alerts that might indicate adverse reactions (blood pressure

spikes etc. in a trial). Cassandra can capture time-stamped device data reliably and at scale, ensuring no events are lost, and then link them

to patient records for safety analysis. MongoDB can be used to store aggregated case data with flexible schema – beneficial if new fields

need to be added for special safety studies. Additionally, text from case narratives can be stored in a document-oriented way for text

mining.

Graph databases for signal detection and causality analysis: Safety data inherently forms a graph: patients, drugs they take, and events

they experience are all connected. Neo4j has been explored for pharmacovigilance to connect these entities and run graph algorithms to

find previously hidden relationships. A knowledge graph in PV can incorporate not just the basic drug-event pairs but also patient factors,

genetics, comorbidities, etc. Querying this graph could answer questions like “find all reports where a drug was taken along with Drug X and

the patient had outcome Y”. Graph algorithms (like community detection or centrality) might identify clusters of drugs with similar side

effect profiles. In one scoping review, knowledge graphs were recognized for their added value in PV, especially their ability to integrate

multi-source data and predict adverse drug reactions by analyzing complex relationships. Another advantage is visualizing safety data: a

graph of adverse event connections can help experts see patterns (for example, a particular adverse event node connected to multiple

drugs of the same class, suggesting a class effect). TigerGraph could also be relevant if scaling to very large PV graphs (like including

every patient-case as a node). TigerGraph’s fast traversal could enable near real-time exploration of new incoming cases against an existing

large graph of historical cases.

Machine learning libraries (Spark MLlib, etc.) and AI for PV: Beyond counting and ratios, PV is increasingly employing machine learning

for signal detection (to reduce false positives and prioritize signals). Data engineers might use Spark’s MLlib or even GraphX for developing

prediction models on big safety data. For example, using features of cases (patient demographics, polypharmacy, etc.) to predict which

cases are likely to represent a true safety signal. These models often require a big data framework to train on the full volume of data. NLP is

also important: extracting important medical concepts from narrative text of AE reports. Frameworks like Spark NLP or Hadoop with UIMA

can process text at scale to classify case report narratives, which then feed into the data for analysis.

Cloud data warehouses for integrated safety data: Once initial processing is done (e.g., computing signal metrics), results are often

stored in a relational format for medical review. Snowflake, Redshift, or Synapse can be used to house a “safety data mart” that combines

adverse event data with other relevant data (like drug exposure data from sales or patient counts from trials). This allows analysts to run

SQL queries such as comparing event rates across regions or time periods. For example, Snowflake could store a table of drug-event

signals with columns for various disproportionality scores, which pharmacovigilance scientists can query using visualization tools. Since

safety data may need to be updated frequently (as new cases flow in), these warehouses should handle frequent inserts and updates;

modern warehouses can do this, though historically PV groups used on-premises relational databases for this purpose. The compliance

aspect is critical: safety data often contains personal health information. Cloud warehouses used for PV must be configured securely (HIPAA

compliance, data encryption, restricted access). Many pharma companies maintain PV data on internal servers for this reason, but there’s a

gradual move to cloud as security maturates. Snowflake’s secure data sharing could even allow sharing de-identified safety data with

partners or regulators for collaborative signal analysis.

Real-time streaming and alerts: In some cases (e.g., post-marketing commitments or monitoring social media for safety), real-time

processing tools like Apache Kafka and stream processing (Spark Streaming or Kafka Streams) might be used. These allow continuous

ingestion of events and immediate flagging if a certain threshold is hit (e.g., if X number of similar AEs occur within a short window). While

not explicitly listed by the user, it’s worth noting in passing that the ecosystem can include these for complete PV solutions, often writing

into the same big data stores (Kafka feeding a Cassandra cluster for real-time alert data, for example).

Example: A pharmacovigilance department collects adverse event reports from multiple sources: internal clinical trials, post-market

surveillance (healthcare providers and patients reporting events), and external databases like FAERS. To process this, data

engineers build a pipeline: All raw reports (which may come as XML files or via an API) land in an Azure Data Lake store. A Spark

job runs nightly to process new reports – parsing the XML, standardizing drug names and event terms (using dictionaries like

MedDRA), and appending them to a master dataset. This Spark job also calculates signal detection statistics: for each drug-event

pair, it computes disproportionality metrics comparing to the background frequency. These results are stored in a Delta Lake table

(an open format on the data lake), and also pushed into Azure Synapse Analytics (SQL pools) for easy querying via SQL. On

Synapse, safety scientists can run queries like “show me all events with an elevated reporting ratio for Drug X” or use Power BI to

visualize trends over time. Meanwhile, the engineers have also set up a Neo4j graph where each incoming case is a node linked to

nodes representing the drug and the adverse reaction. Over time, this builds a network; they run graph algorithms to see if any new

drug suddenly becomes highly connected to a cluster of severe reactions. If such a pattern appears, an alert is generated. To handle

text fields, they integrate Spark NLP in the pipeline to extract keywords from the narrative (like symptoms or lab results mentioned),

which then gets indexed in an Elasticsearch for the medical reviewers to search free-text across cases. All of this is done in a secure

environment – the data lake and Synapse are configured with encryption and accessible only to authorized PV personnel (with

auditing). The company can demonstrate compliance by showing the lineage of data from ingestion to signal report (thanks to

logged Spark jobs and versioned data in Delta Lake). In fact, by using these technologies, they manage to analyze the entire FAERS

database plus their internal data in minutes, something that used to take much longer on traditional tools.

Comparison: Technologies for Pharmacovigilance
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Technology How It’s Used in PV Benefits and Differentiators Considerations

Spark on

Hadoop

Batch processing of large AE

datasets (e.g., computing

signal scores across millions of

cases). Machine learning on

safety data, NLP on case

narratives. Often deployed on

cloud (Databricks, EMR) for

scalability.

Can handle entire global safety

DB in memory/distributed,

yielding fast computation (e.g.,

analyzing FAERS 12M records in

minutes vs years by manual

review). Supports complex

algorithms (MLlib, custom

Scala/Python code) and heavy

join operations (drug with

background population).

Requires data engineering

expertise to set up pipelines and

interpret results. Ensuring data

quality (duplicate case handling,

etc.) is up to the implemented

code. Spark jobs need to be

carefully validated for regulatory

submission of results.

Cassandra

Ingesting high-velocity safety

data (e.g., device signals, web

reports) and storing time-

series or case records for

quick retrieval. Also can store

aggregated counts for real-

time dashboards.

High-write throughput and fault

tolerance – the system stays up

even if nodes fail, ensuring safety

data isn’t lost. Great for time-

stamped data (each adverse

event as a row keyed by drug or

patient ID + time). Scales linearly

for increasing volume, so can

handle growing report rates.

Not ideal for ad-hoc queries

outside primary key – one

usually queries by drug or

patient ID, but complex queries

(e.g., all cases with symptom X)

require designing data model

carefully or exporting to another

system. Also, joins must be

done in application code (no

multi-table join in Cassandra).

Often used alongside Spark for

analysis.

Neo4j /

Graph

Building a safety knowledge

graph linking drugs, adverse

events, patients, maybe genes

(pharmacogenomics) and

diseases. Used to visually and

algorithmically discover

indirect links (e.g., two drugs

causing similar clusters of

events might hint at a mode-

of-action issue).

Represents many-to-many

relationships naturally: a patient

on multiple drugs with multiple

events is easy to model. Enables

queries like “Find all events that

occur with Drug A and Drug B

together but not with either

alone” – something tricky in SQL

but straightforward with graph

traversal. Graph algorithms can

find communities of events or

identify central “hub” drugs that

connect to many events.

Needs careful curation – data

might be noisy, and graph

algorithms can produce results

that need medical interpretation

(not every connection implies

causation). For huge volumes

(millions of nodes/edges), Neo4j

might require clustering or using

a more scalable graph like

TigerGraph. Data privacy:

patient nodes must be de-

identified. Still relatively new in

PV practice – would need user

training to leverage fully.

Snowflake /

SQL DW

Integrating safety data with

other data (like exposure data,

drug utilization, or

manufacturing data for quality

signals). Creating dashboards

and standard reports (monthly

PV summary, regulatory

periodic safety update reports

data aggregation).

Provides an enterprise single

source for safety metrics that

can be easily queried by analysts

and output for regulatory

reporting. High concurrency for

multiple users (medical reviewers,

epidemiologists) to run queries

simultaneously. The structured

environment makes validation

and reproducibility easier (SQL

queries can be logged and

reviewed).

Requires that data be

transformed and loaded in

structured form – unstructured

text needs pre-processing

before it can be stored in tables

(though variants like Snowflake

can store JSON if needed).

There’s some latency (data may

be up-to-date daily rather than

real-time). Also, careful

attention to access control is

needed to ensure only

aggregate or appropriate data is

accessible (especially if any PII
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Technology How It’s Used in PV Benefits and Differentiators Considerations

is present, which ideally it

should not be in a data

warehouse).

Machine

Learning

Tools

Used for predictive PV (which

drug-event pairs are likely

signals) and for automating

case processing (like triaging

which cases are high priority).

Examples include using Python

scikit-learn or Spark ML to

classify case seriousness

based on text, or to find latent

topics in adverse event

reports.

Adds advanced analytical

capability: can reduce workload

by focusing human attention via

AI. For instance, an ML model

might identify that certain

combinations of drug and patient

conditions predict higher severity

of outcome, prompting earlier

intervention. Spark’s MLlib allows

these models to be trained on the

full dataset rather than sampling.

ML models can be a black box –

regulators require explainability

for decisions affecting drug

safety. This means data

engineers must implement and

validate models carefully and

provide rationale (e.g., using

approaches like LIME for

explainable AI). Integration of

ML outputs into workflow must

be done such that it aids rather

than confuses PV experts. Not a

replacement for traditional

methods yet, but a complement.

Pharmacovigilance is a data-heavy domain where big data tech is proving its worth by speeding up detection of safety signals and

allowing more complex analyses than previously possible. A key trend is combining diverse data (clinical trials, real-world usage,

literature) – this is where these technologies shine by handling volume and variety (the “3 V’s” of big data: volume, velocity, variety)

in drug safety. The ultimate goal remains the same: protect patients by identifying risks early. Thus, any technology used must not

only be powerful, but also reliable and transparent enough to satisfy regulatory scrutiny when decisions (like issuing warnings or

pulling a drug) are made based on data.

Manufacturing and Supply Chain Optimization

Pharmaceutical manufacturing and supply chain operations generate big data from production lines, quality control labs,

inventory systems, distribution logistics, and IoT sensors (e.g., temperature monitors in cold chain storage). Data engineers

support use cases like predictive maintenance of equipment, optimization of supply chain routes, inventory forecasting, and

ensuring product quality and compliance throughout the production process. These use cases require handling streaming sensor

data, large time-series datasets, and complex networks of suppliers and distributors. The key technology needs are scalability for

sensor/IoT data, real-time or near-real-time processing for timely decisions, integration of heterogeneous data (ERP systems,

factory equipment logs, weather data, etc.), and compliance with manufacturing regulations (ensuring data integrity, audit trails for

Good Manufacturing Practice).

Technologies in use:

Apache Cassandra for IoT and sensor data: Pharmaceutical manufacturing involves a lot of equipment and environmental sensors (e.g.,

monitoring temperature, humidity in production facilities, or GPS trackers for shipment conditions). These sensors often emit readings every

few seconds or minutes, leading to a deluge of time-series data. Cassandra, as a distributed NoSQL store, is a popular choice to handle this

kind of data due to its high write throughput and ability to scale horizontally without single points of failure. In a pharma manufacturing

context, Cassandra might be used to store readings from thousands of IoT devices – each device’s data can be partitioned by device ID and

time, and Cassandra will distribute these across a cluster. This enables real-time dashboards of equipment status and supports queries like

retrieving all readings for a given sensor in a time range very quickly. For example, if a company wants to track refrigerator temperatures for

all vaccine storage units globally, Cassandra can ingest all these streams and still allow quick reads for the latest values or out-of-range

alerts. Another use is batch logging: production machines often generate log entries (semi-structured) that can be stored in Cassandra for

analysis of error rates, throughput, etc., complementing or replacing traditional historian databases.
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Apache Hadoop (HDFS) and Spark for manufacturing analytics: Historical manufacturing and supply chain data (spanning years of

operations) can be huge – think of every batch record, every equipment log, every shipment detail. Hadoop HDFS is often used as a data

lake to store this history cheaply. Then Spark can be utilized for various analytics: predictive maintenance (analyzing sensor patterns to

predict machine failure), yield optimization (finding factors affecting batch yield by analyzing past batch data), and supply chain

simulation (using historical demand and supply data to model scenarios). For instance, a Spark job could combine machine vibration sensor

data with maintenance logs to train a model that predicts when a machine will fail, allowing proactive maintenance scheduling. Another

Spark job might process years of shipment temperature data to identify routes or packaging methods that risk product quality. In supply

chain, Spark can optimize routes by crunching large datasets of delivery times, inventory levels, and even external data (like traffic or

weather feeds). Hadoop’s ability to store varied data formats is useful: raw CSV exports from SAP (ERP), JSON from IoT devices, and more

can reside in HDFS or an Azure Data Lake, and Spark can join them.

Cloud analytics platforms (Azure Synapse, AWS Redshift/S3, Google BigQuery): Many pharma companies modernize supply chain

analytics by moving to cloud platforms. Azure Synapse Analytics is often chosen for its unified approach: it can directly query data in

Azure Data Lake Storage (where, say, raw IoT data or CSV extracts from on-prem systems are landed) and also ingest that data into a

structured warehouse for high performance. A case study indicated a pharmacy chain improved inventory fulfillment by 96% by using Azure

Synapse to integrate and analyze warehouse and supplier data in real-time. Synapse’s integration of Power BI (for dashboards) and its built-

in Spark engine means data engineers can build end-to-end pipelines (from cleaning data with Spark to serving it via SQL for BI) in one

environment. AWS Redshift combined with S3 is similarly used – e.g., raw manufacturing data might be stored in S3, and Redshift or

Athena used to query it to find trends or feed ML models (like Amazon Forecast for demand planning). Snowflake or BigQuery can also

play roles here: Snowflake’s cross-cloud capability and data sharing means manufacturers can even share data with suppliers or partners

easily (for example, a CMO – contract manufacturing organization – could share production data directly to the pharma company via

Snowflake secure sharing rather than exchanging flat files). BigQuery has been utilized in complex supply chain scenarios for its rapid SQL

analytics on massive datasets (for instance, analyzing every sale and inventory movement to predict stockouts).

Graph databases for supply chain network modeling: Pharmaceutical supply chains are multi-tiered and complex (suppliers,

manufacturers, distributors, wholesalers, pharmacies/hospitals). Graph databases shine in modeling these relationships and identifying

vulnerabilities or optimization points. Neo4j can store a model where nodes are facilities or shipments and edges represent supply routes or

dependencies. Questions like “what suppliers would be affected if this shipping lane is closed?” or “which finished products contain an

ingredient from supplier X?” become graph queries. Graph DBs allow recursive queries that are hard in SQL (like multi-level BOM – Bill of

Materials expansion). During the COVID-19 pandemic, such tools were highlighted for building more resilient supply chains. Graph analysis

can help in risk mitigation (e.g., find single points of failure where one supplier feeds many products – a high-risk scenario). TigerGraph is

notable in this field because it can handle very large graphs and do deep link analysis quickly, which is useful if you have a very large global

supply chain graph. TigerGraph could combine internal data with third-party data (Dun & Bradstreet or others) to map out all relationships

and run algorithms to find, say, the shortest path to reroute supply or the most central hubs in the network. For example, Merck and others

have looked into graph solutions for supply chain risk – graphs can find connections (like the same shipping company serving multiple

critical routes) that aren’t obvious otherwise.

Streaming and real-time processing (Kafka, Storm, Spark Streaming): To react quickly (say, to a temperature excursion in a shipment or

a sudden equipment alarm), streaming technologies are used. Apache Kafka might be the backbone to collect and distribute real-time data

from factory sensors or logistics trackers. Then something like Spark Streaming or Flink could process those streams – e.g., detect an

anomaly (temperature out of range) and immediately trigger alerts or control actions. While these aren’t listed explicitly by the user, they

complement Cassandra in IoT scenarios (often sensor data goes Kafka -> stream processor -> Cassandra for storage). They ensure that

manufacturing supervisors or supply chain managers get timely insights (for instance, a live dashboard of all shipments and any that are in

danger of delay or spoilage).

Informatica and integration: Manufacturing and supply chain data often reside in enterprise systems like SAP (for manufacturing execution

and inventory) or LIMS (Lab Information Management for quality tests). Informatica is commonly used to ETL data from these sources into

data lakes or warehouses for analysis. It can also enforce data quality (ensuring, for example, that all batches have complete quality test

data before analysis). Additionally, Informatica MDM might manage reference data like material codes or location codes across systems so

that when data is integrated, it lines up correctly. The Pfizer case mentioned earlier demonstrates the use of Informatica with Snowflake to

integrate process and development data across supply chain and manufacturing, automating mappings from legacy systems and thus

digitizing their supply chain.

Compliance and GxP considerations: In manufacturing, any system that influences GxP decisions (like release of a batch) has to be

qualified/validated. Data lakes and big data tools used purely for process improvement may not directly make decisions but still need to be

handled carefully. For example, if a model predicts equipment failure, the maintenance action might be an internal decision, but if a model

were to directly call shots on product quality, it would need validation. Data engineers thus maintain a clear separation: these analytics

systems are usually in the “Decision Support” category, not the actual systems of record for batch release (which remain validated MES or

QMS systems). Still, auditability and data integrity is crucial – using blockchain has even been explored to ensure an immutable audit trail in

supply chain data, though that’s beyond our current scope.

Example: A pharma company wants to optimize its vaccine supply chain from manufacturing to distribution. They deploy IoT

sensors in their manufacturing plants (monitoring equipment vibration, temperature) and in their cold chain shipments (GPS and

temperature trackers in each shipment). Data engineers set up an AWS IoT + Kafka pipeline that streams all this sensor data into a

Cassandra cluster in near real-time. On top of Cassandra, they have built a microservice that alerts if any temperature goes out of

range for more than 5 minutes (reading the latest values from Cassandra, which is effectively acting as a real-time data store). All

sensor data also gets periodically dumped to an S3 data lake for historical analysis. On that data, they run Spark on Amazon EMR

to do two things: (1) Predictive maintenance – analyze equipment sensor data to predict failures. They use Spark MLlib to train
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models using labeled historical incidents. (2) Supply forecast – combine inventory levels, shipment transit times, and demand data

(from sales forecasts) to simulate different scenarios and optimize inventory placement. For this, they ingest SAP inventory extracts

into S3 and use Spark to join with distribution data. The results (like predicted stockouts or optimal distribution) are written to a

Redshift data warehouse where operations teams can query them. They also use a Neo4j graph to map their supply network: nodes

for factories, distribution centers, routes, etc. When a new disruption happens (say a particular route is closed), they can quickly

query the graph to see alternative routes or to identify which products might be delayed. The graph also helps in regulatory

compliance queries, e.g., if a raw material is found to be contaminated, the graph can find all batches and products using that

material. Meanwhile, Informatica flows keep the master data in sync: it ensures the material codes from SAP match those used in

the analytics systems, and it integrates quality test results from the LIMS into the data lake, so Spark can also factor in quality

variability in its yield analysis. This integrated approach significantly improves their agility – for example, they found through Spark

analysis that by adjusting production schedules based on predictive maintenance insights, they could reduce unplanned downtime

by 30%. Inventory forecasting accuracy improved, reducing both shortages and waste (expired stock).

Comparison: Technologies for Manufacturing & Supply Chain

Technology
Typical Use in

Mfg/Supply Chain
Pros Cons Adoption Example

Cassandra

Collecting and storing

high-speed

sensor/IoT data from

production equipment

and shipments. Also

used for real-time

dashboards of

process metrics.

Scalable, fault-tolerant:

can ingest thousands of

readings per second,

design for zero single-

point failure ensures

continuous logging.

Time-series optimized:

data model can be set by

time so queries like

recent values are very

fast. Good for distributed

sites (nodes can be

across regions).

Not built for complex

analytical queries or

multi-dimensional

queries (those are

done after moving

data to Spark or SQL).

Requires management

of cluster nodes and

tuning for write

performance. If data

retention is long, old

data needs archiving

(to avoid huge node

sizes).

Global pharma using

Cassandra to monitor

manufacturing

environments across

plants – e.g., Novartis

might use it to gather

data from all production

lines and feed a central

monitoring system. Also

used by device

manufacturers for

medical device

telemetry.

Spark &

Hadoop

Big data analytics on

historical

manufacturing data

(predictive

maintenance, process

optimization) and

supply chain data

(demand forecasting,

route optimization).

Often used to merge

data from many

sources (ERP,

sensors, labs).

Powerful analytics: Can

run advanced algorithms

on full datasets (not

samples) – find subtle

patterns that traditional

SQL analysis might miss

(like complex interactions

of environmental factors

affecting yield). Batch

efficiency: can process

years of logs in hours.

Flexibility: supports

custom code in

Python/Scala for tailor-

made analysis (e.g.,

custom simulation of

supply scenarios).

Requires batch

processing mindset –

results are not instant.

Quality of output

depends on quality of

data and models –

data engineers must

work closely with

process engineers to

validate findings.

Hadoop clusters (if

on-prem) need

hardware and upkeep;

cloud usage incurs

cost that must be

managed (especially if

Spark jobs are not

optimized).

Many pharma

companies have data

science teams applying

Spark to production

data (e.g., GSK using

Spark on manufacturing

data to improve

processes, or Pfizer

using it to simulate

supply chain variations).

Also, companies like

Siemens or GE (in

pharma context via

partnerships) use

Hadoop/Spark in their

manufacturing

optimization solutions

offered to pharma.

Azure

Synapse /

Cloud DW

Creating a centralized

view of supply chain

and manufacturing

metrics. Integrating

Unified and real-time-ish:

Modern warehouses can

ingest relatively fast (e.g.,

micro-batch every few

The warehouse

typically contains

processed data – so

you need the ETL

High adoption: e.g.,

Johnson & Johnson

uses a

Snowflake/Azure-based
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Technology
Typical Use in

Mfg/Supply Chain
Pros Cons Adoption Example

data for BI reports –

e.g., production

throughput, cycle

times, inventory

levels, order

fulfillment rates.

Running complex SQL

for trend analysis

(monthly production

vs. plan, supplier

delivery

performance).

minutes) so dashboards

are up to date. Scales to

enterprise data: Handles

joining large tables

(orders, shipments, etc.)

easily, which may be

cumbersome in raw

Spark. Easy integration

with BI and tools:

Analysts can use familiar

SQL and visualization

tools; less specialized

knowledge needed

compared to big data

tools.

pipelines feeding it

(which could be Spark

or Data Factory, etc.).

There is a cost trade-

off: keeping years of

granular data in a

warehouse can be

expensive; often data

beyond a window is

archived to data lake

and not instantly

queryable. Some real-

time requirements

cannot be handled

purely in a warehouse

(if second-by-second

decisions are needed,

streaming solutions

are needed

alongside).

data lake and Synapse

to unify manufacturing

data globally for

reporting and analytics.

A case study from

Novartis (with Azure) or

Pfizer (with Snowflake)

show cloud data

platforms improving

supply visibility.

Warehouses are often

the core of control

tower dashboards in

pharma supply chain,

offering management a

one-stop view.

Neo4j /

TigerGraph

(Graph)

Modeling the supply

chain network and

production processes

as graphs for

resilience and

optimization. E.g.,

nodes for raw

materials,

intermediate

products, plants,

distribution centers,

and edges for supply

relationships or

material flows.

Running graph

algorithms to detect

critical nodes or

potential bottlenecks

(like a single supplier

feeding multiple

critical drugs).

Makes interdependencies

explicit: easier to trace

paths and impacts (if one

node fails, follow edges to

see all impacted

endpoints). Advanced

analysis: community

detection could identify

clusters of facilities that

rely on each other;

centrality measures find

key suppliers. Graph

queries can be faster and

simpler than recursive

SQL for multi-tier supply

chain questions.

TigerGraph’s

performance allows near

real-time analysis on very

large networks.

Building and

maintaining the graph

model requires extra

work (need to update

it as supply chain

changes). Graph DB

knowledge is less

common in ops teams.

For TigerGraph, it’s a

newer tech – getting

in-house expertise or

support might be

necessary. Also, graph

outputs might need to

feed into other

systems; integration

of graph results into

existing dashboards

needs custom

development.

Emerging use: Some

pharma have begun

using Neo4j in supply

chain risk management

(e.g., to map suppliers

to end products and

alternate suppliers). At

least one large pharma

(per Neo4j case

studies) used graph

approach for supply

chain transparency post

COVID. TigerGraph has

case studies in

healthcare for patient

360, but similar

principles apply to

supply chain 360.

Kafka &

Streaming

Real-time monitoring

and alerting in

manufacturing – e.g.,

pipeline to detect

anomalies in

equipment readings,

or to trigger restock

orders when

inventory dips.

Real-time

responsiveness:

milliseconds to seconds

latency. Ensures critical

events (equipment alarm)

don’t sit in a batch queue.

Buffering and durability:

Kafka can handle bursty

data and network

Complex to set up

correctly (requires

understanding of

partitioning, consumer

groups). Also, careful

to avoid alert fatigue –

streaming systems

can generate lots of

events. In GxP

Common in modern

factory IoT setups:

e.g., Pfizer’s continuous

manufacturing lines

might use Kafka to

stream process

parameters to

monitoring systems.

Pharma distribution
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Technology
Typical Use in

Mfg/Supply Chain
Pros Cons Adoption Example

Connects various

systems in real time

(MES to warehouse to

shipping).

hiccups, so systems

remain decoupled but

reliable. Scalable

consumers: multiple

processes (maintenance

system, dashboard, etc.)

can tap into the stream

concurrently.

environment,

decisions triggered by

streaming data might

still need human

verification – often

streaming just notifies

humans promptly.

centers use streaming

to coordinate robotics

and inventory updates.

Not always talked about

publicly, but part of

Industry 4.0 initiatives

many companies have.

Informatica

/ MDM

Integrating data from

SAP (production

planning, inventory)

with shop floor

systems and lab

systems into the data

lake/warehouse.

Ensuring consistent

naming of materials,

suppliers across

systems. Data quality

enforcement (e.g., no

missing values in

critical fields).

Pre-built connectors: to

SAP, Oracle EBS, etc.,

which save a lot of

custom coding. MDM

ensures one version of

truth: e.g., a supplier

code used in

procurement matches the

one in quality systems,

avoiding analysis errors.

Automation and

scheduling: can run jobs

to extract and load data

at needed intervals with

logging and error

handling (important for

reliability).

As with other cases,

licensing and

complexity – might be

heavy for smaller

operations. Some

newer cloud ETL tools

(ADF, Glue) are

alternatives but may

not have the rich

transformation

capabilities. MDM

projects can be

lengthy to yield full

benefit (need

business buy-in to

define master

records).

High adoption:

Manufacturing and

supply chain IT

traditionally relies on

tools like Informatica for

moving data. Eli Lilly

and others have spoken

about using Informatica

to integrate and govern

data from R&D through

manufacturing. MDM is

typically used for

domains like material

master, customer,

supplier to support ERP

and analytics

consistency.

Manufacturing and supply chain in pharma is an area where operational efficiency gains directly impact the bottom line (and public

health, when it comes to ensuring medicine availability). Thus, the use of big data tech here often focuses on predictive and

preventive analytics (to avoid problems before they happen) and on end-to-end visibility (breaking data silos between

production, quality, and distribution). A data engineer’s solutions need to be robust (24/7 operations), often real-time, and well-

integrated with legacy systems. The table above shows that a combination of streaming + NoSQL for real-time, big data frameworks

for deep analysis, and graph/AI for complex pattern discovery is becoming the norm in advanced pharma operations (what some call

Pharma 4.0, mirroring Industry 4.0).

Sales and Marketing Analytics in Pharma

Pharma companies also leverage big data in commercial operations – analyzing sales data, market research, patient and prescriber

data, and marketing campaign performance. While this may seem less “big data” than scientific or IoT data, the volume can still be

huge (prescription data for millions of patients, sales rep activity logs, etc.). Moreover, new data sources like social media or digital

engagement (webinars, emails) add to the variety. The use cases include sales force optimization, marketing ROI analysis, Key

Opinion Leader (KOL) identification, and patient journey analytics. Data privacy is crucial here (handling patient or HCP data

must respect regulations like HIPAA and GDPR), and integration of data from third-party vendors (like IQVIA prescription data or

Veeva CRM data) is often needed.

Key technologies and approaches:
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Cloud data warehouses (Snowflake, Redshift, BigQuery) for sales data integration: Commercial data often comes in structured forms –

e.g., monthly sales by geography, physician prescribing data, etc. These are well-suited for a traditional data warehouse model. Snowflake

is commonly used to aggregate data from various sources such as CRM systems (Veeva CRM is widely used in pharma sales), marketing

automation tools, and external datasets. Snowflake’s ability to easily ingest semi-structured data is useful if dealing with JSON from APIs

(for instance, pulling in data from a digital marketing platform). Also, Snowflake’s data sharing and marketplace features can be a

differentiator – pharma can directly access data from vendors via the Snowflake Data Marketplace (for example, Snowflake touts making

“live and ready-to-use” health data available). This simplifies integrating things like claims data or formulary data. AWS Redshift is similarly

used, often as part of an AWS-centric pipeline (data coming into S3 from various sources, then copied to Redshift for analytics). Redshift or

BigQuery might be chosen by organizations that want to leverage integrated analytics with other services (BigQuery with Google Analytics

data for tracking website or search trends relating to their drugs). In summary, the warehouse forms the central repository where all sales,

marketing, and third-party data is joined and made available for querying by data analysts to get insights such as regional sales trends,

segmentation of prescribers, or correlation between marketing efforts and sales uptick.

Informatica and MDM for customer data: Pharma companies often implement Master Data Management for HCP (Healthcare

Professionals) and HCO (Healthcare Organizations) data. This is because multiple data sources (sales logs, medical conference attendees,

prescription data feeds) might refer to the same doctor in slightly different ways. Informatica (or similar MDM solutions) helps create a

golden record for each HCP, which is essential for accurate analytics (e.g., you want to attribute all sales calls and prescriptions to the right

doctor profile). Similarly, product master data (especially if a company has complex product hierarchies or different product presentations)

is mastered. Informatica’s MDM and data integration tools therefore underpin a lot of the sales data warehouse population – ensuring that

dimensions like “Doctor” and “Hospital” are clean and de-duplicated. Data governance is also key because commercial data could include

personal information (HCP contact details, etc.), so data lineage and privacy compliance (like marking which doctors opted out of

communications) must be managed.

Graph databases for marketing and KOL analysis: One cutting-edge area in pharma sales analytics is understanding networks – how

physicians refer patients to each other, the influence network among HCPs, or how information spreads. Graph technology is highly

valuable here. For example, TigerGraph published a case where they helped a pharma (Amgen) map the patient journey and referral

network: by linking patients to prescribers and prescribers to specialists they referred to, and overlaying claims data, they could identify

referral patterns. Traditional SQL struggled with this because it required many complex joins across large tables (patients, claims,

providers), taking hours or days, whereas a graph database pre-connected the data so queries became much faster. In the Amgen example,

their original graph database (likely Neo4j or similar) ran into scalability issues with the data size, so they moved to a more scalable graph

solution – TigerGraph touts itself as the “world’s fastest graph analytics platform” and is designed for such heavy workloads. By using

TigerGraph, they were able to load large claims datasets and run queries to find communities of physicians or identify key referral hubs in a

reasonable time. Neo4j is also used frequently for KOL (Key Opinion Leader) analysis: companies build knowledge graphs of experts linking

publications, clinical trials, and affiliations. Neo4j can then be queried to find, say, which researchers are most central in a given disease

area network (based on co-authorship or clinical trial involvement). This helps marketing teams identify whom to engage for advisory boards

or education. Graph algorithms like PageRank or community detection can rank influencers or group prescribers into communities.

Hadoop/Spark for large external data sets: Sometimes analyzing sales and epidemiological data calls for processing large external

datasets – for example, large medical claims databases or population health datasets. Spark can be used to filter and aggregate these

before bringing summary results into a warehouse. Also, if doing more advanced analytics like combining social media sentiment data with

sales trends, a Spark job might ingest tweets or forum data and perform sentiment analysis at scale. Spark could also be used for building

predictive models, like predicting which doctors are most likely to adopt a new drug (taking into account many features). The training of

such models on tens of thousands of doctors with many data points (prescribing history, engagement history, etc.) could be distributed with

Spark. Once the model is trained, the predictions per doctor can be loaded into the warehouse for sales reps to use.

Snowflake/BigQuery for real-world evidence (RWE): Although more medical than sales, increasingly commercial teams are interested in

real-world usage patterns of drugs. Cloud platforms make it possible to host large RWE datasets (like insurance claims or EMR records) and

query them directly for insights like medication adherence or comparative effectiveness. BigQuery has been used by some to query large

de-identified claims data because of its ability to handle huge tables with ease. Snowflake, via its Data Exchange, sometimes directly

provides access to such data through partners. These analyses inform both marketing strategy (understanding how patients use the

product in reality) and medical affairs.

Veeva Vault (PromoMats): The user list includes Veeva Vault but likely with focus on regulatory/quality. For sales and marketing, the

relevant Veeva product is Vault PromoMats (for managing promotional materials and ensuring compliance in their content). While not a big

data tool, data engineers might integrate data from PromoMats (like how many promotional pieces are approved or being used) into overall

marketing analytics. But it’s a minor point compared to the others.

BI and visualization: Although not a backend tech, it’s worth mentioning that tools like Tableau, Power BI, or Qlik are heavily used to

interface with the data. These allow sales operations and marketing folks to slice and dice data themselves once the data engineering team

has the warehouse or data mart set up.

Example: A pharma’s commercial analytics team wants to optimize their marketing spend and improve sales targeting. They gather

data from: sales recorded in their ERP, call logs and CRM data from Veeva CRM, prescription data purchased from IQVIA (which

shows which doctors are prescribing their drug and competitors), and digital campaign data (email opens, website visits). They use

Informatica to ETL much of this into a Snowflake warehouse. Informatica’s MDM ensures that “Dr. John A. Smith” in one dataset

and “J.A. Smith” in another are recognized as the same person. In Snowflake, they now have tables for HCP (doctors), their profile

(specialty, location), sales calls, prescriptions, and engagement data. Analysts can run SQL queries or use Tableau to identify, for

example, deciles of prescribers by volume or to see how engagement correlates with prescribing changes. Meanwhile, the data
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science subgroup exports some of this data to run a Spark job where they train a model to predict which doctors are likely to start

prescribing a new drug for diabetes. They include features such as past prescribing of similar drugs, attendance at company events

(from Veeva data), and patient population characteristics in their area. Spark handles the large training set (perhaps millions of rows

if each data point per doctor per quarter is considered). The model outputs a scored list of doctors. They feed this back into

Snowflake, and from there the sales reps get a list of high-priority doctors to educate about the new drug.

Separately, the marketing team is trying to improve their multi-channel campaign. They use TigerGraph to analyze the network of

physicians in their field. They load a graph with nodes for physicians and edges if they share patients (in claims data, one doctor

refers or a patient of one sees another). They run a community detection algorithm and find clusters of physicians. They identify key

“hub” doctors who connect many others – these might be local opinion leaders. Marketing then tailors outreach by focusing on

those hubs, hoping influence will spread through the community. TigerGraph’s fast query allows them to simulate removal of a hub

(if that doctor is engaged, how many others indirectly might follow) much quicker than trying to do similar analysis in SQL. They also

run an algorithm to identify the shortest path in the graph between any two doctors – useful if they want to see how information

might flow or how far apart two prescribers are in terms of network (in case they want to ensure broad reach of message). All of this

graph insight is then used to refine their marketing strategy, such as inviting the hub doctors to a special advisory webinar.

Comparison: Technologies for Sales & Marketing Analytics

Technology
Role in Pharma

Sales/Marketing
Strengths Challenges

Snowflake /

BigQuery /

Redshift

Central data warehouse

for all commercial data –

sales figures,

prescription data, CRM

interactions, marketing

touchpoints. Enables

unified analytics and

reporting.

Excellent at joining disparate data

quickly (e.g., linking sales to

marketing spend). Scales to large

data (Snowflake/BigQuery handle

billions of rows of RX data).

Snowflake’s Data Marketplace

provides easy access to third-

party data (claims, etc.). BigQuery

can integrate with Google

Ads/Analytics data if digital

marketing is big. These platforms

have built-in security roles to

protect sensitive personal data

(with tokenization or secure views

for HCP data).

Need robust processes to

continuously update data (some

sources update monthly, others daily,

etc.). Data privacy: even with

encryption, analysis might require

data to be aggregated or de-

identified (especially if patient-level

data is brought in). Redshift requires

more tuning for performance

compared to Snowflake/BigQuery.

Also, data licensing: when bringing in

third-party data into a warehouse,

must ensure compliance with data

use agreements.

Informatica

& MDM

Integration of multiple

source systems and

mastering customer

data (doctors, hospitals,

payers). Ensuring clean

and consistent data for

analysis (e.g., one

unique ID per physician).

Proven connectors for CRM (there

are pre-built connectors for Veeva

CRM or Salesforce), databases,

flat files from vendors. MDM

ensures single customer view,

critical for accurate targeting and

attribution. Helps comply with

privacy regs by tracking

consents/preferences at master

record level.

Implementation can be time-

consuming – matching and merging

HCP records from various sources

can be complex (names, addresses

might differ slightly). Must constantly

maintain reference data (e.g., if a

doctor moves or two practices

merge). If not configured well, could

produce false merges or fail to merge

when should. But given pharma’s

heavy reliance on such data, the

effort is usually justified.

Graph DB

(Neo4j,

TigerGraph)

Modeling relationships

between prescribers,

patients, products, and

influence networks.

Used for Key Opinion

Leader (KOL)

identification, referral

Graph queries make complex

network questions answerable

(e.g., find the “influencers” among

doctors: those with many

connections). Graph algorithms

(PageRank, centrality) can rank

influencers in a way that

Data availability: building a full graph

might require access to detailed

claims or patient data that not all

companies have (they often have to

buy partial data). Graph results need

interpretation – just because Doctor

A refers to Doctor B doesn’t
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Technology
Role in Pharma

Sales/Marketing
Strengths Challenges

network mapping,

patient journey mapping

(connections from

diagnosis to treatment).

Also used to detect

communities in

prescription data (which

doctors behave

similarly).

correlates with real-world

influence. TigerGraph can handle

very large claim graphs quickly,

which is useful if mapping an

entire country’s referral network

from claims. Results of graph

analysis give competitive edge –

e.g., target not just high

prescribers, but well-connected

prescribers who can drive others’

behavior.

automatically mean A influences B’s

prescribing (there is domain nuance).

Integrating graph output back into

sales strategy requires change

management (getting reps to utilize

network insights, which might be new

to them). Technically, TigerGraph

usage might need training as GSQL

query language is different; Neo4j’s

Cypher is easier but Neo4j might

strain under very large datasets

(leading to needing things like

memory tuning or splitting graphs).

Spark /

Hadoop

Big-scale crunching of

external or raw data:

e.g., processing a 100

million row medical

claims dataset to extract

metrics, or joining large

patient-level datasets

for outcomes research

supporting marketing

claims. Also used for

advanced modeling

(response modeling,

churn modeling) that

needs to read a lot of

data.

Handles volume and variety – can

combine log files (web logs), text

(transcripts from rep visits), and

structured data in one pipeline.

Good for feature engineering on

large datasets for ML models (like

computing rolling averages, lags,

across huge time-series of sales).

Spark can also apply algorithms

like k-means clustering on large

prescriber datasets to do

segmentation that would be hard

to do in SQL.

Might be overkill for moderate data

sizes (some commercial datasets

might fit in a warehouse). Requires

data science expertise – many sales

ops teams historically rely more on

Excel and SQL; moving to Spark/ML

is a skill jump. Also, governance: any

model that influences targeting must

be validated to avoid bias or

regulatory issues (e.g., fair targeting).

As big data tools are applied,

ensuring that, say, promotional

decisions aren’t inadvertently

discriminatory or in violation of

compliance (there are rules on how

pharma can promote products) is

important – those rules must be

baked into what data is considered

and how.

Power BI /

Tableau (BI

layer)

(Not in list, but output

layer) Creating

dashboards and reports

for sales reps,

managers, marketing

teams. For instance, a

tablet dashboard for

reps showing their

territory performance vs

target, or a marketing

dashboard showing

campaign performance.

Modern BI tools connect directly

to Snowflake/Redshift etc., and

can handle fairly large data with

proper design (aggregations,

extracts). They provide

interactivity, filtering by

region/product, etc., which

business users expect. Some

allow row-level security so each

sales rep only sees their own

territory (important for

confidentiality).

Visualizing extremely large data

detail can be slow – often pre-

aggregations are needed. Also, a

cluttered or poorly designed

dashboard can mislead; data

engineers and analysts must ensure

metrics are defined consistently

(e.g., what exactly counts as a “new

prescription”) or misinterpretation

can occur. This is more a

people/process issue, but relevant to

outcomes of these tech.

Sales and marketing analytics in pharma has to balance scale and compliance with actionable insights. Tools like warehouses and

MDM ensure a strong data foundation; big data and graph analytics provide deeper insights (like network effects and predictive

power); and ultimately the insights have to feed user-friendly tools for decision-makers (sales reps, marketing strategists). The

success of these technologies is measured by faster and more informed decisions: e.g., identifying the right physicians to educate

about a new therapy, allocating marketing budget to the most effective channels, or tailoring patient support programs based on

real-world usage patterns. In recent years, the commercial side of pharma has aggressively adopted cloud data platforms and

Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

© 2025 IntuitionLabs.ai. All rights reserved. Page 23 of 105

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf


advanced analytics, recognizing that as medical innovation yields more targeted therapies, the data-driven targeting of customers

(physicians and patients) also needs to become more precise and smart.

Each of the big data technologies discussed plays a distinct role across pharma use cases, and often they are used in combination

rather than isolation. For a data engineer in the pharmaceutical industry, understanding these tools’ strengths – whether it’s

Hadoop’s ability to store petabytes of raw data, Spark’s power in crunching complex computations, Cassandra’s speed with

IoT streams, MongoDB’s flexibility, Snowflake/Redshift/Synapse’s analytic ease, graph databases’ insight into relationships,

Veeva’s compliance-ready content management, Informatica’s integration and data quality, or DNAnexus/BaseSpace’s

domain-optimized platforms – is crucial to designing effective data pipelines and systems. The table below summarizes a high-

level comparison of the technologies by some key attributes across these use cases:

High-Level Technology Comparison

Technology Scalability

Performance

(for intended

tasks)

Integration

Ease

Compliance

Features

Real-World

Adoption

(Pharma)

Hadoop

(HDFS/Hive/HBase)

Linear scalability

with commodity

hardware (good

for multi-PB on-

prem storage).

Great for batch

throughput; can

ingest/process

enormous files

but high latency

for queries. Hive

gives SQL

interface but not

interactive speed

(seconds to

minutes). HBase

good for

millisecond-

range gets by

key.

Requires

heavy lifting to

integrate (Java

APIs, etc.), but

has broad

ecosystem

(Kafka, Spark,

etc.) to

connect with.

Not plug-and-

play, but very

flexible for

custom

pipelines.

Security via

Kerberos,

Apache Ranger

for access

control; entirely

in company’s

control

(important for

those avoiding

cloud).

However,

validation of a

Hadoop

environment

can be

complex.

Formerly high

(many pharma had

Hadoop clusters

for R&D data).

Now many are

transitioning to

cloud

storage/compute

but some still use

Hadoop for

internal big data

lakes.

Apache Spark

Highly scalable

(especially on

clusters with

ample

RAM/cores; can

also scale on

cloud by adding

nodes

dynamically).

Fast in-memory

processing for

large-scale

transforms,

iterative

algorithms.

Excellent for ML

on big data. For

small data or

simple queries,

overhead makes

it slower than a

dedicated DB.

Integration-

friendly:

supports Java,

Scala, Python,

R APIs.

Connectors to

all common

data sources

(HDFS, S3,

JDBC,

Kafka…). Often

embedded in

services

(Databricks,

EMR) which

ease

integration

with cloud

storage.

No inherent

compliance

module – relies

on the

environment

(can integrate

with Hadoop

security or run

in a HIPAA-

compliant cloud

environment).

Logging and

audit need

custom setup.

Very high in R&D

(genomics,

analytics) usage;

growing in

manufacturing

analytics;

moderate in

commercial

analytics. Often

behind the scenes

in many pharma

data science

workflows.

Cassandra Massive write

scalability;

Optimized for

fast writes and

Provides

drivers for

Has features

like encryption

Used in pharma

mainly for
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Technology Scalability

Performance

(for intended

tasks)

Integration

Ease

Compliance

Features

Real-World

Adoption

(Pharma)

adding nodes

increases

capacity and

throughput

linearly. Can

span multiple

data centers for

geo-

redundancy.

reads by primary

key (sub-

second). Handles

high transaction

volumes (millions

of inserts per

second possible

with enough

nodes). Not built

for complex joins

or full-table

scans

(performance

degrades for

those).

many

languages;

integrates with

Kafka

(sink/source).

But it’s a

NoSQL system

– applications

have to be

designed

around its data

model. No ad-

hoc querying

without

knowing keys.

at rest, and can

enforce role-

based access.

Audit logging

not native but

can use TLP

(third-party).

Being often

self-hosted,

compliance is

manual. (Some

managed

services offer

certifications.)

specialized needs:

IoT in

manufacturing,

some real-time

tracking systems.

Not as broadly

used as relational

or Hadoop, but

chosen for

specific high-

volume use cases.

MongoDB

Good horizontal

scaling via

sharding, though

needs careful

shard key

design. Modern

versions and

Atlas (cloud

MongoDB) can

scale to many

TBs with

clustering.

Very good for

query

performance on

JSON/document

data with

appropriate

indexes. Not as

fast as

Cassandra for

raw writes, but

more flexible

querying.

Suitable for

moderate big

data (billions of

docs).

Easy for

developers

(schemaless

JSON storage,

simple query

language).

Integrates with

many ETL and

BI tools via

connectors.

MongoDB

Atlas

automates a

lot of

integration

(with AWS,

etc.). Lacks

built-in cross-

document

joins – need to

handle in app

or use

aggregation

framework.

Offers

enterprise

security

features:

authentication,

encryption,

auditing.

MongoDB Atlas

is HIPAA-

certified. On-

prem, needs to

be configured

for compliance.

Supports SQL-

style

permissions.

High usage in

clinical data and

real-world data

stores where

structure is

evolving

(Integration and

analysis of

biomedical data

from multiple

clinical trials). Also

used for content

management

(some use it as a

base for

document stores).

Many pharma

internal apps use

Mongo for its

developer speed,

then feed a

warehouse for

analytics.

Snowflake Virtually

unlimited, thanks

to decoupled

storage &

compute on

cloud object

storage. Can

scale compute

clusters up# Big

Data
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Technology Scalability

Performance

(for intended

tasks)

Integration

Ease

Compliance

Features

Real-World

Adoption

(Pharma)

Technologies in

Pharma: Use

Cases,

Implementation,

and

Comparisons

The pharmaceutical industry generates vast and diverse datasets – from genomic sequences and clinical trial results to regulatory

documents, safety reports, and supply chain logs. Data engineers in pharma must choose appropriate big data technologies to

store, process, and analyze this information at scale. This report explores key technologies – Hadoop (HDFS, Hive, HBase),

Apache Spark, Cassandra, MongoDB, Snowflake, AWS Redshift, Azure Synapse Analytics, Azure Data Lake, Google

BigQuery, Neo4j, TigerGraph, Veeva Vault, Informatica, DNAnexus, and Illumina BaseSpace – and how they are applied across

major use cases. Each section focuses on a specific use case (e.g., genomics data analysis, clinical trials, regulatory management,

pharmacovigilance, manufacturing and supply chain, sales and marketing analytics), detailing the technologies commonly used,

their technical implementation, distinguishing features, and concrete examples. Comparisons are provided in tables for attributes

like scalability, cost, performance, integration ease, compliance, and adoption, to help data engineers evaluate solutions.

Genomics Data Analysis and Bioinformatics Pipelines

Genomic and multi-omics data analysis in pharma involves processing massive sequencing outputs (DNA/RNA reads, variant files)

and integrating results for drug discovery or precision medicine. Key challenges include scalability (handling petabytes of

sequencing data), processing speed (aligning reads or calling variants on thousands of genomes), flexible analysis pipelines, and

compliance (handling potentially identifiable genetic data securely). Data engineers leverage a mix of on-premises big data

frameworks and specialized cloud platforms:

Hadoop Distributed File System (HDFS) for large-scale storage: Genomic files (FASTQ, BAM, VCF, etc.) are often enormous. HDFS

provides distributed storage across clusters, making it feasible to store and access terabytes of sequence data in parallel. For example,

biomedical research projects have utilized Hadoop to manage large volumes of NGS data and clinical results (Maximizing pharmaceutical

innovation with data engineering tools - Secoda). Apache Hive (SQL-on-Hadoop) can be used to structure genomic variant data in tables for

query, and HBase (Hadoop’s NoSQL store) can enable fast random access to genomic data (e.g. keying by gene or variant ID) in big

genome annotation datasets. While Hadoop’s batch-oriented MapReduce model was historically used (e.g. early tools like Crossbow for

sequence alignment), modern pipelines have shifted to more efficient in-memory processing.

Apache Spark for distributed computing: Spark is a general-purpose cluster computing engine ideal for iterative algorithms and large-scale

analytics. In genomics, Spark accelerates variant analysis pipelines by parallelizing tasks across cores or nodes. Spark is embedded in tools

like GATK4 from the Broad Institute, where “Spark” versions of variant callers (e.g. HaplotypeCallerSpark) allow processing a genome across

a cluster, drastically reducing runtime. Importantly, Spark can run on Hadoop clusters (using YARN) or in cloud-managed environments

(Databricks, Amazon EMR, Google Dataproc). ADAM and Hail are examples of genomics frameworks built on Spark, enabling scalable

analysis of genomic variants and genotypes. The in-memory computing of Spark yields performance gains over Hadoop MapReduce,

which is why it’s considered “one of the most promising technologies for accelerating pipelines”. Spark’s machine learning libraries (MLlib)

can also assist in genomic prediction models.

Cloud Data Warehouses (Snowflake, BigQuery, Redshift) for multi-omics integration and analysis: While Hadoop/Spark handle raw data

processing, cloud data warehouse platforms excel at aggregating results and enabling interactive analytics on genomic data combined

with other data (clinical phenotypes, compound libraries, etc.). Snowflake has emerged as a powerful option for bioinformatics data

warehousing. Researchers have demonstrated using Snowflake to manage diverse biological datasets and perform integrated analysis like

disease variant filtering and in-silico drug screening. Snowflake’s multi-cloud architecture and near-zero maintenance appeal to pharma

R&D – it runs on AWS, Azure, or GCP with a unified experience, avoiding vendor lock-in. Its features like automatic scaling, secure data

sharing, and zero-copy cloning make collaboration easier (e.g. safely sharing a subset of genomic data with a partner without duplicating

it). Meanwhile, Google BigQuery is leveraged for large genomic datasets, aided by Google’s ecosystem – for instance, BigQuery has native

support for public genomic data like The Cancer Genome Atlas (TCGA) and integrates with Google’s AI/ML tools (TensorFlow, Vertex AI) for

tasks like protein folding analysis. Amazon Redshift is often chosen if a company’s infrastructure is AWS-centric – it can integrate with

AWS services (S3 for storage, AWS Batch or SageMaker for analysis pipelines) to facilitate genomic data processing. Redshift now supports

semi-structured data and offers RA3 nodes with managed storage, but it may require more tuning than Snowflake/BigQuery for peak

performance. In practice, pharma companies might stage genomic data files in a cloud data lake (S3 or Azure Data Lake) and use external

tables or services like Redshift Spectrum or Synapse to query them as needed.
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NoSQL and graph databases in genomics: Though less common than in other use cases, certain genomic applications use NoSQL stores.

For example, MongoDB can store experiment metadata or gene annotation JSON documents. If a project requires rapid queries by gene or

variant ID, a key-value store like HBase or DynamoDB could be employed. Graph databases like Neo4j appear in drug discovery knowledge

graphs (linking genes, diseases, compounds), which we discuss later, but they can also capture gene interaction networks or pathway data

relevant in genomics. These allow researchers to traverse relationships (e.g., find connections between a gene variant and known drug

targets) which is difficult with relational schemas.

Specialized Genomics Platforms: Many pharma companies use domain-specific platforms such as DNAnexus or Illumina BaseSpace for

genomic data. DNAnexus is a cloud-based bioinformatics platform where users can run end-to-end NGS pipelines, perform variant

analysis, and manage datasets collaboratively. It is designed to handle population-scale genomics – as of 2023, DNAnexus manages and

supports over 80 petabytes of multi-omic data for pharma, clinical diagnostics, and research organizations (Fabric Genomics and

DNAnexus Team Up to Improve Scale and Speed of Data Analysis for Genomic Medicine - Fabric Genomics). It provides a secure, compliant

environment (HIPAA, CLIA, GDPR compliant) with workflow languages (WDL, Nextflow) and versioned apps, so data engineers can

implement complex workflows without building all infrastructure from scratch. Illumina BaseSpace Sequence Hub is another such

platform: it connects directly to Illumina sequencing instruments to stream data to the cloud, then offers storage, analysis apps (including

Illumina’s DRAGEN pipelines), and sharing capabilities. BaseSpace is engineered for regulatory compliance (ISO 27001, HIPAA) and high

performance, enabling labs to “build a secure, compliant, and high-performing genomic sequencing operation” (Genomic & NGS Data

Storage - Illumina) without worrying about underlying servers. While BaseSpace is Illumina-specific, DNAnexus and others are instrument-

agnostic and allow integration of custom analysis tools (using Docker containers).

Example: A pharmaceutical research team might sequence thousands of genomes in a drug discovery project. They could use

Illumina sequencers streaming data to BaseSpace for initial alignment and variant calling (leveraging Illumina’s optimized

pipelines). The resulting variant data could be exported to a Snowflake data warehouse where it’s combined with clinical data to

identify genotype-phenotype correlations. Data engineers might use Spark on a Databricks cluster to perform a heavy compute task

– e.g., joint variant calling or variant quality recalibration across all samples – reading from and writing to an Azure Data Lake. Once

processed, summary tables (like variant frequencies, gene associations) land in Snowflake for analysts to query. If they need to

cross-reference public knowledge (gene networks, literature), they might load data into a Neo4j knowledge graph that connects

those variants to known pathways and publications, enabling complex queries (e.g., find any known drug targets in pathways

affected by our top variant hits).

Comparison: Technologies for Genomics Data

Technology Scalability Performance
Integration

Ease

Compliance

Features

Adoption in

Genomics

Hadoop

(HDFS/Hive/HBase)

High horizontal

scalability (add

nodes to store

PBs). Suitable for

on-prem or IaaS

clusters.

Good for batch

throughput;

MapReduce slower

for iterative tasks

(Spark now

preferred for

speed).

Requires

significant

setup and

expertise

(Java, cluster

management).

Hive/HBase

integrate with

Hadoop

ecosystem,

but not plug-

and-play.

Secure setup

possible

(Kerberos,

Ranger) but

heavy to

validate. Full

control of

data on-prem

can aid

compliance if

managed

properly.

Historically

high for large

genomics

(e.g., 1000

Genomes

used HDFS).

Usage now

declining in

favor of cloud

services.
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Technology Scalability Performance
Integration

Ease

Compliance

Features

Adoption in

Genomics

Apache Spark

Scales across

cluster nodes; in-

memory processing

limits per-node

memory needs but

can spill to disk.

Excellent for large-

scale data

transforms and ML

(much faster than

MapReduce for

many tasks). Utilizes

memory for speed.

Flexible

integration:

runs on

Hadoop,

Mesos,

Kubernetes, or

cloud-

managed

platforms.

Connectors

for many data

sources

(HDFS, S3,

JDBC, etc.).

No built-in

compliance –

depends on

environment

(can run on

secure

clusters or in

HIPAA-

compliant

cloud). Fine-

grained audit

needs custom

tooling.

Strong

adoption in

genomics

analytics (e.g.,

GATK4 uses

Spark). Widely

used via

Databricks,

GCP

Dataproc,

AWS EMR for

bioinformatics.

Snowflake

Near-infinite auto-

scalability

(compute clusters

can be resized on-

demand; multi-

cluster warehouses

handle

concurrency).

High performance

columnar engine;

automatic tuning

and result caching.

Excels at complex

SQL on large data.

Very easy

integration:

standard SQL,

many BI tool

connectors.

Supports

stages to load

data from

S3/Azure/GCS.

Cross-cloud

data sharing is

unique.

Strong

compliance:

HIPAA-,

GDPR-ready;

can encrypt

data, fine-

grained

access

control. Can

be validated

for GxP use.

Secure data

sharing

without

copies.

Rapidly

growing in

pharma R&D.

Used for

multi-omics

data

warehouses

(e.g., disease

variant

analysis and

drug

discovery use

cases).

Google BigQuery

Massive serverless

scalability

(Google’s

infrastructure

handles

sharding/parallelism

automatically).

Excellent at

scanning huge

datasets quickly;

fully managed. May

have slightly higher

latency on very

small queries due to

overhead.

Easy via SQL.

Integrates

natively with

Google Cloud

Storage, and

has public

genomic

datasets

(TCGA, etc.)

accessible.

Standard

ODBC/JDBC

for tools.

Google Cloud

is HIPAA-

compliant;

BigQuery has

fine ACL

controls. Data

is encrypted

at rest and in

transit by

default.

Used in large-

scale

genomics and

health

analytics (e.g.,

storing

population

genomics with

built-in ML

tools). Often

chosen for AI

integration

(TensorFlow

on data).

AWS Redshift High scalability up

to petabytes. New

RA3 instances

separate storage on

S3 for virtually

unlimited storage.

Fast for analytical

queries if tuned

(distribution keys,

sort keys).

Spectrum enables

querying S3 data

Good with

AWS

ecosystem:

easy to ingest

from S3,

integrate with

AWS offers

HIPAA-

eligible

services;

Redshift data

encryption,

Widely

adopted by

pharma on

AWS, e.g., for

aggregating

clinical and
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Technology Scalability Performance
Integration

Ease

Compliance

Features

Adoption in

Genomics

Concurrency

scaling adds

clusters on

demand.

directly. Slightly

older architecture

than

Snowflake/BigQuery.

AWS Glue,

QuickSight,

SageMaker for

ML. Standard

SQL interface.

VPC isolation

available.

Audit logging

to CloudTrail.

Often part of

validated

AWS

environments.

genomic data

in a

warehouse.

Some

migrating to

Snowflake for

ease-of-use.

DNAnexus

Highly scalable

cloud platform

(built on

AWS/GCP).

Manages PB-scale

data and complex

pipelines with

horizontal scaling in

cloud.

Optimized for NGS

pipelines – can spin

up large compute

clusters for heavy

workloads. High

throughput for file

I/O to cloud storage.

Integration via

APIs/SDKs and

workflow

languages

(WDL,

Nextflow). Can

import from

cloud buckets

or instrument

outputs. Less

standard than

SQL

interfaces.

Designed for

compliance:

meets strict

standards

(audit trails,

access

control,

HIPAA,

GDPR)

(Fabric

Genomics

and

DNAnexus

Team Up to

Improve Scale

and Speed of

Data Analysis

for Genomic

Medicine -

Fabric

Genomics).

Many pharma

use it in

validated

environments

for clinical

genomics.

Moderate

adoption:

used by

genomics

initiatives (UK

Biobank,

precision

medicine

projects) and

pharma

needing

turnkey NGS

analysis.

Growing as

data volumes

grow.

Illumina BaseSpace

Scales to many

sequencers and

large data volumes

by leveraging

Illumina’s cloud.

Storage scales with

Illumina Cloud

infrastructure.

High for Illumina’s

use cases (fast

secondary analysis

with DRAGEN

hardware-

accelerated

pipelines either on-

site or cloud). Not a

general compute

platform beyond

provided apps.

Seamless for

Illumina

instruments.

Limited

integration

outside

Illumina

ecosystem

(APIs exist but

primarily used

with Illumina’s

own pipeline

and analysis

apps).

Built-in

compliance:

ISO 27001,

HIPAA, GDPR

compliance

features. Data

encrypted at

rest and in

transit,

regional data

centers for

compliance

needs.

High adoption

in sequencing

labs (many

clinical

genomics labs

and biotech

use it for

ease-of-use).

In pharma,

often used in

early research

or clinical

sequencing

with Illumina.
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Why these distinctions matter: For genomics, a data engineer might use Spark on HDFS when performing a one-time heavy

reprocessing of raw reads (leveraging existing on-prem clusters), then use Snowflake or BigQuery to warehouse the processed

results for easy querying by scientists. If the team values a fully managed, end-to-end solution, they might lean on DNAnexus or

BaseSpace to reduce engineering overhead, especially in clinical genomics where compliance is critical. The choice often depends

on existing infrastructure and skills (e.g., an organization with strong AWS skills might combine S3 + Redshift + AWS Batch for

genomics, whereas another might choose a cross-cloud Snowflake solution to avoid cloud lock-in).

Clinical Trials Data Management and Analytics

Clinical trial data is diverse – patient enrollment info, electronic case report forms (eCRFs), lab results, medical images, sensor data

from wearables, and more. These data come from different systems (EDC – Electronic Data Capture, LIMS, hospital EMRs, patient

apps) often in varying formats. A data engineer’s goal is to integrate and curate trial data for analysis (to monitor trial progress,

ensure data quality, or combine results from multiple trials). Key requirements include flexibility to handle semi-structured data,

scalability to manage many studies or high-frequency patient data, and compliance with regulations (clinical data must be handled

under GCP and 21 CFR Part 11 rules, requiring audit trails and access control).

Technologies commonly used in this domain:

MongoDB for flexible clinical data storage: Clinical trial datasets can be highly heterogeneous – different trials collect different variables,

and protocols change over time. MongoDB’s document model is well-suited for such evolving schemas. A trial’s patient records can be

stored as JSON documents, allowing new fields or forms to be added without altering a rigid schema. This flexibility was demonstrated by

the FIMED project (a biomedical data management tool), which chose MongoDB as the core to manage clinical trial data for its schema-less

design and ability to handle semi-structured data (Integration and analysis of biomedical data from multiple clinical trials). MongoDB allows

dynamic forms and varying data per patient, which would be cumbersome in a traditional SQL schema. Scalability is another reason –

MongoDB can be clustered (sharded) across multiple servers, supporting large datasets and high throughput. In fact, MongoDB “has been

designed to operate using a cluster configuration, making it a great choice if scalability… is required” in clinical trial data contexts

(Integration and analysis of biomedical data from multiple clinical trials). With proper sharding (e.g. by study or site), it can handle

concurrent data ingestion from many trial sites. Data engineers also appreciate MongoDB’s querying and indexing for semi-structured data,

and its ability to store files (with GridFS) – for example, PDFs of patient consent forms or images can be stored alongside data.

Hadoop and Spark for large-scale trial data processing: When dealing with large aggregated datasets (e.g., a pharma company analyzing

all past trial data for patterns), Hadoop and Spark come into play. HDFS might be used to store raw dumps of clinical trial data (CSV files,

JSON logs, even PDFs), forming a clinical data lake. Apache Spark can then be used to clean and transform this data at scale – e.g.,

parsing millions of eCRF records or merging datasets for a meta-analysis. Spark’s distributed SQL engine (Spark SQL) and DataFrame API

let engineers join and filter big data sets from multiple trials efficiently. For instance, if ingesting data from a wearable device in a trial (say

daily heart rate readings from hundreds of patients), Spark could process these time-series in parallel to derive summary metrics per

patient. Spark is also useful for machine learning on clinical data – e.g., training a model to predict patient dropout using trial data.

Cloud Data Warehouses (Snowflake, Redshift, Synapse) for integrated analytics: After collecting and cleaning trial data, a common

practice is to load it into a centralized data warehouse for analysis by statisticians and data scientists. Snowflake is often used to create a

unified view of clinical data across studies – it can easily ingest structured outputs (e.g., CSV extracts from EDC systems or the results of

Spark processing) and make them queryable with SQL. Analysts can then use BI tools or Python/R to query Snowflake for interim analysis,

patient safety signals, etc. A concrete example is using Snowflake to ingest XML data from ClinicalTrials.gov (a public registry) and analyze

it with a BI tool: one team demonstrated loading trial data (in XML) into Snowflake and then using ThoughtSpot for search/analytics on it.

This highlights Snowflake’s ability to handle semi-structured data (it has JSON and XML functions) and work with external analytics tools

seamlessly. AWS Redshift plays a similar role for companies deep in the AWS stack – for example, a company might copy clinical data to S3

and use Redshift’s COPY command or Spectrum to bring it into a warehouse. Redshift can then join clinical data with other operational data

(finance, etc.) for comprehensive reporting. Azure Synapse Analytics is another contender, especially if data is already stored in an Azure

Data Lake. Synapse can combine a data lake store (where raw data from devices or logs are kept) with a SQL analytics engine for curated

datasets. Microsoft provides integration between Synapse and tools like Power BI for visualization. A case study described a pharmacy

chain using Azure Synapse to unify inventory and supplier data for trials supply management, demonstrating Synapse’s use in syncing and

analyzing data in real-time for operational efficiency (e.g., ensuring trial sites have drug supply). In general, these cloud warehouses provide

scalability (to handle many trials’ data), good performance for complex analytical queries, and features like encryption and role-based

access crucial for compliance (with fine-grained access so only authorized personnel see certain sensitive data).

Informatica for data integration and ETL: Informatica’s tools are widely used to extract, transform, and load clinical data from source

systems into a central repository. For instance, Informatica can pull data from an EDC (like Medidata Rave or Oracle Clinical) via connectors,

apply transformations (mapping coded values, combining datasets), and load into a warehouse or data lake. It excels at building reusable,

auditable data pipelines – important in a regulated trial context where you must trace how data moves. Master Data Management (MDM)

from Informatica might be used to maintain a master list of investigators, trial sites, or patients (using de-identified IDs) so that data from

different trials can link on common entities. Pfizer provides an example of modernizing data integration for R&D: they migrated from legacy

ETL to a cloud-native integration using Informatica Intelligent Cloud Services with Snowflake, automating 99% of data mappings from

on-premise sources to the cloud. This allowed Pfizer to rapidly scale processing and focus on analysis rather than plumbing. In a clinical trial

context, such integration ensures data from lab systems, clinical databases, and patient diaries all end up in one consistent format for

analysis.
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Graph databases for study relationships and metadata: Graph technology is emerging in clinical research to link disparate data and

support complex queries, though it’s not yet as common as the above tools. One novel use is modeling the connections between studies,

investigators, sites, and outcomes as a graph. Neo4j or TigerGraph can be used to build a regulatory or clinical knowledge graph: nodes

might be “Study”, “Investigator”, “Site”, “Patient”, etc., and edges capture their relations (participates in, enrolled in, etc.). This can help

answer complex questions, like “which investigators have worked on similar trials?” or identify hidden patterns (like a network of sites with

faster enrollment). Neo4j has been used at Novartis to ingest and connect the latest biomedical research for drug discovery, indicating its

usefulness in linking trial data with external knowledge. In clinical operations, a graph could help ensure standards compliance by linking

data elements to CDISC metadata (e.g., connecting each data field to a standard definition node), as discussed in an opinion on knowledge

graphs helping meet standards like SDTM and ADaM. While graphs in clinical data management are still an emerging practice, they hold

promise for integrating data silos and enabling exploratory queries across them.

Veeva Vault for clinical content and data: Veeva Vault is a cloud platform specifically built for life sciences, and while it is more a

content/document management system than a “big data” engine, it is crucial in clinical trial operations data management. Vault provides

applications like eTMF (electronic Trial Master File), CTMS, and Study Startup on a unified platform. Data engineers might not use Vault

for heavy analytics, but they will integrate data from Vault (such as trial documentation status or site activation metrics) into warehouses for

reporting. Vault’s advantage is that it’s pre-validated and compliant – it meets GxP requirements out of the box, with audit trails and role-

based security. For example, Vault CTMS manages operational data about trial progress, and Vault EDC captures patient data – these

systems can export data to a data lake or warehouse. The Vault Platform underneath is an object store and content management system

that can scale globally (Veeva hosts Vault in the cloud with data centers in multiple regions). It can handle thousands of users and millions of

documents, which is essential for large companies with dozens of products and global trials. Vault also provides APIs and integration hubs

so that, for example, when a submission is approved, that information can flow to other systems (like manufacturing or ERP to trigger

product launch). In terms of big data, Vault may not be about large-scale computation, but it is about centralizing authoritative data and

content so it can feed analytics. Modern clinical data warehouses often ingest structured data (like enrollment metrics) from Vault to

combine with other performance data.

Example: Consider a large Phase III clinical trial collecting data via an EDC system, a wearable ECG device, and lab test results from

a central lab. A possible pipeline: Data engineers set up Informatica jobs to regularly extract new EDC data and lab data, using

mapping rules to a common schema. This data lands in an Azure Data Lake as raw files. A scheduled Spark job (e.g., on Azure

Synapse Spark pool or Databricks) cleans and combines these with wearable data (ingested via IoT pipelines into the Data Lake).

The curated data (patient visits, adverse events, biomarker readings) is then loaded into Azure Synapse Analytics where a

fact/dimension schema (data mart) allows fast analysis of, say, adverse event frequency by patient subgroup. Throughout, patient

identifiers are consistent via an MDM system, and access is controlled. The clinical operations team also pulls data from Veeva

Vault CTMS (via API or export) about site performance (enrollment numbers, queries, etc.), which is integrated into the warehouse.

On Synapse or Snowflake, the company can run SQL analytics to identify sites with high query rates or to compare efficacy signals.

They can also generate submission-ready datasets (CDISC SDTM/ADaM) by using these integrated data and ensure those outputs

comply with standards. If they use a knowledge graph approach, they might also load the data relationships into Neo4j, linking the

study, patients, drugs, and outcomes, enabling complex queries like “find all trials where a similar adverse event profile was

observed for drugs targeting the same pathway.”

Comparison: Technologies for Clinical Trial Data

Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

MongoDB (document DB) Extremely flexible

schema – can handle

evolving case report

forms. Scales out with

sharding for large

multi-trial data. Fast

query performance on

JSON data with

indexes. Developers

can iterate quickly

without schema

migrations (Integration

and analysis of

biomedical data from

multiple clinical trials)

(Integration and

analysis of biomedical

Lacks built-in analytics (no JOINS

across collections like RDBMS;

though aggregation pipeline is

powerful). Complex transactions

are limited (usually OK for logging

trial data). Requires careful data

modeling to avoid inconsistent

entries.

Used in platforms

for managing trial

data with flexible

forms (e.g.,

storing patient

records and

eCRFs). Sanofi’s

translational

medicine platform

reportedly uses

MongoDB to unify

research and

clinical data (for

its flexibility).

Many startups

use Mongo for

healthcare apps
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

data from multiple

clinical trials).

that need quick

iteration, then

push to a

warehouse for

analysis.

Hadoop & Spark

Ideal for batch

processing of large trial

datasets (combining

data from many studies

or processing high-

frequency data like

wearables). Spark

provides fast in-

memory computation

for tasks like data

cleaning and ML on

patient data. Hadoop

(HDFS) can store raw,

unstructured dumps

cost-effectively.

Hadoop ecosystem has steep

learning curve; not typically used

by clinical ops teams, so data

engineers must bridge gap. Batch

processing means results are not

real-time. On-prem Hadoop may

face validation hurdles. Spark jobs

need to be monitored for failures in

pipelines.

Employed by

organizations

doing secondary

analysis on

aggregate trial

data. E.g., using

Spark to process

a million records

from a long-term

outcomes study

overnight.

Hadoop clusters

were used

historically to

store large clinical

datasets, though

cloud data lakes

are now more

common.

Cloud Warehouse

(Snowflake/Redshift/Synapse)

Provides a unified,

performant analytics

environment. Handles

structured trial data at

scale, enabling complex

SQL (joins between

patient, site, drug

tables). Easy

connectivity to BI tools

for dashboards (e.g.,

enrollment metrics,

safety signals). Security

and role management

to restrict sensitive

data access (e.g.,

blinded data).

Snowflake in particular

simplifies maintenance

(no indexing needed)

and can ingest semi-

structured data like

JSON (for ingesting

things like

questionnaires).

Synapse offers an end-

to-end workspace (data

Primarily for structured/processed

data – raw unstructured inputs

often need pre-processing before

loading. Cost can grow with very

large data or complex queries

(engineers must optimize load and

query patterns). Redshift requires

choosing distribution keys and may

need tuning as data volume grows.

Synapse and Snowflake both

require careful data partitioning for

very large tables to maintain

performance.

High adoption:

Nearly all large

pharma have a

data warehouse

for clinical data.

Snowflake is

increasingly

popular for cross-

trial data marts

and sharing data

with partners.

Companies in

AWS use Redshift

or are migrating

to Snowflake for

trials. Azure-

focused

companies use

Synapse (e.g., as

the basis of

modern data

warehouse for

trial and real-

world data at

Novartis or Novo

Nordisk).
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

ingestion, SQL, even

Spark in one platform)

which is convenient for

Azure-based pharma.

Informatica (ETL/MDM)

Excellent for integrating

multiple data sources –

connectors for clinical

databases (e.g., Oracle

Clinical), flat files,

wearables, etc. GUI-

based data mapping is

auditable and can be

reused for each trial.

Informatica MDM can

maintain golden

records for key entities

(patients, investigators)

to de-duplicate and link

data across systems.

Offers data quality tools

(to validate ranges,

codes) which is critical

for clinical data

cleaning.

Enterprise cost can be high.

Setting up mappings initially is

time-consuming (but pays off over

time). Cloud-based alternatives

(like Azure Data Factory or AWS

Glue) exist and might suffice for

simpler pipelines. Needs

integration with source system

APIs or DBs which might require IT

involvement.

Very high

adoption in

pharma: e.g.,

Takeda and Pfizer

modernized their

data pipelines

with Informatica

to handle clinical

and commercial

data integration.

Often, legacy ETL

for trials is built in

Informatica

PowerCenter (on-

prem) and

gradually shifting

to Informatica

Cloud or similar.

Used to populate

data warehouses

and also feed

operational

dashboards.

Neo4j / Graph DB

Captures relationships

that are hard to see in

tables – e.g., linking

investigators to trials to

publications, or patients

to all their treatments

and outcomes in long-

term studies. Enables

complex traversals:

“find trials with similar

eligibility criteria to

mine” or “which sites

have overlapping

investigators?” Graphs

can also link data to

standards nodes

(CDISC), aiding

metadata-driven

automation.

Not traditionally used for core trial

data analysis (which relies on

statistics and set operations more

than graph traversal). Adds an

extra technology that requires

graph modeling expertise.

Performance could suffer if naively

used for very large graphs

(TigerGraph might handle larger

scale). Potentially redundant if

relational approach suffices for the

problem.

Emerging

adoption: Some

pharma R&D

teams experiment

with knowledge

graphs for

integrating

research and trial

data. Regulatory

informatics teams

might use graphs

to map

relationships

between

regulations,

studies, and

filings. Still

relatively niche

compared to

mainstream

relational

approaches.
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations

Example Usage

& Adoption

Veeva Vault (Clinical)

Purpose-built for

managing clinical

operations data and

documents. Vault’s

CTMS, eTMF, etc., unify

trial management

processes with built-in

compliance. It ensures

audit trails and Part 11

compliance with

minimal configuration.

Scales to enterprise

(global trials across

many sites). Integration

via Vault API allows

pulling structured data

(like study statuses)

into other systems.

Using Vault

dramatically reduces

the need for custom-

built solutions for trial

documents and site

management.

Vault is not an analytics platform –

its reporting is basic, so you often

need to export data for advanced

analysis. Being proprietary, you

must use Veeva’s interface or API –

direct database access is not

possible. Costs can be significant,

and it’s a SaaS (less control over

underlying DB). Data engineers

mostly consume data from Vault;

they don’t get to tweak the

platform much.

Very high

adoption in

pharma for trial

management

content – top

pharma

companies use

Vault eTMF and

CTMS. For data

engineers, Vault is

a source of truth

for certain data

(like milestones,

document

completion)

which they

integrate with

performance

dashboards.

Vault’s presence

ensures any

solution they build

must interface

well with it (often

via API or flat file

exports).

In summary, clinical trial data management benefits from a hybrid approach: NoSQL (MongoDB) for flexibility at the data capture

stage, ETL tools (Informatica) for integration, big data tools (Spark/Hadoop) for heavy lifting on raw data, and cloud warehouses for

serving curated data to analysts. A critical consideration is always compliance: these systems must maintain patient privacy (often

using de-identified IDs) and provide audit logs for any data changes, which is why specialized systems like Veeva Vault and careful

data governance with tools like Informatica are so prevalent.

Regulatory Data Management and Compliance

Pharmaceutical companies must manage vast amounts of regulatory data and content: submission dossiers (hundreds of PDF

documents like study reports, manufacturing details), health authority correspondence, product registration data across countries,

and internal compliance documentation. Unlike other use cases, regulatory data is often more document-centric (unstructured or

semi-structured content) and requires strict version control, traceability, and security (to comply with FDA, EMA regulations and GxP

quality guidelines). Data engineers focus on ensuring that this content and associated metadata can be stored, retrieved, and linked

efficiently, and that data flows (for example, between regulatory and clinical systems) are integrated.

Key technologies and approaches:
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Veeva Vault (Regulatory Information Management): Veeva Vault is a cornerstone in many pharma regulatory IT landscapes. It provides

applications for RIM (Regulatory Information Management), including modules for tracking product registrations, managing submission

content, and archiving submission packages. Vault’s Regulatory Submissions module, for instance, manages the assembly of submission

content (like the CTD – Common Technical Document – sections) and can publish in formats like eCTD. What makes Vault stand out is that

it’s built for compliance and content management on a single platform, meaning it was designed to meet the performance and validation

requirements of the life sciences industry from the ground up. Vault ensures that all documents are versioned, all user actions are audited,

and that it meets 21 CFR Part 11 (electronic records/signatures) compliance. Data engineers might not manipulate Vault’s internals (as it’s a

SaaS), but they will integrate it: for example, extracting metadata about approvals, or linking Vault content with data warehouses. Vault’s

underlying technology stack uses a NoSQL content store and an object-oriented data model that scales globally (Veeva hosts Vault in the

cloud with data centers in multiple regions). It can handle thousands of users and millions of documents, which is essential for large

companies with dozens of products and global operations. Vault also provides APIs and integration hubs so that, for example, when a

submission is approved, that information can flow to other systems (like manufacturing or ERP to trigger product launch). In terms of big

data, Vault may not be about large-scale computation, but it is about centralizing authoritative data and content so it can feed analytics.

Modern RIM analytics involve pulling structured data (like lists of approved indications, or timelines for each submission) out of Vault and

into a warehouse for metrics.

Relational and Data Warehouse solutions for regulatory data: While documents live in systems like Vault, the structured facets (e.g., lists

of all global filings, status of each, commitment due dates, etc.) are often stored in relational databases or warehouses for reporting. For

example, companies might use an Oracle or PostgreSQL database (sometimes part of older RIM solutions) to store registration data.

Increasingly, they are moving this to cloud warehouses like Snowflake or Azure Synapse to integrate with other enterprise data. A data

engineer might create a data mart of regulatory KPIs (e.g., time from submission to approval, number of pending queries by agency) by

blending data from Vault (via exports) and other sources. The technology choice here is driven by the need for joinable, queryable data –

hence SQL databases or warehouses are common. Snowflake’s secure data sharing could even allow a scenario where a pharma company

shares certain regulatory data with a partner (under strict controls) during a co-development project.

Hadoop/Spark for text mining of regulatory documents: Regulatory affairs departments increasingly use NLP and text mining on

submissions and health authority feedback to glean insights (like identifying all documents where a particular risk is mentioned). For such

use cases, big data frameworks come into play. A cluster using Hadoop or Spark can be employed to index and analyze thousands of

PDF/XML documents from past submissions. For example, Spark with an NLP library can parse through narratives in clinical study reports to

find key information requested by regulators. Hadoop’s scalability allows processing large corpora of regulatory correspondence (which

could be many gigabytes of text) in parallel. Data engineers might set up an index (Elasticsearch) for these documents, with an upstream

Spark job populating it. While this is not yet ubiquitous, it’s a growing area as companies realize the value of the unstructured data locked in

their archives.

Graph databases for regulatory knowledge: Regulatory data is highly interconnected – a single drug product is linked to many

submissions in different countries, which in turn link to commitments, variations, manufacturing sites, and so on. Representing this as a

graph can be intuitive. Neo4j or TigerGraph can be used to build a regulatory knowledge graph: nodes might be “Product”, “Submission”,

“Regulatory Authority”, “Manufacturing Site”, etc., and edges capture their relations (submitted-to, approved-by, supplies, etc.). This can

help answer complex questions, like “Which approved products would be impacted if a particular manufacturing site’s license is revoked?”

by traversing the graph. Neo4j has been discussed as a way to model and query such regulatory networks for impact analysis. Additionally,

linking regulatory data to external knowledge (like linking an indication approved in a label to published clinical evidence) is a kind of multi-

relational query that graphs handle well. TigerGraph, with its emphasis on fast deep link analytics, could handle very large regulatory graphs

(spanning all products and regions) if needed, ensuring performance for queries that might traverse many hops (e.g., through multiple levels

of supply chain and approval relationships). However, these uses are still emerging – many companies rely on conventional databases and

manual processes for regulatory tracking, but we foresee more graph utilization as data volume and complexity grow.

Informatica and data governance: In regulatory data, data quality and governance are paramount – a mistake in a submitted data point

can be costly. Informatica’s data quality tools might be used to validate structured regulatory data (e.g., ensure all required fields for a

submission are present and follow the standards). Master Data Management could also apply: for instance, maintain a master list of global

health authority IDs or a dictionary of standardized regulatory terms. Informatica is investing in industry-specific solutions (Informatica has

an “Industry Data Bundle” for life sciences) that could ease managing things like controlled vocabularies. Ensuring consistency (such as

using the same drug name across all submissions) is a place where these tools help.

Compliance features of cloud platforms: When regulatory data is moved to the cloud for analysis, ensuring the platform is compliant is a

major consideration. Tools like Snowflake, Azure, AWS all have options for compliance (audit logging, data encryption, region locality).

Azure’s offerings like Azure Synapse and Azure Data Lake Storage are often configured in GxP-qualified environments for pharma. Data

engineers might work with validation specialists to qualify these environments. For example, using Azure Data Lake to store regulatory data

would involve setting up proper access controls (Azure AD integration, perhaps container-level access policies) to ensure only authorized

regulatory personnel can access certain data. Compliance requirements also influence design: for instance, if using a data lake to store

submission archives, one might need to implement retention policies and legal hold capabilities.

Example: A regulatory operations team manages all submission documents in Veeva Vault RIM. Every time they submit to FDA or

EMA, the submission content (dozens of files) and metadata (submission date, approval date, etc.) are stored in Vault. A data

engineering team sets up a nightly job to extract key metadata from Vault via the API – for example, an export of all submission

records and their statuses. This data is loaded into a Snowflake table that accumulates the company’s regulatory history. On

Snowflake, they also integrate data from other sources: perhaps a spreadsheet of regulatory commitments (post-marketing study

requirements) tracked by another team, or manufacturing changes from a quality system. By combining these, they produce

dashboards that show, say, all upcoming regulatory milestones or how long approvals are taking in each region. Meanwhile, another

Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

© 2025 IntuitionLabs.ai. All rights reserved. Page 35 of 105

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf


use case: They want to leverage historic submission text to improve future ones. The engineers use Spark on an Azure Databricks

cluster to perform NLP on hundreds of past reviewer reports (text documents) to see common deficiencies cited. They store the

parsed text in an index for search, and also connect some data points (like product names, issues) in a Neo4j graph linking to the

respective submissions. This graph might reveal, for instance, that multiple products had stability data questions from Health

Authority X, indicating a systemic issue to address. Through all this, the data remains in secure environments: the documents stay in

the controlled Vault repository (Spark might access them via secure API or a dump placed in a secure storage), and any cloud

analysis environment is validated for regulatory use.

Comparison: Technologies for Regulatory Data Management

Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

Veeva Vault (RIM)

Central platform for

regulatory documents and

data (submission content,

product registrations,

correspondence). Provides

workflows for authoring,

reviewing, and approving

documents. Serves as the

authoritative source for all

submission dossiers and

tracking data.

Differentiators: Purpose-built

for life sciences – includes

domain-specific features (e.g.,

eCTD structure management).

Highly compliant: validated

SaaS, Part 11-ready (audit

trails, electronic signatures).

Integrates content and data

(the Vault platform links

document records with

structured fields like product,

country, submission type).

Scalable across global orgs.

Standard in industry: Most

big pharma use Vault or

similar (like Documentum-

based systems) for

regulatory. Vault’s cloud

nature and frequent updates

have made it popular.

Companies like Gilead,

Boehringer Ingelheim, etc.,

have publicly adopted Vault

for RIM. Data engineers often

must pull data from Vault for

reporting since it’s the main

source of truth.

SQL/Cloud

Databases

Store structured regulatory

metadata: product lists,

country registrations,

approval dates,

commitments. Useful for

reporting and analytics

beyond the document-

centric view. Often the

backend of RIM tools or

custom tracking databases.

Traditional RDBMS are reliable

and well-understood, and can

enforce data integrity

(constraints, referential

integrity) which is useful for

critical reg data. Cloud

warehouses (Snowflake, etc.)

can hold this data and allow

linking with other enterprise

data (like sales, to correlate

approvals with launch dates).

They also offer robust security

and can be partitioned by

region for data sovereignty.

High adoption: Even with

Vault, many companies

extract to or maintain a

relational store for cross-

system joins. Some have

legacy RIM on Oracle

databases they now integrate

with cloud platforms for

analysis. Snowflake and

Synapse are beginning to

host regulatory data marts

where teams analyze

workload and performance

metrics (e.g., number of

submissions per year, agency

query response times).

Hadoop/Spark

(Text Analytics)

Applied to large collections

of regulatory text

(submission documents,

labels, health authority

queries) for insight

extraction. Spark can

distribute NLP tasks (e.g.,

finding all mentions of a

certain term across

thousands of pages) and

enable analysis like

Allows leveraging big data

techniques (NLP, ML) on

unstructured data that was

traditionally not analyzed at

scale. This can reveal patterns

or help in preparation of

submissions (e.g., learn which

issues regulators frequently

cite). Spark’s ability to use

libraries (like spaCy or Spark

Implementation complexity –

requires data scientists and

engineers to prepare data and

interpret results. Also,

regulatory text is sensitive

and often confidential, so this

analysis must occur in secure

environments. Emerging

adoption: Big pharmas have

begun pilot projects to

analyze regulatory text using
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Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

clustering of review

comments.

NLP) and run in parallel is key

for timely processing.

data science, but not yet

mainstream.

Graph DB

(Neo4j/TigerGraph)

Model complex

relationships: product–

submission–approval–

manufacturing–variation

networks. Helpful for

impact analysis and

connecting regulatory info

with other domains (safety

signals, manufacturing

changes). For example, if a

raw material is flagged by

one regulator, a graph

query can find all products

and submissions globally

that involve that material.

Graphs excel at

interdependency analysis,

which is crucial in regulatory

change management. A graph

query can quickly traverse

multiple levels of relationships

that would require recursive

SQL. TigerGraph’s

performance allows analysis on

very large, complex regulatory

graphs (spanning all products

and regions) with deep links.

From a compliance

perspective, graphs would be

an internal tool; they’d need

same access controls as other

DBs if containing regulated

data.

Limited but emerging: Some

companies use Neo4j for

pharmacovigilance (linking

drug-event-case). For

regulatory, a few have

experimented with mapping

their entire registration

landscape as a graph for

scenario planning. Not

widespread yet due to

complexity, but interest is

growing as data becomes

more interconnected and

digitalized.

Informatica &

Governance

Ensures data consistency

and quality across systems

– e.g., if a drug name or

indication must exactly

match between the clinical

database and the

submission, Informatica

can enforce or reconcile it.

Helps migrate legacy

regulatory data into new

systems (ETL). Data

cataloging tools document

data lineage (important for

audit/inspection).

The strength is trust in data –

using data quality rules to

catch errors (like a missing

submission date or a mismatch

in country code). Informatica’s

governance aids compliance

by providing lineage: one can

show an inspector how data

from a trial flows into a

submission dataset. It also can

automate data flows between

systems (e.g., when a

submission is approved, push

that info to a manufacturing

release system).

High adoption (indirect):

While a regulatory user might

not see Informatica, IT uses it

behind the scenes. Pharma

companies that migrated to

Vault often used Informatica

to load legacy data. Pfizer’s

integration of cloud data (with

Snowflake) likely includes

regulatory data moving with

Informatica’s help. Overall,

Informatica is a trusted

backbone for ensuring all

these interconnected

systems stay aligned.

In regulatory data management, the emphasis is on single source of truth, traceability, and compliance. Technologies like Vault

address these by providing a controlled environment for content, whereas data platforms (databases, warehouses) ensure the

information can be analyzed and reported. The choice of technology leans more toward specialized platforms (Vault) and stable

databases, with big data tools being used in supporting roles (e.g., text mining or linking data). A data engineer’s challenge is often

integrating these without violating compliance – for instance, if using Spark to analyze documents, one must be careful to not create

unapproved copies of controlled documents. Thus, integration patterns (APIs, secure data lakes) and proper governance are as

important as the tools themselves.

Pharmacovigilance and Drug Safety Analytics

Pharmacovigilance (PV) involves monitoring and analyzing data on drug safety – adverse event (AE) reports, side effects in clinical

use, literature reports, and sometimes social media signals – to detect potential risks associated with pharmaceutical products. This

domain generates large volumes of data (spontaneous reports like FDA’s FAERS database contain millions of records) that are both

structured (case report fields) and unstructured (narrative descriptions). Data engineers in PV work on ingesting diverse safety data

sources, performing signal detection algorithms, and enabling queries to find correlations between drugs and adverse events.
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Important considerations are scalability (processing millions of records quickly), real-time or frequent analysis (for continual

surveillance), and strong compliance/privacy (patient data in safety cases must be protected; PV data is subject to regulatory

audits).

Key technologies and their use in PV:

Apache Hadoop and Spark for large-scale adverse event data analysis: Many pharmacovigilance teams have turned to big data

frameworks to handle public and internal safety datasets. For example, the FDA’s FAERS (Adverse Event Reporting System) data is publicly

available (~130 GB, ~12 million records). Spark is highly suitable for crunching this data: open-source projects have used PySpark to ingest

and analyze FAERS on HDFS. In one case, analysts built a Spark pipeline on Google Dataproc to transform FAERS data and apply

disproportionality algorithms (like reporting odds ratios or a Bayesian approach) in minutes. This same task might take hours on a single

machine. Spark’s ability to distribute computations allowed using methods like the likelihood ratio test with Monte Carlo simulation to

identify drug-event pairs that occur disproportionately. Similarly, Hadoop MapReduce has been used historically to count drug-AE co-

occurrences and detect signals, although Spark is now preferred for its ease and speed. In addition to FAERS, companies ingest adverse

event data from global sources (EudraVigilance, WHO VigiBase) and even from patient support call centers – these can stream into an HDFS

or cloud data lake, then Spark jobs aggregate and analyze them regularly. HBase or Cassandra might also be used to store the processed

safety signals for quick lookup (for instance, a wide-column store keyed by drug name containing a list of associated significant adverse

events).

NoSQL for case management systems: The primary PV case processing systems (like Oracle Argus, ArisGlobal) typically use relational

databases, but there’s a trend towards scalable data stores for certain aspects. For instance, if capturing real-time adverse event feeds (like

social media or IoT medical device alerts), a NoSQL solution could be used for ingestion. Cassandra is suitable where high-velocity inserts

are needed – imagine a scenario where thousands of patient devices send alerts that might indicate adverse reactions (blood pressure

spikes, etc.). Cassandra can capture time-stamped device data reliably and at scale, ensuring no events are lost, and then link them to

patient records for safety analysis. MongoDB can be used to store aggregated case data with flexible schema – beneficial if new fields need

to be added for special safety studies. Additionally, text from case narratives can be stored in a document-oriented way for text mining.

Graph databases for signal detection and causality analysis: Safety data inherently forms a graph: patients, drugs they take, and events

they experience are all connected. Neo4j has been explored for pharmacovigilance to connect these entities and run graph algorithms to

find previously hidden relationships. A knowledge graph in PV can incorporate not just the basic drug-event pairs but also patient factors,

genetics, comorbidities, etc. Querying this graph could answer questions like “find all reports where a drug was taken along with Drug X and

the patient had outcome Y”. Graph algorithms (like community detection or centrality measures) might identify clusters of drugs with similar

side effect profiles. In one scoping review, knowledge graphs were recognized for their added value in PV, especially their ability to integrate

multi-source data and predict adverse drug reactions by analyzing complex relationships. Another advantage is visualizing safety data: a

graph of adverse event connections can help experts see patterns (for example, a particular adverse event node connected to multiple

drugs of the same class, suggesting a class effect). TigerGraph could also be relevant if scaling to very large PV graphs (like including

every patient-case as a node). TigerGraph’s fast traversal could enable near real-time exploration of new incoming cases against an existing

large graph of historical cases.

Machine learning libraries (Spark MLlib, etc.) and AI for PV: Beyond counting and ratios, PV is increasingly employing machine learning

for signal detection (to reduce false positives and prioritize signals) and for case processing efficiency (like automated case classification).

Data engineers might use Spark’s MLlib or Python ML frameworks on clusters to train models on large safety datasets. For example, they

could build a classifier to predict serious cases from the free-text narrative (using NLP features) to prioritize those for medical review, or use

anomaly detection to spot unusual clusters of events. ML can also help in duplicate detection (identifying if two reports describe the same

patient event) by comparing embeddings of text and structured data. These models often require big data infrastructure to train on the full

dataset and to update as new data comes in.

Cloud data warehouses for integrated safety data: Once initial processing is done (e.g., computing signal metrics), results are often

stored in a relational format for medical review. Snowflake, Redshift, or Synapse can be used to house a “safety data mart” that combines

adverse event data with other relevant data (like drug exposure data from sales or patient counts from trials). This allows analysts to run

SQL queries such as comparing event rates across regions or time periods. For example, Snowflake could store a table of drug-event

signals with columns for various disproportionality scores, which pharmacovigilance scientists can query using visualization tools. Since

safety data may need to be updated frequently (as new cases flow in), these warehouses should handle frequent inserts and updates;

modern warehouses can do this, though historically PV groups used on-premises relational databases for this purpose. The compliance

aspect is critical: safety data often contains personal health information. Cloud warehouses used for PV must be configured securely (HIPAA

compliance, data encryption, restricted access). Many pharma companies maintain PV data on internal servers for this reason, but there’s a

gradual move to cloud as security maturates. Snowflake’s secure data sharing could even allow sharing de-identified safety data with

partners or regulators for collaborative signal analysis.

Real-time streaming and alerts: In some cases (e.g., monitoring social media or medical device data for safety issues), real-time

processing tools like Apache Kafka and stream processing (Spark Streaming, Flink) are used. These allow continuous ingestion of events

and immediate flagging if certain conditions are met (e.g., if a particular adverse event is mentioned multiple times on Twitter within a short

period, it might warrant attention). While not explicitly listed by the user, it’s worth noting that streaming complements big data storage:

new safety data can be fed through Kafka to Spark Streaming jobs that update the Cassandra or graph database in real-time, enabling up-

to-the-minute signal dashboards.

Example: A pharmacovigilance department collects adverse event reports from multiple sources: internal clinical trials, post-market

surveillance (healthcare providers and patients reporting events), and external databases like FAERS. To process this, data

engineers build a pipeline: All raw reports (which may come as XML files or via an API) land in an Azure Data Lake store. A Spark
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job runs nightly to process new reports – parsing the XML, standardizing drug names and event terms (using dictionaries like

MedDRA), and appending them to a master dataset. This Spark job also calculates signal detection statistics: for each drug-event

pair, it computes disproportionality metrics comparing to the background frequency. These results are stored in a Delta Lake table

(an open format on the data lake), and also pushed into Azure Synapse Analytics (SQL pools) for easy querying via SQL. On

Synapse, safety scientists can run queries like “show me all events with an elevated reporting ratio for Drug X” or use Power BI to

visualize trends over time. Meanwhile, the data engineers have also set up a Neo4j graph where each incoming case is a node

linked to nodes representing the drug and the adverse reaction. Over time, this builds a network; they run graph algorithms to see if

any new drug suddenly becomes highly connected to a cluster of severe reactions. If such a pattern appears, an alert is generated.

To handle text fields, they integrate Spark NLP in the pipeline to extract medical concepts from the narrative (like symptoms or lab

results mentioned), which then get indexed in an Elasticsearch cluster for the medical reviewers to search free-text across cases. All

of this is done in a secure environment – the data lake and Synapse are configured with encryption and accessible only to authorized

PV personnel (with auditing). The company can demonstrate compliance by showing the lineage of data from ingestion to signal

report (thanks to logged Spark jobs and versioned data in the Delta Lake). By using these technologies, they manage to analyze the

entire FAERS database plus their internal data in minutes, something that used to take much longer with traditional tools.

Comparison: Technologies for Pharmacovigilance

Technology How It’s Used in PV Benefits and Differentiators Considerations

Spark on

Hadoop

Batch processing of large

AE datasets (e.g.,

computing signal scores

across millions of cases).

Machine learning on

safety data, NLP on case

narratives. Often

deployed on cloud

(Databricks, EMR) for

scalability.

Can handle entire global safety DB

in memory/distributed, yielding fast

computation (e.g., analyzing FAERS

12M records in minutes vs years by

manual review). Supports complex

algorithms (MLlib, custom

Scala/Python code) and heavy join

operations (drug with background

population).

Requires data engineering

expertise to set up pipelines and

interpret results. Ensuring data

quality (duplicate detection,

coding consistency) is up to the

implemented code. Spark jobs

must be validated for use in

regulatory submissions or health

authority inquiries.

Cassandra

Ingesting high-velocity

safety data (e.g., device

alerts, web reports) and

storing time-series or

case records for quick

retrieval. Also can store

aggregated counts for

dashboards or recent

signal computations.

High-write throughput and fault

tolerance – the system stays up

even if nodes fail, ensuring

continuous data intake. Excellent for

time-stamped data (each event

record keyed by drug or patient ID

plus time). Scales linearly for

growing volumes, so sudden

increases in reports can be handled

by adding nodes.

Not ideal for ad-hoc queries

outside primary key – one usually

queries by drug or case ID, but

complex searches (e.g., all cases

with symptom X) require custom

secondary indexing or exporting

data to another system. Also, joins

and multi-dimensional analysis

have to be done in Spark or a

warehouse, not within Cassandra.

Neo4j /

Graph

Building a safety

knowledge graph linking

drugs, adverse events,

patients, and possibly

genetic or demographic

factors. Used to explore

indirect relationships and

clusters of events. Helps

in visualizing how

different drugs share

adverse events, which

might suggest common

mechanisms.

Graph queries make complex

network questions answerable (e.g.,

find “similar” drugs based on

shared event profiles). Can identify

connected components (clusters of

cases or events) that traditional

methods might treat as separate.

Graph algorithms (e.g., centrality)

highlight which drugs or events are

most influential in the network.

Intuitive visualization for medical

experts to see the web of

relationships.

Building and updating the graph

adds overhead, and very large

graphs (millions of nodes/edges)

need robust infrastructure

(TigerGraph or Neo4j Aura) to

query quickly. Also, safety data is

dynamic – each new case adds

nodes/edges – so processes must

be in place to keep the graph up-

to-date. Interpretability: a graph

can show associations, but

causation still requires expert

analysis.
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Technology How It’s Used in PV Benefits and Differentiators Considerations

Snowflake /

SQL DW

Integrating cleaned

safety data with other

data (exposure, patient

counts, product info) in a

queryable form. Serving

as the source for periodic

safety reports and signal

tracking dashboards.

Provides an enterprise single

source for safety metrics that can

be easily queried by analysts and

output for regulatory reporting. High

concurrency for multiple users

(safety scientists, epidemiologists)

to run queries simultaneously. The

structured environment makes

validation and audit trails easier

(every query can be logged). Can

enforce role-level security (e.g.,

only aggregated data viewable to

certain users).

Requires that data be transformed

and loaded in structured form –

unstructured narratives need to

be coded or summarized first.

There’s some latency – often

updated nightly or weekly, not

real-time. Cost needs monitoring

if data volume is large (but safety

data volume is often manageable

compared to e.g. genomics). Must

ensure sensitive identifiers are

removed or protected before

loading (as warehouses are not

typically used to store patient

identifiers in PV).

Machine

Learning

(Spark MLlib,

Python scikit,

etc.)

Advanced signal

detection (e.g., anomaly

detection, predictive

modeling of risk), and

automation in case triage

or duplicate detection.

NLP models to

automatically extract key

information from

narratives (like

suspected drug, adverse

event terms).

Can improve signal detection by

accounting for multiple variables

simultaneously (multivariate

algorithms might catch a subtle

signal missed by univariate

disproportionality). Speeds up case

processing – e.g., automatically

prioritizing cases likely to be

serious, so humans review those

first. NLP can structure free text for

easier analysis (turning narratives

into coded data).

Models must be thoroughly

validated – false negatives in PV

are unacceptable. Regulatory

acceptance of pure ML signals is

cautious; usually ML is a

supplement to, not replacement

for, traditional methods.

Implementation requires cross-

functional expertise (data

scientists and PV experts). Also,

ML models can drift as data

changes, so they need retraining

and monitoring.

Pharmacovigilance is a data-heavy domain where big data tech is proving its worth by speeding up detection of safety signals and

allowing more complex analyses than previously possible. A key trend is combining diverse data (clinical trials, real-world usage,

literature) – this is where these technologies shine by handling volume and variety (the “3 V’s” of big data: volume, velocity, variety)

in drug safety. The ultimate goal remains the same: protect patients by identifying risks early. Thus, any technology used must not

only be powerful, but also reliable and transparent enough to satisfy regulatory scrutiny when decisions (like issuing warnings or

updating labels) are made based on data.

Manufacturing and Supply Chain Optimization

Pharmaceutical manufacturing and supply chain operations generate big data from production lines, quality control labs,

inventory systems, distribution logistics, and IoT sensors (e.g., temperature monitors in cold chain storage). Data engineers

support use cases like predictive maintenance of equipment, optimization of supply chain routes, inventory forecasting, and

ensuring product quality and compliance throughout the production process. These use cases require handling streaming sensor

data, large time-series datasets, and complex networks of suppliers and distributors. The key technology needs are scalability for

sensor/IoT data, real-time or near-real-time processing for timely decisions, integration of heterogeneous data (ERP systems,

factory equipment logs, weather data, etc.), and compliance with manufacturing regulations (ensuring data integrity and audit

trails for Good Manufacturing Practice).

Technologies in use:
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Apache Cassandra for IoT and sensor data: Pharmaceutical manufacturing involves a lot of equipment and environmental sensors

(monitoring conditions like temperature, humidity, vibration, etc.). These sensors emit readings continuously, leading to a deluge of time-

series data. Cassandra, as a distributed NoSQL store, is a popular choice to handle this kind of data due to its high write throughput and

ability to scale horizontally without single points of failure. For example, a pharma company might use Cassandra to collect temperature and

humidity readings from hundreds of lab chambers or production suites every few seconds. By sharding data by sensor and time, Cassandra

can ingest this data in real-time and retain it for analysis. It ensures that even if one node goes down, data is replicated and available

(important for critical manufacturing data). Another use is tracking supply chain telemetry – Cassandra could store GPS pings and

temperature data from refrigerated trucks delivering vaccines, allowing real-time queries on where a shipment is and if conditions have

deviated. The trade-off is that Cassandra excels at fast writes and primary-key reads, but complex analytical queries on this data (like

correlation between two sensors) would be done in Spark or a warehouse after extracting the relevant slice.

Apache Hadoop (HDFS) and Spark for manufacturing analytics: Historical manufacturing and supply chain data (spanning years of

operations) can be huge – think of every batch record, every equipment log, every shipment detail. Hadoop HDFS is often used as a data

lake to store this history cheaply. Then Spark can be utilized for various analytics: predictive maintenance (analyzing sensor patterns to

predict machine failure), yield optimization (finding factors affecting batch yield by analyzing past batch data), and supply chain

simulation (using historical demand and supply data to model scenarios). For instance, Spark might be used to train a model on vibration

sensor data from machines to predict when a bearing will fail, alerting maintenance before a breakdown occurs. Spark can also crunch

through years of production data to find subtle patterns (maybe a combination of slightly high humidity and a certain raw material lot

correlates with lower product potency). In the supply chain realm, Spark could simulate distribution scenarios – e.g., how would lead times

and costs change if a distribution center is relocated – by using the granular data of shipments and inventory. The ability of Spark to join

large datasets (like linking manufacturing deviations with supplier data and quality test results) can uncover root causes that single-source

analysis might miss.

Cloud analytics platforms (Azure Synapse, AWS Redshift/S3, Google BigQuery): Many pharma companies modernize supply chain

analytics by moving to cloud platforms that combine data warehousing with data lake capabilities. Azure Synapse Analytics is often

chosen for its unified approach: it can directly query data in Azure Data Lake Storage (where raw IoT data or ERP extracts are landed) and

also ingest curated data into a relational warehouse for high-performance analytics. For example, Synapse might be used to create a

dashboard that tracks key manufacturing KPIs by aggregating data from both batch records and real-time sensor alerts. Synapse’s

integration with Power BI allows interactive exploration of this data. AWS Redshift (often with Redshift Spectrum or AWS Athena) allows

similar capability – e.g., a company could keep detailed IoT data in S3 (accessed via Spectrum when needed) but maintain a Redshift data

warehouse of daily summary stats for quick querying. Google BigQuery can be used by companies leveraging Google Cloud’s AI for things

like demand forecasting – BigQuery can house the data, and then feed models in Vertex AI. These cloud platforms also provide scalability

(adding more computing nodes or using serverless resources to handle spikes in queries) and built-in security/compliance features

(encryption, IAM controls, logging) that can be configured to meet GxP requirements. Cloud flexibility was highlighted during the pandemic

when pharma supply chains needed rapid reconfiguration – those with cloud-based data platforms could more swiftly analyze scenarios like

vaccine distribution logistics.

Graph databases for supply chain network modeling: Pharmaceutical supply chains are multi-tiered and global. Graph databases shine

in modeling these relationships and identifying vulnerabilities or optimization points. Neo4j can store a model where nodes are suppliers,

manufacturing plants, distribution centers, and even specific shipments or materials, with edges representing supply relationships or

material flows. Queries can then answer, “If supplier X has a delay, which final products are at risk?” by traversing all edges downstream of

that supplier. Graph algorithms can find bottleneck nodes (nodes whose removal greatly disrupts connectivity) – these might be key

suppliers that lack alternates. TigerGraph, with its distributed architecture, can handle extremely large supply chain graphs (imagine

modeling every product’s bill of materials and all logistics routes in one graph). This can go hand in hand with supply chain digital twins and

scenario planning. For instance, TigerGraph could be used to run what-if analyses: remove a node (simulate a site shutdown) and see how

many paths are broken and what alternative paths exist, all in near real-time. Neo4j has been used in supply chain to provide visibility where

data is siloed – by connecting ERP, CRM, and logistics data in one graph, a company can quickly get a holistic view. In pharma, where

regulatory and quality implications are tied to supply chain (e.g., a single-source ingredient might be a compliance risk), graphs help map

those dependencies clearly.

Streaming and real-time processing (Kafka, Spark Streaming): To react quickly (say, to a temperature excursion in a shipment or a

sudden equipment alarm), streaming technologies are used. Apache Kafka often serves as the backbone for moving real-time data from

machines or trackers into analytics systems. For example, a Kafka topic might carry all machine sensor readings; a Spark Streaming job

subscribes to it and performs anomaly detection on the fly, raising an alert if a metric deviates beyond a threshold (predictive maintenance

in real-time). Similarly, as orders and inventory updates stream in from around the world, a streaming pipeline could update inventory

positions instantaneously and trigger restock orders or reroute shipments to prevent stockouts. This is crucial for life-saving drugs and

vaccines where delays or stockouts are not acceptable. Streaming data is often then stored into Cassandra or a time-series database for

persistence, while immediate triggers are handled by the streaming app logic (e.g., send alert, update dashboard).

Informatica and integration: Manufacturing and supply chain data often reside in enterprise systems like SAP (for manufacturing

execution and inventory) or LIMS (Lab Information Management for quality tests) or SCADA systems for process control. Informatica is

commonly used to ETL data from these sources into data lakes or warehouses for analysis. It can also enforce data quality (ensuring all

required batch data is present, or flagging anomalies in log data). Additionally, MDM in supply chain is critical for reference data like material

codes, supplier IDs, and location codes; Informatica MDM or similar ensures that these are consistent across systems so that when data is

integrated, everything lines up correctly. A real example is Pfizer, which used a combination of Snowflake (for data warehousing) and

Informatica to automate 99% of data mappings from on-prem systems (like manufacturing and lab data sources) to the cloud, thereby

digitizing and integrating their end-to-end supply chain data.

Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

© 2025 IntuitionLabs.ai. All rights reserved. Page 41 of 105

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf


Example: A pharma company wants to optimize its vaccine supply chain from manufacturing to distribution. They deploy IoT

sensors in their manufacturing plants (monitoring equipment vibrations, temperature, etc.) and in their cold chain shipments (GPS

and temperature trackers in each container). Data engineers set up an AWS IoT + Kafka pipeline that streams all this sensor data

into a Cassandra cluster in near real-time. On top of Cassandra, they build a microservice that queries the latest readings and

triggers alerts if any condition goes out of spec (e.g., if a freezer’s temperature exceeds a threshold for more than 2 minutes, send

an alert to maintenance). All sensor data also gets periodically copied to an S3 data lake for historical analysis. On that data, they

run Spark on Amazon EMR to do two things: (1) Predictive maintenance – analyze equipment sensor data (vibration, temperature,

etc.) to predict failures. They use Spark’s MLlib to train models using labeled historical incidents of machine failures. (2) Supply and

demand forecasting – combine inventory levels, production rates, and shipment transit times with external data (like disease

outbreak data or seasonal trends) to predict where and when demand surges might happen. They use Spark to train a demand

forecast model on years of sales and epidemiological data. The results (like predicted stock levels or production needs per region)

are written to a Redshift data warehouse where operations teams can query them with SQL and feed dashboards. They also use a

TigerGraph database to map their entire supply network: nodes for raw material suppliers, manufacturing plants, distribution

centers, shipping lanes, etc. When planning, they simulate scenarios – e.g., “What if Plant A goes down for 1 month?” TigerGraph

quickly identifies all products impacted and checks if alternative manufacturing nodes exist for those, highlighting which products

could face shortages. This informs contingency plans. In one instance, this graph analysis revealed that a single supplier provided an

ingredient for 5 major vaccines; the company proactively qualified a second supplier to mitigate this risk, an insight that came

directly from centrality analysis in the graph. Throughout these processes, all systems are under a GxP compliance umbrella – the

data lake and Redshift are part of a validated cloud environment with proper change control, and any models that directly influence

GxP decisions (like adjusting production volumes) are verified by quality teams. The outcome is a more resilient and efficient

supply chain, with real-time monitoring reducing spoilage (e.g., saving shipments from temperature excursions) and big-data-

driven forecasting reducing both shortages and overstock.

Comparison: Technologies for Manufacturing & Supply Chain

Technology
Typical Use in

Mfg/Supply Chain
Pros Cons Adoption Example

Cassandra

Collecting and

storing high-speed

sensor/IoT data

from production

equipment and

shipments. Also

backing real-time

dashboards and

alert systems (e.g.,

equipment health,

cold chain

monitoring).

Scalable, fault-tolerant:

can ingest thousands

of readings per second,

with no downtime due

to replication. Time-

series optimized: data

model can be designed

for fast recent reads

(e.g., partition by

sensor). Suitable for

multi-site/global

operations due to

multi-datacenter

replication.

Not built for complex

querying or analytics

beyond simple lookups

by key or time range.

Typically paired with

Spark or SQL DB for

deeper analysis.

Operational overhead:

managing and tuning a

Cassandra cluster

requires expertise

(compaction,

replication settings,

etc.).

Used for IoT in pharma: A

large vaccine manufacturer

uses Cassandra to capture

temperature/humidity from

hundreds of sensors in real

time, feeding a live quality

assurance dashboard. Also

used in pharma

manufacturing for

equipment log storage,

providing a buffer for

streaming analytics.

Hadoop &

Spark

Big data processing

on historical

manufacturing and

supply data: yield

analysis, quality

analytics (e.g.,

linking process

parameters to

outcomes), supply

chain simulation,

and model training

(forecasting,

optimization).

Powerful analytics: can

crunch years of data

(batches, lab results,

distribution records) to

find patterns or train

ML models that

improve processes.

Flexibility: can integrate

diverse data sources

(machine logs, ERP

extracts, weather data)

in one framework.

Spark’s in-memory

computation makes

Results often need

further handling to be

actionable (Spark

might output a model

or recommendations,

which then must be

integrated into

operations). Requires

data engineering +

data science talent.

On-prem Hadoop for

manufacturing can be

challenging to validate;

cloud use needs

High adoption

(analytics): e.g., Moderna

(a newer pharma)

leveraged cloud data lakes

and Spark to rapidly scale

vaccine production

analytics. Traditional

pharma like Novartis have

used Spark to analyze

production data from

continuous manufacturing

to optimize yields. Spark is

also used in logistics arms
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Technology
Typical Use in

Mfg/Supply Chain
Pros Cons Adoption Example

iterative algorithms

feasible on big

datasets.

careful control of data

flows to ensure

confidentiality of

sensitive process data

(IP protection).

of pharma distributors to

route shipments.

Azure

Synapse /

Cloud DW

Centralized

analytics and

reporting on

production and

supply chain

metrics. E.g., a

Synapse or

Snowflake data

warehouse that

aggregates daily

production counts,

batch cycle times,

inventory positions,

and supplier

performance

metrics for

management

dashboards.

Integrated ecosystem:

Synapse ties in with

Azure Data Factory,

Azure ML, Power BI,

providing a one-stop

shop from data

ingestion to reporting.

Warehouses handle

concurrent user queries

well (useful when

supply chain,

manufacturing, finance

teams all query data).

Good for structured

data: ideal for periodic

reports (monthly

production vs plan,

OTIF – on-time-in-full

delivery metrics, etc.).

Not suited for raw

sensor data storage or

real-time needs (data

usually loaded on a

schedule). Can become

expensive if used to

store huge volumes of

granular data (usually

that stays in data lake).

Needs robust data

modeling – define

schemas that integrate

data from SAP, LIMS,

etc., which takes initial

effort.

Very high adoption:

Virtually all big pharma

have some form of data

warehouse for

manufacturing/supply KPIs

(some still on-prem, many

moving to cloud). Eli Lilly,

for instance, uses a cloud

data warehouse to

integrate supply chain data

for real-time monitoring of

drug shipments (improving

visibility). Pfizer’s supply

chain modernization

included moving siloed

data into Snowflake and

automating pipelines with

Informatica.

Neo4j /

TigerGraph

(Graph)

Modeling supply

networks and

product

genealogies as

graphs. Used for

risk analysis (find

single points of

failure), impact of

changes (which

products use X

supplier), and

optimizing network

(shortest path,

alternate route

identification). Also

used to trace

materials (for

compliance,

traceability from

raw material to

patient).

Makes

interdependencies

visible: helps answer

multi-hop questions

easily (which a SQL join

of many tables

struggles with). Graph

algorithms can

highlight critical

suppliers or lanes so

contingency plans can

be developed. In quality

investigations, graphs

can trace every batch

that used a suspect raw

material in seconds,

ensuring faster

responses to quality

events.

Data gathering

required – building a

full graph means

integrating data across

procurement,

manufacturing,

distribution, which

might be in disparate

systems. Ensuring

graph stays updated

with ERP changes can

be complex (needs

event-driven updates

or regular sync).

Visualization of very

large graphs can be

challenging – often

need custom

summarization for

human-friendly views.

Emerging but promising:

Several pharma (and large

CMOs) started using graph

tech after supply

disruptions in COVID-19 to

improve resilience. One

case is using Neo4j to map

out vaccine distribution

networks to quickly reroute

around bottlenecks.

TigerGraph’s use in

healthcare supply chain

has been demonstrated in

proofs-of-concept for

ensuring steady supply of

critical medicines by

analyzing network

connectivity.

Kafka &

Streaming

Real-time

monitoring for

manufacturing

(machine alarms,

Real-time data flow:

minimal delay from

event occurrence to

action. Kafka is reliable

Adds infrastructure to

maintain (Kafka

cluster). Must design

streams carefully to

Increasing adoption with

Industry 4.0: Pfizer’s

continuous tablet

manufacturing line uses
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Technology
Typical Use in

Mfg/Supply Chain
Pros Cons Adoption Example

environmental

excursions) and

supply chain

(shipment tracking,

inventory alerts).

Enables immediate

notifications and

automated

reactions (e.g.,

auto-create a

maintenance ticket,

reroute a shipment).

and can buffer bursts,

ensuring no data loss

from fast machines.

Streaming processing

(Spark Streaming,

Flink) can implement

complex event

processing (e.g.,

pattern detection over

time). Great for

bridging OT

(operational tech on the

factory floor) with IT

systems by streaming

data from PLCs or

SCADA to analytics.

avoid false alarms and

ensure important

signals aren’t missed in

noise. In regulated

environments, any

automated action on

GxP processes

triggered by streaming

data must be validated

(often companies use

streaming for

monitoring, with

humans deciding

actions, to stay safe).

real-time feeds to adjust

process parameters on the

fly (with human oversight).

Warehouses of pharma

distributors use streaming

from IoT devices to

manage inventory robots.

Many pharma are in pilot

stages of connecting all

their equipment via OPC-

UA to Kafka to enable a

“smart factory” analytics

layer.

Informatica

/ MDM

Integrating data

from systems like

SAP (production

planning,

inventory), LIMS

(quality test

results), and WMS

(warehouse

management) into

the data

lake/warehouse.

Mastering data like

material codes,

product codes, and

supplier info across

these systems.

Pre-built connectors: to

SAP, Oracle, etc., save

development time.

MDM ensures one

version of truth: e.g., a

raw material code in

SAP is linked to the

standardized material

ID used in analytics,

avoiding duplication.

Data quality: can

enforce business rules

(e.g., flag if a batch

record is missing a

release date or if a

shipment record is

missing temperature

data).

Traditional enterprise

tool – requires license

and skilled developers,

which some newer

companies may

circumvent with open-

source alternatives.

MDM projects need

business alignment

(agreeing on master

definitions) which can

be lengthy. But for

large established

pharma with legacy

systems, these are

often the only way to

reliably consolidate

data.

High adoption in

integration: Novartis uses

Informatica to pull data

from dozens of

manufacturing sites into a

global data lake. GSK

employs Informatica MDM

to have a global product

master, ensuring

consistent identification of

products across R&D,

manufacturing, and

commercial. Even new data

mesh architectures often

incorporate MDM for

critical domain data.

Manufacturing and supply chain in pharma is an area where operational efficiency gains directly impact the bottom line (and public

health, by ensuring medicines are available). Thus, the use of big data tech here often focuses on predictive and preventive

analytics (to avoid problems before they happen) and on end-to-end visibility (breaking data silos between production, quality,

and distribution). The table above shows that a combination of streaming + NoSQL for real-time, big data frameworks for deep

analysis, and graph/AI for complex pattern discovery is becoming the norm in advanced pharma operations (what some call Pharma

4.0, mirroring Industry 4.0). Data engineers must often integrate old and new – streaming IoT data from shop floors with legacy SAP

records – making this a challenging but high-impact domain.

Sales and Marketing Analytics in Pharma

Pharma companies leverage big data in commercial operations – analyzing sales data, market research, patient and prescriber data,

and marketing campaign performance. While the data volumes are often smaller than in R&D or manufacturing, they are still

substantial (e.g., prescription records for millions of patients, or terabytes of healthcare claims data for market insights). Moreover,

new data sources like social media or digital engagement (webinars, emails) add to the variety. Use cases include sales force

optimization, marketing ROI analysis, Key Opinion Leader (KOL) identification, and patient journey analytics. Data privacy is

crucial here (handling patient or physician data must respect HIPAA, GDPR, etc.), and integration of data from third-party vendors

(e.g., IQVIA prescriptions, claims data, Veeva CRM) is often needed.
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Key technologies and approaches:

Cloud data warehouses (Snowflake, Redshift, BigQuery) for sales data integration: Commercial data often comes from various sources –

CRM systems (like Veeva CRM), third-party sales data providers, internal sales targets, marketing automation platforms, etc. A cloud data

warehouse serves as the central integration point where all this data is consolidated for analysis. Snowflake is commonly used by pharma

commercial analytics due to its ability to handle both structured and semi-structured data and its ease of sharing data. For instance,

companies can directly ingest large weekly prescription datasets (often delivered as flat files) into Snowflake and join with their internal

data. Snowflake’s data sharing and marketplace capabilities even allow companies to access data like patient claims or formulary data

directly from partners. AWS Redshift is similarly used in companies that are AWS-centric – e.g., ingesting sales data from S3 and

combining with Salesforce/Veeva exports. Google BigQuery is used when pharma teams want to leverage Google’s analytics (for example,

linking Google Ads data or using BigQuery ML for quick models on sales data). These warehouses provide the performance needed to slice

and dice sales by region, product, physician, etc., and the concurrency to allow many users (sales analysts, forecasters) to query

simultaneously. They also support BI tools like Tableau or Power BI out-of-the-box for reporting.

Informatica and Master Data Management (MDM) for customer and product data: Pharma deals with complex customer data – each

doctor (HCP) might appear in multiple data sources (prescription data, conference attendee lists, CRM contacts) with slight variations.

MDM ensures a single unified profile for each HCP and each institution (hospital, clinic) across data sources. Informatica MDM or similar

solutions (like Reltio, which is cloud-native MDM often used in pharma) are deployed to manage this. This greatly improves analytics

because now sales data, marketing touches, and outcomes can be linked to the same entity. Similarly, product hierarchies (e.g., molecule ->

brand -> formulation -> SKU) are maintained to allow analysis at different levels (brand-level vs. product-level sales). Informatica’s data

integration tools also feed the warehouse by connecting to CRM (Veeva CRM has APIs/Informatica connectors), ERP (for shipments or

orders), and external data feeds. Pfizer, for example, emphasized the importance of data integration in their commercial data domain to

scale up processing and sharing – using Informatica on cloud to avoid hand-coding integrations. Ensuring compliance in commercial data

integration includes honoring opt-outs (if a doctor opted out of marketing, that data flow must be respected) and handling PII appropriately

(often personal data is hashed or anonymized unless needed at identifiable level for specific uses).

Graph databases for KOL and network analysis: Influence networks among physicians can significantly impact drug adoption. Graph

technology helps pharma identify and leverage these networks. TigerGraph and Neo4j are used to construct physician referral graphs

(who refers patients to whom) and collaboration graphs (who co-authors papers or sits on boards together). TigerGraph shared a use case

where mapping the patient referral network enabled Amgen to find hubs of influence – physicians who refer many patients to specialists,

indicating they are central in patient flows. Traditional SQL required expensive joins on large claims tables which took hours, whereas

TigerGraph handled the connections much more efficiently as a graph traversal. Using such a graph, the company can find clusters of

prescribers (communities) and target the central nodes to indirectly reach many others. Neo4j is also widely used in pharma for KOL

identification, linking data like publications, clinical trial participation, and guideline authorship. By querying this graph, a medical affairs

team can find the most connected experts in a given therapeutic area (those who publish extensively and collaborate widely). Graph

algorithms like PageRank can rank KOL influence. These insights feed into decisions about speaker programs, advisory boards, or even one-

to-one engagement by reps for education. The differentiation of graph DBs is their ability to handle multi-hop relationships easily – e.g., find

all doctors within 3 degrees of Dr. X in the collaboration network, or identify communities of practice around a certain treatment approach.

Big data for real-world evidence (RWE) and patient analytics: Sales and marketing strategies increasingly rely on understanding patient

journeys and real-world outcomes. This can require processing very large, granular patient-level datasets (de-identified for privacy). Spark

or BigQuery can be used to handle tens of millions of claims or EMR records to find insights like average time to treatment, switches

between therapies, adherence rates, etc. These insights help marketing tailor messaging (e.g., if data shows patients often discontinue a

competitor drug due to side effects, the sales team can emphasize their drug’s tolerability). Databricks (Spark) is sometimes used to create

patient clusters or predictive models (like which patients are likely undiagnosed for a condition, so marketing can raise awareness in that

patient segment via physicians). Once these models or aggregate insights are produced, they are fed back into the warehouse or CRM for

action – for instance, flagging to reps that a certain physician has many patients who could benefit from a new approved indication, based

on claims data analysis. Privacy is carefully guarded: typically this analysis is done on anonymized data, and any identifiable insight is at

physician or aggregate level, not individual patients.

AI in sales and marketing: While not explicitly asked, it’s worth noting that machine learning models are used for things like next-best

action recommendations to sales reps (what action to take for which doctor), churn risk models (which physicians might stop prescribing a

product), and marketing mix optimization (analyzing large sets of marketing spend and return data to allocate budget). These models may

be trained using Python/R on the integrated data in the warehouse or on a Spark cluster if data is huge. The output (recommendations,

scores) is then integrated into tools the sales or marketing team uses (like a dashboard or Veeva suggestions).

Veeva Vault (PromoMats) for content management: While not a big data tool per se, Vault PromoMats is used to manage all marketing

materials and ensure# Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

The pharmaceutical industry generates vast and diverse datasets – from genomic sequences and clinical trial results to regulatory

documents, safety reports, and supply chain logs. Data engineers in pharma must choose appropriate big data technologies to

store, process, and analyze this information at scale. This report explores key technologies – Hadoop (HDFS, Hive, HBase),

Apache Spark, Cassandra, MongoDB, Snowflake, AWS Redshift, Azure Synapse Analytics, Azure Data Lake, Google

BigQuery, Neo4j, TigerGraph, Veeva Vault, Informatica, DNAnexus, and Illumina BaseSpace – and how they are applied across

major use cases. Each section focuses on a specific use case (e.g., genomics data analysis, clinical trials, regulatory data

management, pharmacovigilance, manufacturing and supply chain, sales and marketing analytics), detailing which technologies are

commonly used, how they are technically implemented, what differentiates them, and concrete examples. Comparisons are provided
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in tables for attributes like scalability, cost, performance, integration ease, compliance, and real-world adoption, to help data

engineers evaluate solutions.

Genomics Data Analysis and Bioinformatics Pipelines

Genomic and multi-omics data analysis in pharma involves processing massive sequencing outputs (DNA/RNA reads, variant files)

and integrating results for drug discovery or precision medicine. Key challenges include scalability (handling petabytes of

sequencing data), processing speed (aligning reads or calling variants across thousands of genomes), flexible pipelines, and

compliance (securely handling potentially identifiable genetic data). Data engineers leverage a mix of on-premises big data

frameworks and specialized cloud platforms:

Hadoop Distributed File System (HDFS) for large-scale storage: Genomic files (FASTQ, BAM, VCF, etc.) are enormous. HDFS provides

distributed storage across clusters, making it feasible to store and process terabytes of sequence data in parallel. For example, biomedical

research projects have utilized Hadoop to manage large volumes of NGS and clinical data (Maximizing pharmaceutical innovation with data

engineering tools - Secoda). Apache Hive (SQL-on-Hadoop) can impose structure on variant data (storing variant calls in tables for query),

and HBase (Hadoop’s NoSQL store) enables fast random access to specific genomic records (e.g., retrieving all variants at a particular

gene). While Hadoop’s batch-oriented MapReduce model was historically used in genomics, modern pipelines favor more efficient in-

memory frameworks.

Apache Spark for distributed computing: Spark is a cluster computing engine ideal for iterative algorithms and large-scale analytics. In

genomics, Spark accelerates variant analysis pipelines by parallelizing tasks across cores or nodes. For instance, the GATK4 toolset from

the Broad Institute offers Spark-based versions of key algorithms to speed up processing of large genome cohorts. Spark can run on

Hadoop (using YARN) or in cloud-managed environments (Databricks, Amazon EMR, Google Dataproc). Specialized frameworks like ADAM

and Hail build on Spark to provide genomic data models and APIs, enabling scalable genomic analyses (e.g., joint genotyping on thousands

of genomes). Spark’s in-memory processing provides major performance gains over Hadoop MapReduce, making it “one of the most

promising technologies” for genomic pipelines. Its machine learning libraries (MLlib) also support advanced analyses (clustering variants,

predicting phenotypes from genotypes, etc.).

Cloud Data Warehouses (Snowflake, BigQuery, Redshift) for multi-omics integration: After primary genomic analyses, results (variants,

expression matrices, etc.) need to be integrated with clinical and reference data. Cloud data warehouses excel at interactive analytics and

sharing of such integrated data. Snowflake has been used as a bioinformatics data warehouse, providing a convenient SaaS platform to

join genetic data with clinical phenotypes. Researchers demonstrated a Snowflake framework for storing diverse biological datasets

(genomic variants, chemical screening results) and enabling cross-domain queries for insights like disease variant effects and drug target

discovery. Snowflake’s multi-cloud compatibility and near-zero maintenance appeal to pharma R&D teams – it runs on AWS, Azure, or GCP,

reducing vendor lock-in risks. Its features like secure data sharing and zero-copy cloning are advantageous for collaboration (sharing

subsets of data without replication). Google BigQuery is another choice, especially to leverage Google’s public genomic datasets (like

TCGA, 1000 Genomes) and AI platform integration. BigQuery’s serverless design handles huge query loads easily and has built-in

connectors to tools like Google’s Datalab and AutoML. Notably, BigQuery has native support for array genomics data types and can

integrate with tools like DeepVariant or AlphaFold on the cloud. Amazon Redshift is often used if a team is AWS-centric – Redshift

Spectrum can directly query data in S3 (where many genomic pipelines drop results), and Redshift can integrate with AWS AI services

(SageMaker) for downstream analysis. In one comparative discussion, BigQuery’s strength was noted in its support for genomic datasets

and ML integration, while Redshift’s strength was easy integration with AWS genomic workflows. Each warehouse offers strong security

(encryption, VPC isolation, role-based access) to meet HIPAA or other privacy requirements.

NoSQL/Graph databases in genomics: Some genomic applications benefit from NoSQL or graph data models. MongoDB can be used to

store semi-structured genomic annotations or patient genomic records (as JSON) for flexibility – e.g., a database of gene panels where

each record (gene) has varying annotations. Its clusterable nature allows scaling if, say, thousands of genomes’ annotations are stored as

documents. HBase/Cassandra can store large key-value pairs like k-mer frequencies or variant counts keyed by genomic position,

supporting fast lookups in association studies. Neo4j is applied to knowledge graphs that include genomics – for example, linking genes,

variants, pathways, and diseases in a graph allows complex queries (e.g., find drug targets that interact with proteins affected by a patient’s

variants). Graph-based approaches help in integrative analysis (connecting genomics to biological networks), though they are typically

secondary to the main computational pipelines.

Specialized Genomic Platforms: Many pharma rely on platforms like DNAnexus or Illumina BaseSpace for genomic data management

and analysis. DNAnexus provides an end-to-end cloud platform for NGS data, offering a suite of bioinformatics tools and the ability to run

custom pipelines in a secure, collaborative environment. It is built for scale – managing over 80 petabytes of genomic and multi-omic data

for various organizations (Fabric Genomics and DNAnexus Team Up to Improve Scale and Speed of Data Analysis for Genomic Medicine -

Fabric Genomics) – and compliance (audit trails, access controls suitable for clinical genomic data) (Fabric Genomics and DNAnexus Team

Up to Improve Scale and Speed of Data Analysis for Genomic Medicine - Fabric Genomics). DNAnexus enables teams to focus on science by

handling the underlying infrastructure and compliance (it’s HIPAA and GDPR compliant, for example). Illumina BaseSpace Sequence Hub

integrates directly with Illumina sequencers to stream data to the cloud for storage and analysis. It provides DRAGEN pipelines (hardware-

accelerated algorithms) for ultra-fast secondary analysis, and ensures an ISO 27001 and HIPAA-compliant environment for genomic data.

BaseSpace simplifies sequencing workflow management – runs can be set up with automatic pipeline execution, and data is securely stored

and shareable with collaborators through the platform (Genomic & NGS Data Storage - Illumina). These platforms reduce the need for in-

house infrastructure, though they may be complemented by general tools (e.g., one might export BaseSpace results to Snowflake for

broader integration with clinical data).
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Example: A pharmaceutical research team sequences tumor samples for a cancer drug trial (whole exomes for 500 patients). They

use Illumina NovaSeq sequencers with BaseSpace to handle data capture and initial processing (alignment and variant calling

with DRAGEN). As soon as each sample is sequenced, BaseSpace processes it and stores the resulting VCF (variant calls) and

quality metrics. Data engineers then transfer the VCFs to an Azure Data Lake and use Azure Databricks (Spark) to run joint variant

analysis – combining all samples to identify common mutations and performing quality filtering. They also use Spark’s machine

learning to cluster tumors by mutation profiles. The consolidated variant data, along with cluster assignments and key clinical

attributes (like treatment response), are loaded into Azure Synapse Analytics (which combines a data lake and warehouse) or a

Snowflake warehouse. There, biostatisticians can run SQL queries to correlate mutations with outcomes and generate reports. They

might also use Neo4j to build a knowledge graph: linking each identified mutation to known pathways and drugs (using data from

public knowledge bases). This graph helps them visually and computationally explore if patients with certain mutations could be

candidates for existing targeted therapies (repurposing opportunities), by traversing connections between genes, drugs, and trials in

Neo4j. Throughout, patient identities are coded, and all systems used (BaseSpace, Snowflake, etc.) are configured to meet data

protection standards. By combining specialized platforms with general big data tools, the team efficiently derives insights that guide

the trial (like stratifying patients by mutation-defined subgroups for analysis).

Comparison: Technologies for Genomics Data

Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

Hadoop

(HDFS,

Hive,

HBase)

High horizontal

scalability (add

nodes to store

petabytes;

throughput scales

with cluster). Ideal

for on-premises big

data

storage/processing.

Great for batch

processing of large

files; MapReduce is

reliable but slower

than in-memory

systems for

iterative tasks. Hive

provides SQL

querying on big

genomic tables,

but latency is in

seconds to

minutes, not

interactive. HBase

offers millisecond

reads by key (e.g.,

lookup by genome

coordinate).

Requires significant

expertise to set up

and manage

(Java/Scala skills,

cluster admin).

Integrates well with

Spark, Kafka, etc.,

but not as user-

friendly as cloud

platforms.

Can be secured

(Kerberos,

Ranger for

access control)

and kept

entirely on-

prem (important

for

organizations

avoiding cloud).

However,

validating a

Hadoop

environment for

GxP can be

complex.

Historically

high adoption

for large

genomic

initiatives (the

1000 Genomes

Project used

HDFS). Many

genomics labs

built Hadoop

clusters in

2010s; now

shifting to

cloud or

specialized

platforms, but

some remain

for in-house

pipelines.

Apache

Spark

Scales from a laptop

(standalone mode)

to large clusters

(hundreds of

nodes). In-memory

model needs ample

RAM; can spill to

disk for very large

data. Easy to scale

on cloud with

managed services.

Excellent

performance for

data

transformations

and iterative

algorithms on large

genomics datasets.

E.g., joint calling on

thousands of

samples is feasible

with Spark where

traditional tools

would be too slow.

Far faster than

Hadoop

MapReduce for

Integrates with many

sources (HDFS, S3,

Azure Blob, GCS,

JDBC to

warehouses).

Provides APIs in

Python, R, Scala,

which lowers barrier

for data scientists.

Many genomic tools

(Hail, GATK) have

built-in Spark

support. Slight

learning curve for

distributed

computing

No built-in

compliance;

inherits

environment’s

compliance. On

a secure cluster

(Kerberos, VPC

isolation) or

managed

service

(Databricks is

HIPAA

compliant for

instance), it can

be used for

PHI/PII. Audit

Very high in

genomics

research and

pipelines. E.g.,

Broad’s GATK

uses Spark for

large-scale

variant

processing.

Pharma use

Spark for

secondary

analysis,

annotation

pipelines, and

even deep
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

most tasks due to

in-memory

computing.

concepts, but widely

adopted.

logging needs

custom

configuration.

learning on

genomic data

(with Spark ML

or integration

to TensorFlow).

Snowflake

Near-infinite

scalability:

decoupled

storage/compute

means virtually

unlimited data

storage, and

compute

warehouses can

scale up (bigger

servers) or out

(concurrency

scaling)

automatically. Multi-

cluster warehouses

handle many users.

High performance

on analytic queries

via columnar

storage and

optimization.

Automatically

handles indexing,

partitioning under

the hood. Great for

complex

joins/aggregations

on genomic

datasets integrated

with clinical data.

Can ingest semi-

structured JSON

(e.g., structured

variant

annotations)

efficiently.

Very easy to use

standard SQL.

Native connectivity

to BI tools, Jupyter

(via Python

connectors), etc.

Data sharing allows

integrating external

data (e.g., public

genomic sets)

without ETL. Less

suitable for custom

genomic algorithms

(those are done in

Spark or Python,

then results loaded

into Snowflake).

Strong

compliance:

supports HIPAA

and HITRUST;

data is

encrypted by

default. Fine-

grained access

control,

comprehensive

auditing, and

the ability to

physically

isolate data

(virtual private

Snowflake) for

compliance.

Often validated

for clinical data

storage.

Rapidly

growing in

pharma R&D.

Used as central

data repo for

multi-omics

and phenotypic

data in

research

collaborations.

Also used in

clinical

genomics (e.g.,

Tempus Labs

uses Snowflake

to share

genomic data

with hospital

partners).

Google

BigQuery

Extremely scalable

– designed to scan

terabyte to

petabyte-scale

datasets quickly.

Serverless scaling,

so users don’t

manage nodes;

Google allocates

resources as

needed.

Very fast for set-

based operations

on large datasets

(billions of rows).

Uses massively

parallel processing

under the hood.

Ideal for

exploratory queries

on large genomic

variants tables or

combining variant

data with large

public sets

(ClinVar, etc.).

Slight overhead for

small queries.

Standard SQL

interface, integration

with Google’s

ecosystem

(GSheets, Data

Studio, Colab

notebooks). Easy to

join with Google

Cloud Storage data.

Has GIS and array

query support which

can be repurposed

for genomics (e.g.,

interval overlaps).

Streaming ingestion

allows near-real-

time data loads.

Google Cloud is

HIPAA-

compliant and

BigQuery offers

column-level

security, data

masking, and

logging.

Encryption at

rest/in transit is

automatic.

Many

biomedical

datasets are

hosted in

BigQuery public

listings (making

compliance

vetted by

providers).

Used by

genomics and

bioinformatics

teams that

leverage

Google Cloud’s

AI (TensorFlow

on TPUs

reading from

BigQuery).

Examples

include the UK

Biobank

Research

Analysis

Platform

(which uses

BigQuery for

some data

querying

needs) and

many research

projects

sharing data

via BigQuery.
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

AWS

Redshift

Scales to petabytes;

user chooses

cluster node

types/count. New

RA3 nodes allow

storage auto-

scaling on S3 while

keeping hot data on

SSDs. Concurrency

scaling feature adds

transient capacity

for bursts.

Excellent

performance for

analytical queries

when data is

modeled and

sorted well.

Particularly good

for star schema or

wide tables of

clinical-genomic

data. Can query

across S3 (using

Redshift Spectrum)

for semi-structured

or older data

without loading it.

Uses SQL

(PostgreSQL-like).

Integrates tightly

with AWS data

ecosystem: S3

(ingest/export), AWS

Glue (ETL),

QuickSight (BI),

SageMaker (ML).

Needs more tuning

than

Snowflake/BigQuery

(e.g., distribution

keys, sort keys).

Administration of

cluster size is

manual (unless

using elastic resize).

Compliant as

part of AWS’s

HIPAA-eligible

services. Offers

encryption,

VPC, IAM

controls. Many

pharma deploy

Redshift in a

validated AWS

environment

with audit

logging via

CloudTrail. Can

use AWS Lake

Formation for

fine-grained

access

governance

across Redshift

and data lake.

Widely adopted

by pharma that

built cloud data

lakes on AWS.

For instance,

Moderna,

which is all-in

on AWS, used

Redshift for

some of its

analytics. AZ

(AstraZeneca)

has spoken

about using

Redshift to

integrate

research and

clinical data.

Some are

migrating to

Snowflake for

ease, but

Redshift

remains

prevalent for

companies fully

on AWS.

DNAnexus Highly scalable

cloud platform

(leverages AWS and

Azure infrastructure

under the hood).

Can elastically scale

compute for large

analysis jobs and

stores data in

scalable cloud

storage (S3, etc.).

Optimized for NGS

pipelines and

large-scale

computation – can

run thousands of

analysis jobs in

parallel (e.g., one

per genome). I/O

optimized for large

bioinformatics files.

Performance is

high for both

compute and data

throughput, thanks

to specialized

tuning for

genomics.

Provides APIs, SDKs,

and a web portal.

Custom tools can be

integrated via

Docker containers.

Not a SQL database

– integration is via

exporting data or

using DNAnexus’s

API to fetch results.

Great for pipeline

orchestration and

data management;

less for ad-hoc

querying (often

you’d export

summary results to a

warehouse).

Designed with

compliance in

mind: offers

audit trails, user

permission

controls,

encryption, and

is certified for

clinical use

(CAP/CLIA, CLIA

for labs, HIPAA,

GDPR) (Fabric

Genomics and

DNAnexus

Team Up to

Improve Scale

and Speed of

Data Analysis

for Genomic

Medicine -

Fabric

Genomics).

Many pharma

Moderate

adoption:

pharma R&D

groups use it to

manage

collaborative

genomic

projects (e.g.,

Regeneron’s

big sequencing

initiatives,

government

partnerships).

Also used in

clinical

genomic

testing labs

that serve

pharma trials.

DNAnexus was

used in the UK

Biobank RAP

for scalable
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

use DNAnexus

in regulated

genetic testing

or companion

diagnostics

development

due to its

strong security

and validation

support.

analysis. It may

not be as

ubiquitous as

general tools

but fills a niche

for those

needing an all-

in-one secure

genomics

platform.

Illumina

BaseSpace

Scales with Illumina

Cloud – as

sequencing

throughput grows,

users can increase

storage

subscription.

Compute scales by

using Illumina’s

cloud resources or

local DRAGEN FPGA

cards for on-site

acceleration.

Generally handles

hundreds of

concurrent

sequencer outputs

easily.

Delivers fast

secondary analysis

(alignment, variant

calling) especially

with DRAGEN – can

process a whole

genome in hours.

For data

storage/retrieval,

performance is

optimized for bulk

operations

(upload/download)

and streaming from

sequencers.

Querying within

BaseSpace is

limited to its

interface (filtering

runs, etc.), not for

analytical SQL/ML

jobs.

Very easy

integration for labs:

direct instrument

connection, web UI

for analysis setup,

and built-in

visualization for

results. API available

for automation and

data export.

However, to do

custom analysis

beyond provided

apps, data likely

needs to be

exported to other

environments.

Built-in

compliance:

BaseSpace is

built to meet

HIPAA and

GDPR, with

capabilities like

user access

controls, audit

logs, and

regional data

residency.

Illumina

regularly

undergoes

security audits

(ISO 27001

certified) and

ensures

compliance with

genetic data

regulations.

High adoption

in sequencing

labs and core

facilities, some

of which serve

pharma

projects. Many

pharma that

don’t want to

build NGS

infrastructure

just use

BaseSpace for

primary

analysis and

then transfer

key results to

internal

systems. For

example, a

pharma might

run a drug-

response

experiment’s

sequencing

through

BaseSpace,

then import the

variant data

into their own

databases for

downstream

analysis.

Key Takeaway: In genomics, it’s common to use a combination of tools: e.g., using Hadoop/Spark for raw NGS processing, a

cloud warehouse for integrated analysis with clinical data, and specialized platforms for pipeline management. Each technology has

unique strengths – Hadoop handles raw big files cheaply, Spark enables complex analytics, Snowflake/BigQuery provide easy

sharing and querying, and platforms like DNAnexus/BaseSpace handle domain-specific needs (pipelines, compliance). Data

engineers select technologies based on the use case: for instance, they might use Spark on AWS EMR to joint-call variants from

10,000 genomes, but then load result summaries into Snowflake for researchers to query. The right combination ensures that

genomic big data is processed efficiently and made accessible to scientists while meeting security and compliance requirements.
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Clinical Trials Data Management and Analytics

Clinical trials generate diverse data – patient demographics, treatment assignments, eCRF (electronic case report form) data, lab

results, medical images, adverse event reports, and increasingly data from wearables or patient apps. These come from multiple

sources (EDC systems, central labs, imaging systems, ePRO devices, etc.) and must be consolidated for analysis and regulatory

submission. Key requirements include flexibility to handle different data schemas per study, scalability to manage data from large

trial programs or phase IV studies with thousands of patients, and compliance with regulations (21 CFR Part 11 for data integrity,

ICH guidelines, GDPR for patient data, etc.). Technologies in this space focus on integrating, cleaning, and analyzing heterogeneous

datasets securely:

MongoDB for flexible trial data capture: Clinical trial data structures can vary widely between studies (different case report forms, new

endpoints). MongoDB’s schema-less JSON document model is well-suited for storing such evolving data. For example, a trial’s patient

record can be a single document with nested sub-documents for each visit or form, which can easily differ between studies. The FIMED

project highlighted this use: it uses MongoDB as the core for managing biomedical and clinical trial data because of flexibility in dealing with

the dynamic nature of clinical datasets (Integration and analysis of biomedical data from multiple clinical trials). New fields can be added

without altering a fixed schema, and missing fields simply don’t appear rather than breaking a schema. Scalability is achieved via MongoDB

sharding – e.g., sharding by study or by site can distribute data and load across a cluster. As one source notes, MongoDB’s cluster

configuration makes it “a great choice if scalability… is required” for clinical data management (Integration and analysis of biomedical data

from multiple clinical trials). In terms of performance, MongoDB can quickly query on indexed fields (e.g., find all patients with a certain

adverse event) and handle high insert rates (useful if data is streaming from wearable devices). However, complex joins (e.g., cross-patient

comparisons) require either application-side logic or moving data into an analytics platform. Thus, MongoDB often serves as an operational

data store for trial data capture and a source for downstream analytics rather than the analytics database itself.

Hadoop and Spark for large-scale trial data processing: When aggregating data across many studies or incorporating external real-world

data into trial analysis, big data frameworks are valuable. HDFS can act as a landing zone for diverse raw datasets – for instance, dumping

all clinical trial data extracts, medical coding dictionaries, and maybe related EHR data for analysis. Spark can then perform transformations

like merging a trial’s multiple data sources (clinical data, lab data, etc.), or pooling data from multiple trials for meta-analysis. An example

might be using Spark to combine patient-level data from dozens of oncology trials to look for patterns in placebo responses. Spark is also

useful for processing unstructured or semi-structured trial data: imagine parsing thousands of PDF serious adverse event reports or medical

imaging metadata – Spark can distribute this task. Additionally, with the rise of digital trials, streaming data (like continuous glucose monitor

readings in a diabetes trial) might be processed with Spark Streaming to summarize into hourly or daily metrics per patient. The output of

Spark ETL jobs typically goes into a structured format (Parquet files on a data lake, or directly into a warehouse). Spark’s ability to handle

large joins and groupings means it can implement things like cross-trial cohort selection (finding patients across many trials who meet

certain criteria) or simulate trial outcomes using large real-world datasets for synthetic control arms.

Cloud Data Warehouses (Snowflake, Redshift, Synapse) for integrated analytics: After data from a trial is cleaned and standardized, it

is often loaded into a relational warehouse for easy querying, monitoring, and reporting. Snowflake is increasingly popular for this due to its

ease of use and scalability. A trial data warehouse might contain tables like patient, visit, lab results, adverse events, etc., possibly

conforming to a standard data model (such as CDISC SDTM for regulatory submissions). Having this in Snowflake allows data managers and

statisticians to run quick queries (e.g., how many patients have missing data in a certain visit) and use BI tools for operational dashboards

(like enrollment graphs). The example of loading ClinicalTrials.gov XML data into Snowflake and analyzing it in ThoughtSpot shows how

Snowflake can ingest semi-structured data (XML/JSON) and make it queryable for insights. AWS Redshift serves a similar role: companies

might use Redshift to house a “clinical data mart” where data from the EDC, CTMS (Clinical Trial Management System), IXRS (randomization

system) etc., are brought together. Redshift can join these efficiently if the schema is well-designed and supports integration with

QuickSight or Tableau for visualization. Azure Synapse (with its integrated SQL pools) is often used when trial data is already in Azure – for

example, ingesting data into Azure Data Lake Storage and using Synapse to create external tables over it or load it into dedicated SQL pools

for fast querying. Synapse can also connect to Power BI for interactive dashboards (like a dashboard for trial query resolution status by

site). A real-world example is using Synapse to combine operational data and provide real-time insights: a case study describes a pharmacy

chain using Synapse to revolutionize inventory fulfillment, which is analogous to how a trial sponsor might use Synapse to unify site supply

data and patient enrollment data in one place for decision-making. All these warehouses support compliance needs by offering auditing,

role-based security, and the ability to restrict access to sensitive data (e.g., blinding certain treatment data until database lock).

Informatica for ETL and data quality: Informatica is a mainstay in pharma for moving and cleaning data. In clinical trials, it might be used

to pull data from an EDC (like Medidata Rave or Oracle InForm) on a schedule, apply transformations (like mapping lab units to standard

units, coding adverse event terms to MedDRA), and then load into a warehouse. This ETL process is auditable and version-controlled,

important for regulatory compliance. Informatica PowerCenter (on-prem) has been used for years in pharma – some companies are now

using Informatica Cloud (IICS) for the same purpose. Data quality rules can be applied to catch issues early – e.g., flag if a patient’s

birthdate is clearly incorrect or if there are duplicate records. Informatica’s MDM for investigators and sites can ensure that if the same site

participates in multiple trials, it’s recognized as the same entity in analytics, enabling site-level performance analysis across trials. Pfizer’s

case of automating 99% of data mappings using cloud integration likely refers to using Informatica to handle the complex mapping of fields

from various sources to a unified model in Snowflake, illustrating how much manual effort can be saved in trial data integration. Additionally,

workflow orchestration tools like Informatica or Apache Airflow coordinate these data flows so that, for example, once daily all new EDC

data is loaded and consistency checks are run.
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Graph databases for trial connections and oversight: While not as common, graph databases can help in specific scenarios, such as

oversight of a complex trial ecosystem. Neo4j could model relationships like investigators to trials to protocols to publications. For a

company running many trials, a graph query might help find, say, all trials that involve a certain biomarker and the investigators common to

those trials – useful for planning new studies or publishing strategies. Moreover, graphs can help with standards mapping: one could make

nodes for data elements and connect them to CDISC standard definitions (SDTM variables), then link those to submission documents. This

was hinted at in the Neo4j opinion piece where knowledge graphs help meet standards like SDTM and ADaM by organizing metadata. In trial

data cleaning, a graph could represent all queries (data issues) and their relationships to sites and monitors, allowing analysis of query

patterns (though this could also be done in SQL). TigerGraph might not typically be used for clinical trial data, but if a company wanted to

analyze the network of patient referrals into trials or detect fraudulent behavior (unusual patterns of data entry across sites), graph

analytics could assist.

Veeva Vault (Clinical): Veeva Vault provides a suite of clinical applications (Vault EDC, Vault CTMS, Vault eTMF, etc.) on a unified platform.

It’s worth noting that Veeva Vault for clinical is increasingly adopted to have a single platform for trial operations and data capture. For

example, Vault EDC captures patient data (which can then be extracted for analysis), Vault CTMS tracks operational metrics (enrollment,

monitoring visits), and Vault eTMF manages documents. Vault’s advantage is built-in compliance (Part 11, validation) and integration – e.g.,

an issue noted in CTMS can trigger a query in EDC. For a data engineer, Vault is often a source system: one might use Vault APIs to pull

operational data (like how many queries per site, which can feed into a quality metric analysis in the data warehouse). Vault can also push

data; for instance, Veeva has a capability to connect Vault EDC data to analytics solutions. While Vault isn’t where you do big data analysis,

it’s important in the ecosystem and ensures that the data collected is high-quality and audit-ready. Data engineers need to factor in Vault

when designing data flows – often building pipelines to take daily snapshots of Vault data for reporting outside the platform.

Example: A data engineering team is consolidating data for a portfolio of clinical trials in a rare disease. Each trial uses a different

EDC vendor and collects some unique endpoints. The team creates a data lake on AWS S3 to accumulate all raw datasets (exports

from each EDC, lab CSVs, imaging assessment spreadsheets, etc.). They use AWS Glue (Spark) jobs to transform each trial’s data

to a common format: for example, map all adverse event datasets to a standard structure (with patient ID, event term, severity, etc.).

They also use Spark to integrate external data – say they have a registry of historical patients as a comparator – merging it with the

trial data for analysis. After cleaning and harmonization, they load each trial’s structured data into Amazon Redshift. There, they

have defined common tables (following SDTM domains like Subject, Lab, Adverse Events, etc.). They also include in Redshift some

operational tables: one from Veeva Vault CTMS listing all investigator sites and their activation dates, and one listing all open

queries from their data cleaning (perhaps coming from Vault EDC or another EDC via export). With all data in Redshift, they build a

set of dashboards in Tableau: one for trial managers to track enrollment and data quality by site (using CTMS and query data), and

one for medical monitors to review safety data across all trials (aggregating adverse events and lab abnormalities). The medical

monitor can, for example, quickly run a query in Tableau (which hits Redshift) to see all serious adverse events in a certain category

across the three ongoing trials, something that would be tedious if each trial’s data were siloed. For regulatory submissions, the data

engineers also produce SDTM datasets – these are generated by further transformation jobs (which could be done in Spark or with

SAS if required by biostats) drawing from the integrated warehouse data. Throughout, patient privacy is maintained by using trial-

specific IDs (no direct identifiers in these systems), and all access to the Redshift warehouse is controlled (read-only accounts for

analysts, etc.). The end result is a much more efficient insight generation process: leadership can see combined data in near real-

time (daily refresh) rather than waiting for end-of-study reports, and the team can identify cross-trial trends (like a lab test that’s

consistently borderline in this patient population) to inform future study design.

Comparison: Technologies for Clinical Trial Data

Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

MongoDB

(Document

DB)

Flexibility: Handles

evolving schemas without

upfront changes. Can store

all data for a patient or visit

in one JSON, including

nested forms. Great for

unstructured data (notes,

patient diaries via JSON).

Scales out for large trials or

many studies via sharding.

Fast iteration: New forms

or fields can be added mid-

study easily (Integration

and analysis of biomedical

Not optimized for multi-record analytics

or heavy joins (difficult to do cross-

patient aggregation in MongoDB alone).

For analysis, data often has to be

exported to SQL or Spark. Lacks built-in

support for transactions spanning many

documents (though rarely needed in

read-heavy clinical data). Requires

careful design of document structure for

efficient queries (and indexing of key

fields).

Adoption: Some pharma

use Mongo for specific

needs like capturing

patient-reported outcomes

or wearable data where

schema varies. Also used in

translational research

platforms linking clinical

and omics data (Sanofi’s

translational medicine

platform uses MongoDB for

flexibility (Integration and

analysis of biomedical data

from multiple clinical

trials)). Not typically the
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Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

data from multiple clinical

trials).

sole repository of all trial

data (EDC systems usually

have their own DB), but

sometimes a secondary

store for integration.

Hadoop &

Spark

Scalability: Can crunch

very large integrated

datasets (all trials together,

or trial data plus external

real-world data).

Versatility: Can process

images (with Spark image

libraries), NLP on text

(eligibility criteria, protocol

deviations), and traditional

tabular data in one

environment. Speed for

ETL: Spark can transform

and combine millions of

records quickly (e.g.,

building a subject data

mart from raw capture

data).

Requires engineering expertise; not as

user-friendly for clinical staff. Usually

used by data engineers behind the

scenes, with results fed into easier tools.

On-prem Hadoop clusters for clinical

data must be secured/validated, which

can be a big effort. Many orgs instead

use cloud Spark which offloads some of

this but then must ensure patient data is

protected in cloud per regulations.

Adoption: Large pharma

with data science teams

apply Spark to clinical

datasets for advanced

analyses (e.g., using Spark

to analyze years of clinical

data to design better trials

– a kind of trial meta-

analysis). Companies like

IQVIA (CRO) use Spark in

their platforms to handle

diverse data sources. Spark

is also used in risk-based

monitoring solutions to

analyze data in near-real-

time across sites.

Cloud Data

Warehouse

(Snowflake,

Redshift,

Synapse)

Unified analysis: Once

trial data is in a warehouse,

it’s easily queryable with

SQL – vital for

biostatisticians and data

managers who may not be

coders. Excellent for

generating regulatory

listings, tables, and graphs.

Scalable and concurrent:

Can handle multiple

studies’ data and many

users (medical monitors,

data managers) querying at

once. Integration: Can join

clinical data with finance

(budget vs actual

enrollment costs) or with

reference data (MedDRA,

WHO Drug dictionaries).

Getting data into the warehouse requires

ETL or pipelines (the “heavy lifting” often

done by tools like Informatica or Spark).

Warehouses are schema-based – must

design data models (often one per study

or a universal model). Inflexible for late-

arising changes unless model is

designed to accommodate (e.g., a new

data domain might need new tables).

Cost can accumulate with many users

running large queries (though

Snowflake’s usage model and Redshift’s

reserved instances mitigate this).

High adoption: Nearly all

large pharma have a clinical

data warehouse or data

mart, historically in Oracle

or Teradata, now moving to

cloud (Snowflake is gaining

traction). For example,

Novartis has spoken about

using a centralized data

lake and warehouse for all

clinical data to enable

analytics across programs.

Pfizer’s mentioned

migration to cloud data

warehouses for digital

trials. Synapse is used by

CROs for providing clients

trial dashboards.

Informatica

(ETL/MDM)

Robust ETL: Connects to

EDCs, labs, etc., using pre-

built connectors, and can

transform data into

submission-ready formats.

Visual flows make it easier

Traditional and can be expensive;

requires skilled developers (though

easier than raw coding). Some

organizations moving to open-source or

cloud-native ETL (Airflow, AWS Glue),

but those may lack some of the out-of-

Very high adoption:

Virtually every big pharma

has used Informatica

PowerCenter in their clinical

data warehouse pipelines

historically. Now many are
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Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

to maintain compared to

hand-written code. Data

quality & lineage: Can

enforce business rules

(e.g., no inconsistent

dates) and document how

source data transforms,

crucial for audits. Master

data management:

Ensures consistent

identification of

investigators, sites, and

even patients (if a patient

appears in multiple studies,

an MDM can link them in

analysis, respecting

blinding).

box functionality. MDM implementations

need governance – e.g., matching

algorithms for HCPs need tuning. Initial

setup of mappings for a big study can be

time-consuming (though reusable).

using Informatica Intelligent

Cloud Services for cloud

data integration as they

adopt Snowflake or

Synapse. Also, industry

standards like

TransCelerate’s protocols

have Informatica mappings

available, indicating

widespread use. MDM is

used at companies like

GSK, J&J to have global

investigator databases,

which feed both clinical and

commercial systems.

Neo4j /

Graph DB

Relationship insights: Can

model, for example, how

trials connect via common

investigators or sites, or

how protocol criteria

overlap. This can help

planning (find investigators

who did similar studies)

and oversight (find site

clusters with many issues).

Standards mapping:

Graph can link data items

to standard definitions (like

SDTM or CDISC Controlled

Terms), potentially

automating metadata

management. Query

flexibility: Some queries

are simpler in Cypher than

SQL when they involve

traversing varying lengths

of relationships.

Niche use in clinical operations; not a

replacement for core trial data

processing. Would require loading data

from source systems to the graph,

meaning duplicate data maintenance.

People with graph skills are fewer than

those with SQL, so uptake may be limited

to specialized analytics teams. Also,

graph results might be achievable by

other means (a well-designed SQL

schema can answer many of the same

questions).

Emerging: A few pharma

have experimented with

knowledge graphs linking

R&D data; for example,

linking trial data with

scientific literature to aid in

hypothesis generation

(AstraZeneca has done

work in this area). Graphs

for operational analytics

(like site network analysis)

are more at concept stage.

However, as noted by

Neo4j’s own materials,

there is interest in using

knowledge graphs to

manage clinical metadata

and support automation.

Veeva Vault

(Clinical)

Unified platform: All trial

operations (from document

management to study data

capture) integrated,

reducing silo issues.

Compliance built-in:

Validated environment with

audit trails and role-based

security – using Vault can

satisfy regulators that

proper controls are in place

Vault is transactional/operational, not for

bulk analytics – one typically extracts

data for that. If using Vault EDC, complex

analyses are done outside (Veeva has

limited analysis tools itself). There can be

data lock-in concerns (though Vault does

offer open APIs). Also, migrating from

legacy systems to Vault is a significant

project – many big pharma are mid-

transition (thus have hybrid environments

High and growing

adoption: Many sponsors

(large and mid) are

implementing Vault for

eTMF and CTMS, with Vault

EDC also gaining traction.

As an example, Vault has

been adopted by over 250

companies for clinical

operations. This means

data engineers increasingly
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Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

without custom IT

solutions. Connectivity:

Vault provides APIs/exports

so that data (operational

metrics, certain EDC data)

can flow into analytics

systems. Speeds up tasks

like clinical trial disclosure,

since data in Vault can be

repurposed for registry

submissions.

where data engineers must pull from

multiple systems).

interface with Vault – e.g.,

pulling KPI data for

portfolios. Companies like

Gilead consolidated to Vault

and reported improved

inspection readiness. Data

engineers might find Vault

data as a new source to

integrate, gradually

replacing older CTMS or

eTMF databases.

In summary, managing and analyzing clinical trial data requires an ecosystem: operational systems (like EDC, CTMS, Vault) to

collect and manage data, and analytics systems (lakes, warehouses, big data tools) to aggregate and derive insights from that

data. The technologies described above illustrate how data engineers can merge these worlds: using integration tools to bring data

from the operational side into an analytics environment, using big data tools to handle scale or complexity, and then using

warehouses and BI tools to deliver information to stakeholders. The outcome is better trial oversight (e.g., real-time enrollment

dashboards), improved data quality (through centralized cleaning and monitoring), and the ability to maximize the value of trial data

(for instance, combining data across trials to learn more about a disease). All of this must be done under strict compliance – audit

trails, validation, privacy – since clinical data is highly regulated. The successful data engineer in pharma designs pipelines that are

not only efficient and robust, but also transparent and compliant, enabling faster and safer clinical development.

Regulatory Data Management and Compliance

Pharmaceutical companies operate in a heavily regulated environment, generating large volumes of documentation and data for

drug approvals and compliance. Regulatory data management covers the handling of submission documents (e.g., eCTD

modules), correspondence with health authorities, tracking of commitments and product registrations in different countries, and

ensuring all these processes meet regulatory requirements. Key needs include document management at scale, metadata

tracking (of filings, variations, approvals), and compliance features like audit trails and electronic signatures. The data is often

unstructured (documents, PDFs) but with a layer of structured metadata (submission dates, approval numbers, etc.). Technologies

in this domain focus on content management, workflow, and integration of structured and unstructured information:

Veeva Vault (Regulatory): Vault RIM (Regulatory Information Management) has quickly become a leading solution to manage regulatory

content and data. It provides a unified platform for authoring, reviewing, approving, and archiving all regulatory documents, and tracking the

status of submissions and approvals worldwide. Vault’s platform is inherently designed for compliance – it meets validation requirements

and provides a full audit trail on documents and data changes. For example, Vault Submissions and Submissions Archive manage the

lifecycle of an eCTD submission, from planning through dispatch to health authorities, to archival of the exact sequence submitted. Vault

can even publish in eCTD format and validate it, reducing the need for separate tools. What differentiates Vault is that it merges content and

data: a submission in Vault includes the documents (content) and related metadata (e.g., submission type, region, products, indications).

This means a data engineer can retrieve not just a PDF of a clinical summary, but also structured data like which product and indication that

document was supporting. Vault’s connections allow linking across domains – e.g., linking a regulatory commitment (post-approval study

requirement) to the clinical trial in Vault Clinical that fulfills it. The Vault Platform underlying these apps uses a NoSQL content repository

that can handle millions of documents, and an object data model for metadata (e.g., an object for “Submission” with fields for country, date,

status, etc.). It’s highly scalable (Boehringer Ingelheim moved tens of millions of documents into Vault as per Veeva case studies) and

accessible globally (cloud web interface, with performance optimized via content delivery networks). For data engineers, Vault often

becomes the golden source for regulatory data: one might use Vault’s API or reports to extract, say, a list of all approved indications per

country, or all submission dossiers pending approval, and integrate that with other enterprise data (like linking to manufacturing launch

dates).

Document management systems (OpenText/Documentum) and content warehouses: Before Vault’s rise, many pharma used

Documentum-based systems (often heavily customized) for regulatory document management. Some still do. These are essentially large-

scale document databases with controlled vocabularies and metadata tagging. They can handle huge volumes of files with version control.

Data engineers might interact with them via SQL-like queries on the metadata database (e.g., find all documents of type “Clinical Study

Report” for a given product). Documentum is on-prem typically, which some companies prefer for control. However, the industry trend is

towards Vault or other cloud solutions. Some companies have also implemented shareable content libraries in structured formats (e.g.,

using XML backbones like SPL for label content), but these are more niche.
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Relational databases for registration tracking and commitments: Often alongside the document repositories, companies maintain

structured databases for regulatory tracking. For example, a Registrations database that lists every country where each product is

approved, including details like approval dates, local license numbers, etc. Or a Commitments database that tracks all promises made to

regulators (like conducting a post-market study by a certain date). These might be custom applications on Oracle or SQL Server. Data

engineers might pull data from these to integrate with business intelligence tools – e.g., to ensure manufacturing or supply chain is aware of

upcoming new market launches (from the registrations DB) or that pharmacovigilance is aware of certain commitments (like special

monitoring). Some companies have moved this functionality into Vault RIM (Vault Registrations, Vault Commitments modules), but others

have legacy systems. A cloud alternative is to use a platform like Salesforce to track health authority interactions and commitments (some

use the Salesforce-based product Veeva CRM – commonly for medical or commercial – in regulatory as well). Regardless, structured

regulatory data often ends up in a data warehouse for enterprise reporting (e.g., how many submissions were on-time vs late, how many

approvals received this quarter, etc.).

Spark and NLP for regulatory intelligence: A growing area is applying text analytics to regulatory documents and correspondence. For

instance, using NLP on approval letters to extract key requirements, or analyzing trends in questions asked by regulators across different

submissions. Spark can be used to process a large corpus of such documents. A company might feed in hundreds of PDF feedback letters

and use Spark with an NLP library to categorize the issues raised by authorities (quality-related, clinical-related, etc.) to identify common

problem areas. Similarly, Spark could help analyze public datasets like FDA guidelines or EMA assessment reports to support regulatory

strategy – essentially big data approaches to regulatory intelligence. A concrete example: training a model on past deficiency letters to

predict what sections of a new submission might get questioned. While this is not yet a mainstream practice, research exists exploring

knowledge graphs and NLP for pharmacovigilance and regulatory text, and some companies are likely experimenting with it to gain an edge

in submission preparedness.

Graph databases for regulatory knowledge management: There is potential to use graphs to link regulatory information. For example,

linking a drug to all its submissions, and those submissions to the documents and to the regulators involved. One could then query “show

me all submissions worldwide that included document X (like a certain study)” to see reuse, or “what variations to product Y have been

approved after initial approval and what were their outcomes?” Neo4j could capture entities like products, variations, countries, and

decisions, allowing multi-hop queries easily (across product → submissions → decisions). Also, regulatory processes often involve complex

relationships (e.g., a manufacturing site is referenced in multiple product submissions – a graph could quickly show all products impacted if

that site has an issue). While much of this can be done with relational databases, graphs might simplify some many-to-many traversal. Some

regulators themselves are exploring graphs – the FDA’s substance and facility registry is essentially a graph of relationships. On the industry

side, given Amy Hodler’s article about supply chain graph tech, similar thinking might extend to regulatory compliance networks.

Compliance and validation tooling: Ensuring all these systems meet regulatory requirements is crucial. Electronic signature and audit

trail capabilities are a must (provided by Vault and Documentum by default). Access control down to document sections or fields

sometimes needed (for instance, restricting access to unblinded data only to certain pharmacovigilance folks pre-approval). Tools that help

manage user roles at scale (especially across many countries’ affiliates) are part of the ecosystem. Also, data engineers often need to assist

with regulatory submissions data like filling electronic forms (e.g., using tools or scripts to populate Form FDA 356h or eCTD XML

backbone with correct metadata from databases, to avoid manual errors).

Example: A regulatory operations team at a pharma is preparing for multiple submissions (a new drug application in the US, a

marketing authorization in Europe, and various Asian country submissions). All of the content (tens of thousands of pages of

documents) is managed in Veeva Vault RIM. Authors and reviewers collaborate in Vault, which records all approvals of documents.

As they build the submission, they also fill metadata in Vault (like grouping documents into eCTD modules, assigning submission

target countries). When ready, Vault’s publishing tool generates the eCTD package (with XML backbones, folder structure, etc.), and

this is submitted to regulators. Once submitted, the submission record in Vault is marked as “dispatched” on a certain date. The

regulatory team then receives questions from FDA and EMA. They log these in Vault as well (say as tasks or additional records linked

to the submission). The data engineering team comes into play by extracting data from Vault and other systems for oversight: for

instance, they use Vault’s reporting to pull a structured list of all open regulatory questions and commitments for each submission.

They combine this with data from a tracking database that the local affiliates update (e.g., when approvals are received in each

country). They load this into a Snowflake table which is then used to power a dashboard for management: it shows each product’s

global registration status (approved, pending, etc. in each country) and any outstanding obligations (questions to answer, post-

approval studies, labeling updates needed). To populate this, they use an Informatica job that nightly queries Vault via API for any

status changes (like new approvals or changes in submission state) and queries the affiliate tracking DB (which might be a simple

SQL Server database or an Excel on SharePoint in smaller affiliates) for any new updates, then writes to Snowflake. On Snowflake,

they also integrate data from manufacturing and supply chain: linking the planned approval dates to manufacturing readiness. This

way, if a country approval is delayed, the supply chain team sees that on the dashboard and can adjust distribution plans.

Separately, the data engineer also sets up a Spark NLP job to go through the text of all past deficiency letters the company has

gotten for similar products. This job identifies the most common words and topics (e.g., many questions about “impurity

specification” or “stability data”). They create a report for the regulatory scientists to ensure those areas are extra robust in

upcoming submissions. Although this text mining is experimental, it provides insight that, for example, 80% of their letters had a

question on shelf life justification – prompting them to proactively add clarity in current submissions. On the compliance side, every

document and data change is already tracked in Vault, and the Snowflake integration is read-only so it doesn’t alter any authoritative

data (ensuring they don’t inadvertently break compliance). All user access to the Snowflake dashboard is also audited (it contains

some confidential strategy info, though not raw regulatory filings). In essence, the team has combined a specialized regulatory
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platform (Vault) for content and workflow with big data tools (Informatica, Spark, Snowflake) to gain a strategic overview and

predictive capability, all while maintaining compliance.

Comparison: Technologies for Regulatory Data Management

Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

Veeva Vault RIM

End-to-end regulatory

content and data

management: Used for

authoring, reviewing,

and approving

submission documents;

assembling

submissions; tracking

health authority queries

and commitments.

Serves as the single

source of truth for what

was submitted to whom

and when.

Differentiators: Combines

document management

with structured data fields

(e.g., submission metadata)

in one platform. Provides

full audit trail and Part 11-

compliant e-signatures out

of the box. Multi-tenant

cloud model means

upgrades (e.g., to handle

new regulations) are

frequent and shared across

industry. Compliance:

Validated by vendor for

intended use; companies

still do their own validation

but effort is reduced.

Security certifications (ISO

27001, etc.) and encryption

are in place.

High adoption: Over 200

pharma and biotech use Vault

for regulatory. Many top-20

pharma have either fully

implemented or are in

process. For instance, GSK,

Novartis, and others have

publicly spoken about moving

to Vault RIM to replace legacy

systems. It’s becoming the de

facto standard, meaning data

engineers increasingly rely on

Vault’s built-in reporting or

API rather than maintaining

custom regulatory databases.

Legacy DMS

(Documentum/OpenText)

Historically, managed

regulatory documents

and sometimes basic

metadata. Often highly

customized with

workflows for

review/approval and

interfaces to publishing

tools. Still in use at some

companies as they

transition to Vault.

Differentiators: Could be

on-premises, giving

companies direct DB

access to data. Very

configurable (but that led

to heavy customization).

Strong document

management, but typically

weaker in cross-document

data reporting compared to

Vault. Compliance: Also

Part 11 capable with proper

configuration; companies

had to validate upgrades

themselves.

Past ubiquity, current

decline: 10 years ago almost

all big pharma used

Documentum-based

solutions (e.g., CSC FirstDoc)

for regulatory. Many still do,

but they are migrating. Data

engineers might still need to

extract data from these (via

SQL queries on

Documentum’s repository

database, for instance)

during migration or in hybrid

environments.

Structured Regulatory DB

(Registrations,

Commitments)

Track structured info:

where each product is

approved, regulatory

event dates, and

commitments (like

“Submit Study X results

by 2024”). Often

custom-built or vendor

solutions (some used

ArisGlobal Register in

Provides a database view

of regulatory status, which

is easier to query and

integrate with other

systems than parsing

documents. Helps generate

reports like “list of

approved indications per

country” rapidly.

Compliance in terms of

Varied adoption: Many

companies had an Oracle or

SQL-based system; some still

do if not fully on Vault. For

example, a pharma might

have an internal app for

tracking global product

registrations if they haven’t

implemented Vault

Registrations module. Data
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Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

the past). Ensures no

required action is

missed and all health

authority interactions

are logged.

data integrity is needed

(audit changes to

submission dates, etc.). If

not integrated with content,

risk of data/document

mismatch (one reason Vault

RIM which combines them

is preferred).

from these often feeds into

enterprise data warehouse

for KPI reporting. Regulators

also expect companies to

know this info, so it’s

maintained somewhere even

if just spreadsheets in smaller

firms.

Spark/NLP for Regulatory

Analyze large sets of

regulatory text:

guidelines, submissions,

correspondence. Used

to glean insights

(regulatory intelligence,

common deficiencies,

trends in agency focus)

or to automate tasks

(extracting data from

text).

Innovative edge: Can

repurpose big data tech to

reduce manual review. E.g.,

automatically scanning all

historical labeling changes

to flag patterns. Spark’s

speed lets analysis that

would take an army of

humans become feasible.

Compliance: Purely internal

analysis, so main concern is

confidentiality of regulatory

documents (handled by

running in secure

environment). Not directly

used for submissions, so

not subject to regulatory

scrutiny, but outputs might

inform submission strategy.

Emerging: A few large

companies have analytics

groups applying AI to

regulatory – e.g., using

machine learning to predict

approval likelihoods or to

parse complex regulations.

Not widespread in everyday

regulatory operations yet

(most work is still done by

regulatory experts), but likely

to grow as text analytics

matures. For instance, the

FDA itself is using AI to

analyze comments and

submissions; industry will

follow to keep up.

Graph DB for Regulatory

Model relationships

between regulations,

products, sites, and

changes. Query complex

networks (e.g., which

global licenses would be

affected if

Manufacturing Site Y

has an issue?). Helps in

impact analysis and

knowledge management

(linking related filings or

tracking how an issue in

one country might

propagate globally).

Makes impact analysis

much faster – a single

query can reveal all

dependencies. Good for

visualizing regulatory

network – useful in large

orgs with many products

and markets. Can link to

supply chain graph (merge

regulatory approval nodes

with distribution nodes to

see end-to-end).

Compliance: Used for

decision support, not

official records, so mainly

internal controls. Would

need to ensure any data

copied from validated

systems to graph is kept in

sync to avoid errors.

Niche but plausible: No

public case of a pharma using

Neo4j for regulatory tracking

is well-known, but it’s

conceptually attractive. Some

might be prototyping it for

pharmacovigilance case

linking or manufacturing

change impact. Given Neo4j’s

promotion of knowledge

graphs in life sciences, we

may see adoption for

regulatory intelligence in the

future.

BI and Warehouse for

KPIs

After core regulatory

data is managed (in

Allows regulatory

management to have a

Standard practice: All big

pharma have some form of
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Technology
Role in Regulatory Use

Case

Differentiators and

Compliance
Real-World Adoption

Vault or elsewhere),

companies use BI tools

(Tableau, Power BI) on a

warehouse of key

metrics: submission

cycle times, approval

success rates, etc. Data

engineers feed these

from RIM systems.

dashboard (e.g., how many

submissions planned vs

delivered, how many filings

in review, average approval

time by region, etc.).

Important for resource

planning and identifying

bottlenecks (like if one

regulatory team is slower).

Many warehouses combine

regulatory with other

functions (portfolio

management, finance) for

holistic view.

regulatory metrics reporting.

Tools like Spotfire or Qlik

were historically used, now

Power BI/Tableau are

common. The data often

comes from Vault or

registration databases. E.g., a

company might have a

“Regulatory Scorecard”

dashboard fed by their RIM,

showing adherence to target

submission dates, etc. This is

not a specific tech stack but

a typical deliverable data

engineers support.

Regulatory data management is perhaps less about “big data” volume and more about big complexity and strict compliance. The

number of submissions and documents is large, but manageable with modern systems (it’s big in the tens of terabytes, not

petabytes). The bigger challenge is ensuring every piece of data is correct, traceable, and linked to its context. Tools like Vault have

streamlined this by providing an industry-focused solution. Data engineers in this area often act as integrators and reporters: making

sure regulatory systems talk to each other (and to other enterprise systems like manufacturing or safety), and that management has

accessible insights (via reports/dashboards) into the regulatory process. The use of more advanced analytics (NLP, graphs) in

regulatory is in early stages but holds promise for optimizing how companies prepare submissions and manage compliance on a

global scale. Ultimately, by effectively managing regulatory data, pharma can accelerate approvals (getting medicines to patients

faster) and avoid compliance pitfalls that could lead to sanctions or delays.

Pharmacovigilance and Drug Safety Analytics

Pharmacovigilance (PV) – drug safety monitoring – deals with collecting and analyzing data on adverse events (AEs) and other

safety signals for drugs on the market (and sometimes in trials). This domain faces high volume data (millions of AE reports

worldwide), variety (structured reports, call center logs, social media, literature), and the need for timely detection of safety

signals. Big data technologies are increasingly vital for PV to identify potential safety issues earlier and comply with regulatory

requirements for continuous monitoring. Key aspects include adverse event databases, signal detection algorithms, and

integration of diverse data sources (clinical, post-market, literature).

Hadoop/Spark for adverse event data processing: Many companies historically relied on relational databases (like Oracle Argus Safety) to

store adverse event case data. As data volumes grew and they wanted to mine data beyond simple case counts, they started exploring big

data solutions. A notable example is leveraging open FDA data (FAERS – FDA Adverse Event Reporting System). The FAERS public dataset is

large (over 12 million reports, 130 GB+). Spark is well-suited to crunch through this for pattern discovery. Open-source projects (like the

one on OpenTargets) demonstrate using Spark and Scala to analyze FAERS and perform disproportionality analysis (calculating metrics like

PRR, ROR to find drug-event pairs occurring more than expected). In-house, pharma companies can apply the same to their global safety

data – which includes not only FAERS but also data from EudraVigilance (EU), their own patient support programs, etc. By using Spark

(possibly on Hadoop HDFS or cloud storage), they can join datasets (e.g., incorporate drug exposure data to calculate rates) and run

computationally intensive algorithms (like Bayesian shrinking or neural network models for signal detection) on the full dataset rather than

small samples. Hadoop can store decades of safety reports cheaply, allowing retrospective analyses and ML training. Also, if integrating

new data types (like free-text from physician reports or social media posts mentioning drug side effects), Spark’s NLP capabilities can

structure this and include it in signal detection. Companies like GSK and BMS have discussed using big data lakes for PV to enable

advanced analytics and even shared data between companies for better signal detection (consortia like Observational Health Data Sciences

and Informatics (OHDSI) push for analyzing combined healthcare data, which overlaps with safety).

Cassandra/MongoDB for real-time PV data capture: When building a safety surveillance system that ingests data from various sources

continuously, NoSQL databases can help manage the flow. For example, if a pharma has a mobile app for patients to report side effects, that

could stream data into a Cassandra cluster for immediate availability to safety staff. Cassandra’s high write throughput and distributed

nature ensure that even if tens of thousands of patients submit simultaneously, the data is captured. From there, it might be processed for

insights, and later formally entered into the regulatory safety database. Similarly, MongoDB could store large collections of case narratives

or social media posts pre-analysis. Some PV teams use Elasticsearch (not in our list) to index text of cases, but Mongo could serve as an

intermediate JSON store for novel data types pending analysis.
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Signal detection algorithms and platforms: Apart from in-house big data frameworks, specialized signal detection tools (like Empirica

from Oracle) exist. However, those tools themselves now incorporate big data tech under the hood (Empirica Signal uses advanced

statistical methods that require big data computing power for large datasets). Data engineers might implement custom signal detection

pipelines with Spark: for example, computing observed vs expected incidence of events for each product every week, flagging those above

a threshold. Spark MLlib or even custom code can do logistic regression or more complex modeling to adjust for confounders in

observational data. The OpenTargets example used a likelihood ratio test via Monte Carlo simulation to confirm signals – something very

computationally heavy that Spark handled by distributing the workload.

Graph databases for case linking and causality: PV data can be represented as a graph: patients (or cases) connected to drugs they took

and events they experienced. Neo4j has been used to some extent for pharmacovigilance research, for instance creating a knowledge

graph of drug-event relationships enriched with other biomedical data to explore causality hypotheses. A graph can help identify clusters of

events that share common factors (like all cases where Drug A and Drug B were taken together and Event X occurred). It can also help de-

duplicate cases (if two reports likely refer to the same patient incident, a graph similarity algorithm could catch that). TigerGraph pitched

use cases like analyzing connections among patients, doctors, and opioid treatment facilities to find abuse patterns – analogous to finding

patterns in how adverse events spread or correlate (e.g., if multiple patients from the same hospital report an event, is there a hospital

factor?). In mainstream PV, this is still exploratory, but graph analytics might become more common as data volumes and complexity grow

(especially with combination therapies where interactions form a network problem).

Integration of real-world data: Modern PV is not limited to spontaneous reports; it looks at electronic health records (EHRs), insurance

claims, and even wearables. This is essentially big data – millions of patient records. BigQuery or Snowflake can be used to query such

healthcare data to see if a safety signal appears in observational data (for example, do we see more heart attacks in patients on Drug X vs

similar patients not on it?). In fact, the FDA’s Sentinel Initiative is essentially a big data approach, using a distributed database across

numerous data partners to monitor safety in claims/EHR data. Pharma companies replicate mini-Sentinels internally with their own data

partnerships. Data engineers play a crucial role in these, using cloud analytics platforms to run queries on large healthcare datasets. For

instance, a company might use Snowflake to host de-identified claims for 100 million patients and then run a logistic regression (via

Snowflake’s integration with Python or via Spark reading from Snowflake) to assess a risk. Such analyses complement traditional PV by

providing incidence rates and risk quantification, whereas spontaneous reports are good for signal detection but not incidence.

Automated case processing and AI: Another big data aspect is using AI to automate parts of PV case handling. This includes NLP to auto-

extract info from reports (many pharma are implementing AI to read patient or doctor narratives and code them into structured data). While

much of that is done with NLP models (like BERT-based models), those models are trained on large datasets – which requires big data

infrastructure (like using Spark or TensorFlow on GPUs) to train on tens of thousands of example cases. Once deployed, they also produce

large datasets (every new case gets, say, an AI-generated severity score or suggested coding) which need to be stored and evaluated.

Thus, data pipelines for AI in PV become a consideration – perhaps feeding results into a Cassandra store and then comparing with human

decisions to continually improve.

Example: A pharma safety department wants to enhance their signal detection process. They have their internal safety database

with structured adverse event reports for all their products (coming from Argus). They also have access to FAERS data and a large

insurance claims database. They set up a Databricks (Spark) environment on Azure. Each week, they run a Spark job that takes all

new cases from their safety DB (could be a dump to CSV or direct JDBC connect) and all new FAERS reports. The Spark job updates

a running data lake of drug-event counts. It then calculates disproportionality metrics (like reporting odds ratios) for each drug-

event pair, using both their data and FAERS combined to get a broad view. It uses the entire dataset (millions of reports) but because

it’s distributed, it finishes in an hour. The output is a list of drug-event pairs with statistics. These are written into an Azure Synapse

table which the signal management team accesses via a Power BI dashboard, highlighting signals that exceed threshold. Meanwhile,

another team focuses on claims data. They use Google BigQuery where a partnered claims dataset (with millions of patient records

over years) is hosted. They create a BigQuery SQL to compute incidence of outcome events among patients on Drug A vs a control

group. BigQuery’s results feed into a Jupyter notebook where they apply an adjustment for demographics and output an estimated

relative risk. This information (real-world risk estimate) is combined with the disproportionality signal in their internal review meeting.

Additionally, they are piloting Neo4j to help with duplicate detection: they load all new case narratives into Neo4j with nodes for

patients (de-identified by some key), drugs, and events. They run a graph algorithm to find clusters of cases that share multiple

similarities (e.g., same reporter, similar event, same drug) that might indicate duplicate reporting of one physical event. Those

clusters are flagged for case processing, to merge them appropriately. On the automation front, they also feed all narrative text

through an NLP model (using a Python pipeline separate from Spark) to classify them (e.g., serious vs non-serious). The results are

stored in MongoDB for quick retrieval in the case processing UI. Over time, as they trust the model more, they might fully automate

closure of obvious non-serious cases with that model. For compliance, every signal detection run is documented; the Spark script is

under change control, and the output signals are stored in a validated safety tracking system. Access to the raw data (claims, etc.) is

limited to authorized epidemiologists and data scientists, and all patient data is de-identified. By combining these technologies, the

PV team has a multi-layered safety net: traditional disproportionality for spontaneuous reports, real-world data analysis for context,

and modern graph/NLP techniques to improve efficiency and accuracy of their pharmacovigilance activities.

Comparison: Technologies for Pharmacovigilance

Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

© 2025 IntuitionLabs.ai. All rights reserved. Page 60 of 105

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf


Technology How It’s Used in PV Benefits and Differentiators Considerations

Hadoop/Spark

Processing large adverse

event datasets

(company’s own cases +

external data). Running

periodic signal detection

computations

(disproportionality,

clustering) on all data.

Also used for mining

unstructured data (scan

text for emerging issues,

link AE data with large

external datasets).

Can analyze the full dataset,

not samples, improving signal

sensitivity. Spark’s speed

allows more complex analyses

(e.g., data mining algorithms,

ML on cases) that wouldn’t

finish in reasonable time on a

single server. Scalable as data

grows (which is important as

more real-world data and

longer pharmacovigilance

periods add up).

Requires data engineering and

possibly data science

expertise – traditionally PV

departments are composed of

pharmacists and physicians,

so there can be a skill gap.

Getting quality results

requires careful prep

(ensuring data from different

sources is coded consistently,

etc.). Also, any novel metrics

from Spark analyses still need

epidemiological evaluation –

the tech can find signals, but

human experts must assess

causality.

Cassandra

Ingesting and storing

high-speed incoming

safety data streams (like

patient app reports,

device alerts). Also could

be used to store

intermediate results for

real-time dashboards

(e.g., a live count of

events by category

updating as data flows

in).

Extremely reliable ingestion –

won’t easily choke on spikes of

reports (important during, say,

a product recall when reports

might flood in). Decentralized –

can keep a cluster running

across geographies for

resilience. For queries by key

(like retrieve all events for

patient X or all events for drug

Y in the last day), it’s very fast.

Not useful for complex

querying – often you’d move

the data to a warehouse or

Spark for analysis. Primarily a

pipeline component. Also

needs maintenance of cluster.

In PV, tends to be used by

more tech-forward

organizations; some may

instead use cloud services

(like Azure Cosmos DB or

AWS DynamoDB) for similar

needs to avoid self-managing

Cassandra.

Neo4j / Graph DB

Linking safety data

(drugs, events, patients,

reporters) into a network

to detect patterns like

cliques of events or

common factors in cases.

Used for advanced signal

detection or visualizing

how signals connect (e.g.,

Drug A and Drug B share

many adverse events in

common – could indicate

a class effect).

Reveals relationships beyond

pairwise – e.g., finds that a

combination of Drug X and Y

appears in many serious cases,

or that a certain reporter is

connected to many cases for

one company (could flag

fraudulent reports). Graph

algorithms can find

communities of events that

often occur together,

suggesting syndrome-like side

effects. Useful for exploring

causal hypotheses (connect to

gene or protein interaction

graphs to see if two drugs

interacting could explain an

observed event).

This is a cutting-edge

approach; interpretability and

validation are challenges. PV

experts may need training to

understand graph outputs.

Data integration is heavy

(must have high-quality

linking of entities). Also, not all

signals need this – simpler

disproportionality catches

most obvious issues. So graph

DBs might be most useful for

complicated scenarios

(polypharmacy, multifactorial

adverse events). As such,

convincing ROI for graph in PV

can be hard unless a company

has had unexplained safety

issues that they believe graph

could elucidate.
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Technology How It’s Used in PV Benefits and Differentiators Considerations

Snowflake/BigQuery

(for RWE)

Analyzing large real-world

datasets (claims, EHR) to

quantify risks and

investigate signals in a

broader context. For

example, once a potential

liver toxicity signal is

detected in spontaneous

reports, querying a claims

database to see if liver-

related diagnoses are

higher in patients on the

drug vs similar patients

not on it.

Brings denominator data –

helps move from

“disproportionate reporting” to

actual incidence rates. Can

adjust for population

characteristics if data is rich.

Snowflake/BigQuery can handle

the volume and complex SQL

of epidemiological studies

(joining many tables: patients,

meds, outcomes,

comorbidities). BigQuery’s

parallelism can churn through

national-scale data in seconds-

minutes, enabling quick

feedback during signal review

meetings.

Healthcare datasets often

require cleaning and

understanding of clinical

context, so data engineers

must work closely with

epidemiologists. Results may

need statistical adjustment

beyond SQL (which might

require extracting to R or

Python for advanced

modeling). Privacy is critical –

these analyses must use de-

identified data and aggregate

outputs to be compliant. Also,

costs of querying large data

can be significant – one must

balance thoroughness with

cost (e.g., pre-aggregate data

if possible).

Machine Learning &

NLP

Automating case intake

(using NLP to extract info

from narrative),

prioritizing cases (predict

which cases are serious

or high-risk), and

detecting anomalous

patterns (outlier detection

in data streams). E.g.,

using a classifier to triage

social media posts that

likely describe an AE vs

noise.

Can greatly reduce manual

workload – case processors

spend less time on non-serious

or well-known events if an AI

flags them appropriately. ML

can find subtle nonlinear

patterns that rule-based

methods miss, potentially

catching early signs (though

this is still an area of research).

NLP is already improving data

quality by standardizing how

events/drugs are coded from

text.

Must be rigorously validated –

regulators expect decisions to

be traceable, so black-box AI

is approached cautiously.

Often ML suggestions are

used to assist humans, not

make final decisions. Also,

building these requires large

training datasets – many

companies collaborate or use

public data to train, which is

fine as long as it’s not

proprietary. Maintenance is

needed as drug usage and

reporting behavior change

(models can become stale).

Additionally, false positives

from ML could overwhelm if

not tuned – so it’s a fine

balance.

Pharmacovigilance is evolving from a largely manual, case-by-case process to a data-driven, analytics-enhanced discipline. Big data

technologies enable comprehensive analysis of all available evidence, bringing in real-world context and statistical rigor to safety

evaluations. They also support automation, allowing safety scientists to focus on interpretation rather than rote tasks. The

combination of# Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

The pharmaceutical industry generates vast and diverse datasets – from genomic sequences and clinical trial results to regulatory

documents, safety reports, and supply chain logs. Data engineers in pharma must choose appropriate big data technologies to

store, process, and analyze this information at scale. This report explores key technologies – Hadoop (HDFS, Hive, HBase),

Apache Spark, Cassandra, MongoDB, Snowflake, AWS Redshift, Azure Synapse Analytics, Azure Data Lake, Google

BigQuery, Neo4j, TigerGraph, Veeva Vault, Informatica, DNAnexus, and Illumina BaseSpace – and how they are applied across

major use cases. Each section focuses on a specific use case (e.g., genomics data analysis, clinical trials, regulatory data

management, pharmacovigilance, manufacturing and supply chain, sales and marketing analytics), detailing which technologies are

commonly used, how they are technically implemented, what differentiates them, and providing concrete examples. Comparisons
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are provided in tables for attributes like scalability, cost, performance, integration ease, compliance features, and real-world

adoption, to help data engineers evaluate solutions.

Genomics Data Analysis and Bioinformatics Pipelines

Genomic and multi-omics data analysis in pharma involves processing massive sequencing outputs (DNA/RNA reads, variant files)

and integrating results for drug discovery or precision medicine. Key challenges include scalability (handling petabytes of

sequencing data), processing speed (aligning reads or calling variants across thousands of genomes), flexible pipelines, and

compliance (securely handling potentially identifiable genetic data). Data engineers leverage a mix of on-premises big data

frameworks and specialized cloud platforms:

Hadoop Distributed File System (HDFS) for large-scale storage: Genomic files (FASTQ, BAM, VCF, etc.) are enormous. HDFS provides

distributed storage across clusters, making it feasible to store and process terabytes of sequence data in parallel. For example, biomedical

research projects have utilized Hadoop to manage large volumes of NGS and clinical data (Maximizing pharmaceutical innovation with data

engineering tools - Secoda). Apache Hive (SQL-on-Hadoop) can impose structure on variant data (storing variant calls in tables for query),

and HBase (Hadoop’s NoSQL store) enables fast random access to specific genomic records (e.g., retrieving all variants at a particular

gene). While Hadoop’s batch-oriented MapReduce model was historically used in genomics, modern pipelines favor more efficient in-

memory frameworks.

Apache Spark for distributed computing: Spark is a cluster computing engine ideal for iterative algorithms and large-scale analytics. In

genomics, Spark accelerates variant analysis pipelines by parallelizing tasks across cores or nodes. For instance, the GATK4 toolset from

the Broad Institute offers Spark-based versions of key algorithms to speed up processing of large genome cohorts. Spark can run on

Hadoop (using YARN) or in cloud-managed environments (Databricks, Amazon EMR, Google Dataproc). Specialized frameworks like ADAM

and Hail build on Spark to provide genomic data models and APIs, enabling scalable genomic analyses (e.g., joint genotyping on thousands

of genomes). Spark’s in-memory processing provides major performance gains over Hadoop MapReduce, making it “one of the most

promising technologies for accelerating pipelines”. Its machine learning libraries (MLlib) also support advanced analyses (clustering variants,

predicting phenotypes from genotypes, etc.).

Cloud Data Warehouses (Snowflake, BigQuery, Redshift) for multi-omics integration: After primary genomic analyses, results (variants,

expression matrices, etc.) often need to be integrated with clinical and reference data. Cloud data warehouse platforms excel at

aggregating results and enabling interactive analytics on genomic data combined with other datasets. Snowflake has been used as a

bioinformatics data warehouse, providing a convenient SaaS platform to join genetic data with clinical phenotypes. Researchers

demonstrated a Snowflake framework for storing diverse biological datasets and performing integrated analysis like disease variant filtering

and in-silico drug screening. Snowflake’s multi-cloud compatibility and near-zero maintenance appeal to pharma R&D teams – it runs on

AWS, Azure, or GCP, reducing vendor lock-in risks. Features like secure data sharing and zero-copy cloning also facilitate collaboration

(e.g., safely sharing a subset of variant data with external partners without duplicating it). Google BigQuery is similarly leveraged for large

genomic datasets, aided by Google’s ecosystem – for instance, BigQuery has native support for public genomic databases (TCGA, 1000

Genomes) and integrates with Google’s AI/ML tools (TensorFlow, Vertex AI) for tasks like protein folding analysis. Amazon Redshift is often

chosen if a company’s infrastructure is AWS-centric – it integrates with AWS services (S3 for storage, AWS Batch or SageMaker for analysis

pipelines) to facilitate genomic data processing. Redshift now supports semi-structured data and RA3 nodes with managed storage, but it

may require more tuning than Snowflake/BigQuery for peak performance. In practice, pharma teams might stage genomic data files in a

cloud data lake (S3 or Azure Data Lake) and use external tables or services like Redshift Spectrum or Synapse to query them as needed.

NoSQL and graph databases in genomics: Some genomic applications benefit from NoSQL or graph data models. MongoDB can store

experiment metadata or gene annotations as JSON, offering schema flexibility for evolving datasets. HBase or Cassandra could store large

key-value pairs like k-mer counts or variant calls keyed by genomic coordinate, supporting fast lookups in association studies. Neo4j

appears in drug discovery knowledge graphs that include genomic information – for example, linking genes, variants, pathways, and

diseases, which allows complex queries like finding drug targets associated with pathogenic variants. While NoSQL/graph databases are not

typically the core pipeline tools, they can add value in organizing and querying genomic knowledge extracted from analyses.

Specialized Genomic Platforms: Many pharma rely on platforms like DNAnexus or Illumina BaseSpace for genomic data management

and analysis. DNAnexus provides an end-to-end cloud platform for NGS data, offering scalable storage and compute, a library of

bioinformatics tools, and secure collaboration features. It’s built for scale – managing over 80 petabytes of genomic and multi-omic data on

behalf of users (Fabric Genomics and DNAnexus Team Up to Improve Scale and Speed of Data Analysis for Genomic Medicine - Fabric

Genomics) – and for compliance (audit trails, permission controls, and certifications for clinical use) (Fabric Genomics and DNAnexus Team

Up to Improve Scale and Speed of Data Analysis for Genomic Medicine - Fabric Genomics). DNAnexus allows data engineers to focus on

pipeline development rather than infrastructure. Illumina BaseSpace Sequence Hub connects directly to Illumina sequencers to stream

data to the cloud for storage/analysis. It provides push-button DRAGEN pipelines (hardware-accelerated) for ultra-fast secondary analysis,

with an interface that is easy for lab scientists. BaseSpace is designed to be secure and compliant (ISO 27001 certified, HIPAA compliant)

with features supporting data encryption and controlled access. These platforms reduce the need to build in-house clusters, though data

engineers often export results from them to integrate with broader data platforms (like warehouses or AI modeling environments).

Example: A pharmaceutical research team sequences tumor samples for a cancer drug trial (whole exomes for 500 patients). They

use Illumina NovaSeq sequencers with BaseSpace to handle data capture and initial processing (alignment and variant calling

with DRAGEN). As soon as each sample is sequenced, BaseSpace processes it and stores the resulting VCF (variant calls) and

quality metrics. Data engineers then transfer the VCFs to an Azure Data Lake and use Azure Databricks (Spark) to run joint variant
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calling across all patients and perform quality filtering. They also use Spark’s MLlib to cluster tumors by mutation profiles and

identify mutation patterns associated with drug response. The consolidated variant data, along with cluster assignments and key

clinical attributes, are loaded into a Snowflake data warehouse. In Snowflake, biostatisticians and bioinformaticians join the genomic

data with clinical outcome data and run SQL queries to find correlations (e.g., does a particular mutation correlate with better

response?). They use a BI tool to visualize results. Additionally, the team loads the data into a Neo4j knowledge graph linking

variants to genes, pathways, and existing drugs. This helps them explore if patients with certain mutations might benefit from other

therapies (by traversing connections between mutated genes and known drug targets). Throughout the process, patient identities

are coded and all systems (BaseSpace, Azure, Snowflake) are configured for compliance (encrypted data at rest, access limited to

authorized researchers). By combining specialized tools (BaseSpace) with general big data platforms (Spark, Snowflake, Neo4j), the

team efficiently extracts insights from massive genomic datasets while maintaining data security and integrity.

Comparison: Technologies for Genomics Data

Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

Hadoop

(HDFS/Hive/HBase)

High horizontal

scalability (add

nodes to store

petabytes;

throughput scales

with cluster size).

Suitable for on-

prem or IaaS

clusters.

Great for batch

processing of

large files;

MapReduce is

reliable but slower

than in-memory

frameworks for

iterative

algorithms. Hive

enables SQL

queries on big

genomic tables

(e.g., variant

frequencies

across samples)

but with higher

latency (seconds-

minutes). HBase

allows millisecond

retrieval by key

(e.g., by genomic

coordinate) on

huge datasets.

Requires significant

setup and cluster

admin expertise.

Integrates well with

Spark and other

Hadoop ecosystem

tools (Kafka, Oozie),

but not a plug-and-

play solution. Many

newer genomic

pipelines prefer

cloud storage for

ease of use, though

Hadoop remains

useful for cost-

effective on-prem

storage/compute.

Secureable via

Kerberos and

Apache Ranger;

can be kept

entirely on-prem

to satisfy data

residency or

internal policy.

Fine-grained

audits and

validations need

to be configured

by the

organization.

Historically,

satisfying

regulatory

validation on

Hadoop was non-

trivial (often

handled by

isolating it for

research use).

Historically hig

for large projec

(1000 Genome

etc.). Many

pharma

maintained

Hadoop cluste

for omics in the

2010s; today,

some have

shifted to cloud

or specialized

platforms. Still

used in certain

high-

performance

computing

environments o

when large

multi-omics da

lakes are on-

prem for cost o

security

reasons.

Apache Spark Scales from a single

server to large

multi-node clusters.

In-memory design

speeds up with

more RAM; for

massive data, can

spill to disk or use

more nodes. Cloud-

managed Spark

(Databricks, EMR)

allows dynamic

scaling per job.

Excellent for

large-scale

transformations

and iterative

algorithms

(machine

learning,

permutation

tests) on genomic

data. Far faster

than Hadoop

MapReduce for

most tasks due to

in-memory

compute. E.g.,

Offers APIs in

Python, R, Scala,

etc., making it

accessible to

bioinformaticians.

Connectors exist for

many storage

systems (HDFS, S3,

Azure Blob, GCS)

and databases.

Often used

alongside Jupyter

notebooks for

analysis

development. It

No inherent

compliance

module; relies on

the environment.

Can be deployed

in secure clusters

(with

authentication,

encryption).

Logging can

record data

access/processing

for audit, but it’s

not an out-of-box

validated system

Widely used in

genomics R&D

Many genomic

pipelines

(GATK4, ADAM

Hail) are built o

Spark for

scalability.

Pharma R&D

teams use Spa

for secondary

analysis, rare

variant

aggregation,

polygenic risk
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

joint genotyping

10,000 genomes

is feasible with

Spark but

impractical with

MapReduce. Also

interactive via

notebooks for

moderate-size

queries.

does require coding;

not a point-and-

click tool, so

analysts need

programming skill or

pre-built workflows

(like GATK’s Spark

tools).

(would be part of

a validated

process if used in

regulated

analysis).

Typically more

used in

research/early

development

contexts, with

final validated

analyses done in

SAS or other

validated tools.

score

calculations, et

In clinical

genomics (e.g.

diagnostic labs

Spark is used

behind scenes

for variant

calling

acceleration

(e.g., partner

solutions on

DNAnexus).

Snowflake

Near-infinite

scalability due to

decoupled storage

(on cloud object

storage) and

compute

(Warehouses can be

scaled up or

clustered for

concurrency).

Handles petabyte-

scale databases;

multiple workloads

can run in parallel by

auto-scaling

clusters.

High performance

for analytic

queries via

columnar storage

and adaptive

optimization.

Excellent at

complex

joins/aggregations

across large

tables (e.g.,

joining variant

tables with

phenotype

tables). Automatic

statistics and

result caching

improve repeat

query speed. Not

optimized for low-

latency single-

record lookups

(not an issue for

analytical

workloads).

Very easy to use

(true SQL support).

Many integration

options: bulk load

from cloud storage,

connectors for

Python/R,

integration with BI

tools and Jupyter.

Semi-structured

data (JSON)

support allows

storing genetic

variant annotations

or gene panels in

Snowflake for

querying. Data

sharing feature

enables sharing

datasets with

external

collaborators

without data

copying.

Strong

compliance

offerings: HIPAA-

eligible and

HITRUST

certified; all data

encrypted at rest

and in transit.

Supports network

policies, user

roles, and

comprehensive

logging for

auditing. Many

pharma validate

their Snowflake

environment for

clinical or

regulated data.

Secure data

sharing allows

collaboration

without giving raw

data files

(important when

sharing genomic

data that may be

sensitive).

Rapidly growin

in life sciences

Used as a

central

repository for

multi-omics an

clinical data in

many compani

and genomics

startups. For

example, one

pharma uses

Snowflake to

integrate clinic

trial genomics

with clinical

endpoints for

analysis by

biomarker

teams. It’s also

used to host

data

marketplaces

(e.g., populatio

genomics data

made available

to researchers

under

governance).

Google BigQuery Massive, elastic

scalability (Google

handles

sharding/distributing

automatically). Can

query terabytes in

seconds, and can

Extremely fast for

scan-heavy

analytical queries.

Ideal for

exploratory

analysis on huge

genomics

Standard SQL

interface; supports

nested and

repeated fields

which naturally fit

things like variants

(array of genotypes,

Fully managed

security: data

encrypted by

default, IAM

controls for

access. BigQuery

has fine-grained

Used by

companies who

are leveraging

Google Cloud f

analytics/AI. Fo

example, Verily

(Alphabet’s life
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

scale to petabyte-

range with proper

partitioning.

Serverless model

means no cluster

management – it

scales per query

load.

datasets or

querying

integrated

knowledge graphs

(which Google

often

demonstrates

with life science

data). With

BigQuery BI

Engine or cache,

can even do

interactive

dashboards on

large data.

Performance on

extremely

complex joins may

require query

tuning (flattening

nested data, etc.),

but the built-in

optimizations are

strong.

etc.). Easy

import/export with

Google Cloud

Storage. Integrates

with Google’s AI

platform – BigQuery

ML can even do

regression or

classification within

the warehouse itself.

Also has an

extensive public

dataset program

(genomic and health

datasets available to

join in place).

access control

down to columns.

It’s compliant with

GDPR and can be

configured for

HIPAA (Google

will sign a BAA for

GCP services).

Audit logs via

Cloud Audit

Logging track all

query access.

science arm)

uses BigQuery

for large-scale

biomedical dat

Some pharma

use BigQuery t

analyze real-

world data and

then join with

internal data. In

genomics, it’s

popular in

research

consortia (the

CDC’s SPHERE

program for

COVID genomi

used BigQuery

for analyzing

national

sequence data
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

AWS Redshift

High scalability

(petabyte-scale)

especially with

newer RA3 nodes

that separate

compute and

storage. Can add

nodes for more

throughput or use

concurrency scaling

to handle spikes.

Integrates with S3

for virtually

unlimited overflow

storage via Redshift

Spectrum.

Very good

performance for

structured,

repeated

reporting queries

on large data. For

instance,

aggregating 100

billion genomic

data points is

feasible if data is

properly

distributed. Sort

keys and

distribution keys

help optimize

specific access

patterns (e.g.,

distribute by

patient ID for

patient-centric

queries). Can

handle many

simultaneous

queries with

workload

management.

Speaks PostgreSQL-

like SQL. Has robust

ecosystem

integration on AWS:

Glue for ETL, S3 for

data lake,

SageMaker for ML

on data via Redshift

connectors. Users

often unload

Redshift data back

to S3 for Spark or

others, or query

external S3 data

from Redshift

Spectrum (useful for

semi-structured

genomics data).

Needs DBA-like

tuning (e.g.,

vacuuming, key

selection) for best

performance, more

hands-on than

Snowflake/BigQuery.

Mature security:

can deploy in

VPC, uses KMS

for encryption,

supports fine-

grained access

control and

auditing via

CloudTrail. AWS is

HIPAA-compliant,

and Redshift can

be used in

validated

environments

(with proper

change controls).

Many pharma

have existing

validated Redshift

instances as part

of their AWS

workloads.

Widely adopted

among AWS-

centric

organizations.

For example,

Regeneron’s bi

sequencing

initiatives in the

cloud used

Redshift for

parts of their

data

warehousing

(though they

also use

Snowflake now

Pfizer and

others migratin

from on-prem

Teradata have

used Redshift a

a stepping ston

or in parallel w

Snowflake. It

remains

common for

companies

heavily investe

in AWS who

want a cloud

data warehous

tightly

integrated with

their data lake.

DNAnexus Highly scalable

cloud platform (runs

on AWS/Azure). Can

launch massive

compute clusters

for parallel

bioinformatics jobs

and stores data in

scalable cloud

storage (manages

tens of petabytes

easily). Users can

scale workflows to

thousands of cores

when needed, then

Optimized for

NGS pipelines:

streaming data

from sequencers,

parallelizing tasks

like alignment or

variant calling.

High I/O

performance for

reading/writing

large BAM/FASTQ

files from cloud

storage. Jobs can

utilize cloud

instances with

lots of memory or

Provides a web UI,

API, and SDK.

Custom workflows

can be built using

WDL or Nextflow

and run on the

platform. Integration

ease is moderate –

it’s easy to upload

and process

genomic data within

DNAnexus, but

integrating output to

other systems

requires using the

API or downloads.

Built with

compliance front-

and-center:

platform is SOC 2

Type 2, ISO 27001

certified; many

clients use it in

GxP contexts. It

offers audit logs,

access controls,

and can segregate

data by project

with controlled

PHI access. Used

in FDA’s

precisionFDA

Growing

adoption for

genomics-heav

workflows. Man

genome center

bioinformatics

teams, and

consortiums

(like UK

Biobank’s RAP

use DNAnexus

to let multiple

parties run

analyses on

huge genomic

datasets witho
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

shut down (pay-as-

you-go).

GPUs as needed,

all orchestrated

through

DNAnexus. The

platform also has

optimized tools

for common tasks

(e.g., secondary

analysis pipelines

tuned for speed).

However,

partnerships (like

with UK Biobank)

show it can connect

to Jupyter

environments and

user code

execution.

challenge

environment,

indicating trust in

its security. Data

never leaves

unless exported

by users.

each building

infrastructure.

Some pharma

use it for

companion

diagnostic

development

(running clinica

genomic

analyses that

must be

audited). It’s le

used for non-

genomic data.

Illumina BaseSpace Scales automatically

with number of

sequencing runs –

Illumina manages

storage and

compute

provisioning

transparently. Users

typically subscribe

for storage and pay

per use of compute

apps; Illumina’s

cloud can handle a

sequencing center’s

output concurrently.

High performance

for secondary

analysis due to

Illumina’s

DRAGEN

acceleration

(either on cloud

FPGAs or fast

instances). A

whole genome

can be aligned

and variants

called in under 30

minutes with

DRAGEN. For data

storage,

BaseSpace can

ingest a full flow

cell of data

directly from the

sequencer over

network, and

provides

reasonably fast

download for

users (multi-

threaded).

Extremely easy for

labs – minimal

setup, just connect

sequencer to

BaseSpace account.

Library of apps

covers common

analyses (alignment,

variant calling, RNA-

seq quantification,

etc.). Limited

integration outward

– data can be

shared via

BaseSpace or

downloaded; direct

connection to other

cloud systems

requires using

BaseSpace API or

Illumina Connected

Analytics (a newer

offering for more

custom analysis).

So, integration with

third-party tools

may involve extra

steps.

Illumina ensures

compliance with

HIPAA, GDPR

(offers EU

servers), and has

audit logging for

data access.

BaseSpace has

granular sharing

controls (users

must be granted

access to

projects).

Supports signing

Business

Associate

Agreements for

clinical data. Many

clinical labs use it

in validated

pipelines –

Illumina provides

documentation for

validation.

High usage in

any organizatio

generating

Illumina

sequencing da

and not wantin

to maintain loc

storage/compu

for analysis. Th

includes

biotech/pharm

for research

sequencing,

clinical labs for

diagnostic

sequencing, an

large consortia

for initial data

handling.

Pharma might

sequence in

BaseSpace the

move variant

results to

internal system

for downstream

analysis.

BaseSpace has

some

competition (lik

Thermo’s Ion

Cloud for

IonTorrent

sequencers), b

Illumina’s mark

share makes

BaseSpace a
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

common

component in

genomics

workflows.

Key Takeaway: In genomics, data engineers often combine multiple technologies to address different needs – e.g., using Spark on

HDFS for heavy-duty variant processing, a cloud warehouse (Snowflake/BigQuery) for integrating genomic data with clinical and

other data, and specialized platforms (DNAnexus/BaseSpace) to handle raw sequencing and initial analysis with ease and

compliance. Each technology has unique strengths – Hadoop for cost-effective on-prem storage and processing, Spark for fast

distributed computing, Snowflake/BigQuery for easy sharing and analysis, graph databases for connecting biological knowledge, and

domain platforms for pipeline management and compliance. By leveraging the right tools for each task, data engineers enable faster

insight generation from genomic data while maintaining data security and regulatory compliance (critical when dealing with human

genomic information). This ultimately accelerates target discovery, biomarker identification, and the development of precision

medicines.

Clinical Trials Data Management and Analytics

Clinical trials generate diverse data – patient demographics, treatment assignments, eCRF (electronic case report form) data, lab

results, imaging data, patient-reported outcomes, adverse events, and operational metrics (enrollment, monitoring visits, etc.).

These come from multiple systems (EDC databases, central labs, imaging systems, ePRO devices, CTMS for operations) and must

be consolidated for analysis, reporting, and regulatory submission. Key requirements include flexibility to handle different study

designs and data schemas, scalability to manage large phase III or portfolio-level data, and compliance with regulations (21 CFR

Part 11 for data integrity, ICH GCP for trial conduct). Technologies supporting this use case focus on integrating heterogeneous data

sources, ensuring data quality, and enabling analysis in a controlled, auditable manner:

MongoDB for flexible trial data capture: Clinical trial data structures can vary widely between studies and change mid-study (new

protocol amendments adding fields, etc.). MongoDB’s schema-less JSON model is well-suited for capturing such evolving or study-specific

datasets. For example, a trial’s patient record could be stored as a document containing all forms and visits as sub-documents – if a new

form is introduced, it can simply appear in new records without altering a global schema. The FIMED project (a flexible biomedical data

management tool) highlights MongoDB’s benefit in dealing with “the dynamic nature of clinical data” (Integration and analysis of biomedical

data from multiple clinical trials). It allows schema changes on the fly and can handle semi-structured data easily. Scalability is achieved via

sharding – e.g., by study or site – enabling horizontal scaling across studies. This means a pharma could store dozens of trials’ datasets in

one MongoDB cluster and query them as needed. Performance is strong for retrieval of whole patient records or subsets of data (with

appropriate indexes), which is useful in medical data review applications. However, complex cross-patient or cross-study queries (like a join

of all patients over 65 across trials) are not as straightforward – those are typically done after exporting to SQL or using Mongo’s

aggregation pipeline (which, while powerful, can become complicated for heavy analytics). Thus, MongoDB often serves as an operational

data store in trials: for ingesting data from various sources quickly and serving it to web applications or APIs (like a clinical data review

tool), while the heavy-lifting analysis (like generating tables for a study report) happens in SQL-based systems after ETL.

Hadoop and Spark for large-scale trial data processing: When pharmaceutical companies want to analyze data across multiple trials or

incorporate external real-world data alongside trial data, the volume and variety can become a big data problem. HDFS can act as a landing

zone for massive combined datasets (for instance, pooling patient-level data from hundreds of trials to look for overall patterns or for

synthetic control arms). Spark is then used to clean, standardize, and combine these datasets. For example, a company may use Spark to

transform all trial datasets into a common model (mapping different terminologies to standard ones, aligning data formats). Spark is also

used for analysis of aggregated trial data: a pharma may run a Spark ML algorithm to find predictors of dropout using data from many trials

(lots of rows, many features). Another use is processing trial sensor data – e.g., in a trial where patients wear fitness trackers, Spark could

aggregate billions of sensor readings into meaningful metrics (daily steps, sleep patterns) for analysis. Spark can dramatically speed up

what used to be SAS programs running for days on one server by distributing the load. It also allows using Python/R libraries within a

distributed context, which many biostatisticians find attractive for advanced analysis. A concrete scenario: analyzing 20 years of clinical trial

data (~several TBs across all studies) to answer “How do placebo response rates change over time or vary by region in our CNS trials?” –

this is something Spark can enable by crunching through all those datasets (after they’ve been standardized) and computing summary

statistics. Historically, such an analysis would be so laborious that it might not be attempted. With big data tools, it becomes feasible to

derive insights from the troves of past trial data (often called “data reuse” or “clinical data mining” in pharma).
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Cloud Data Warehouses (Snowflake, Redshift, Synapse) for integrated analytics: After trial data is cleaned and aggregated, it’s

typically loaded into a relational warehouse for easy querying and reporting. Snowflake is a popular choice for modern clinical data

warehouses because of its flexibility and concurrent access support. A company might maintain a Snowflake database where each clinical

study’s data resides in a schema (structured as per CDISC SDTM or company-specific data model). Statisticians and data managers can

then query using SQL, or connect BI tools to create dashboards (e.g., a data cleaning dashboard that shows query rates by site). Snowflake

easily handles moderately large trial datasets (say a trial with 10,000 patients, 1,000 data points each – well under a billion records) and can

join them with reference data (e.g., protocol metadata or public disease databases). AWS Redshift similarly is used as the backend for

clinical data marts at companies that already have AWS infrastructure. For example, after each trial database lock, the data might be pushed

into Redshift for archival and future analysis across trials. Redshift’s SQL and integration with AWS analytics services allow creation of

combined datasets (like integrating pharmacovigilance data post-approval with the clinical trial data to study long-term outcomes). Azure

Synapse Analytics is often used when the data lake strategy is on Azure – raw data lands in Azure Data Lake Storage, and Synapse’s

serverless SQL pools or dedicated pools query and join the data for consumption. Synapse also can directly connect to Power BI for

interactive analytics. A case study described using Synapse to unify and analyze pharmacy inventory data in real-time, which is analogous

to using Synapse to unify trial operational data (e.g., site supply, enrollment) for near-real-time analysis by trial managers. One advantage of

these cloud warehouses is integration ease: they readily connect to analytics and visualization tools and support standard SQL, which is

well-known to clinical programmers (who often know SQL via SAS PROC SQL or similar). They also handle security (e.g., roles for blinded vs

unblinded data access) which is crucial in trials.

Informatica for ETL and data quality: Informatica (PowerCenter or IICS) is widely used to extract, transform, and load clinical trial data

from source systems (like EDCs) into a warehouse or data lake. For instance, an Informatica workflow might connect to Medidata Rave via

ODBC, pull incremental data, map coded terms to standard dictionaries, and load to a target schema. It’s valued for its reliability and

auditability – every data movement can be logged, which is important in GxP environments. It can also enforce business rules: e.g., check

that all required fields are populated, or compare two data sources (double data entry comparisons). In addition, Informatica MDM might be

used for master data in trials: common reference data like investigator profiles, site details, or even patient identifiers if linking trial data

with other data. This ensures consistency across studies (e.g., investigator Dr. Smith in trial A and B is recognized as the same person).

Pfizer’s modernization using cloud integration likely involved Informatica handling myriad mappings from legacy data models to a unified

model in the cloud, demonstrating its role in consolidating data across studies. Another Informatica use in trials is for data anonymization:

before sharing patient-level data externally (like to collaborators or public databases), an Informatica workflow might mask identifiers and

apply randomization to certain quasi-identifiers (there are specialized tools too, but Informatica could be part of that pipeline).

Graph databases for study relationships and oversight: While not mainstream, graph databases offer some novel capabilities in the

clinical trial domain. For oversight, one could create a graph of sites and investigators and see connections (e.g., two studies that share

sites or investigators – useful for identifying those with heavy workload or potential conflict). Also, linking trial data to scientific data via a

graph can help identify cross-study trends: e.g., a knowledge graph that connects trial results, molecules, targets, and outcomes could help

in finding why a set of trials failed (maybe they targeted related pathways). Neo4j’s promotion of knowledge graphs in life sciences includes

such use cases, and while most companies are early in this journey, a few are building R&D knowledge graphs that include clinical trial

metadata (like endpoints, outcomes, patient segments) linked to preclinical and external data. Over time, if these graphs become

comprehensive, data engineers might use them for query like: “find all trials in disease X that used endpoint Y and see what their results

were” – something that could also be done with SQL but might be more naturally handled if all that info is in a graph with relationships

labeled. Additionally, graphs could assist with protocol design: e.g., find criteria in past trials that led to faster enrollment by analyzing a

graph of eligibility criteria and enrollment metrics (some researchers have indeed modeled eligibility criteria as graphs to compare across

studies).

Veeva Vault (Clinical): Veeva Vault offers a suite for clinical operations (CTMS, eTMF, study start-up, etc.) and now even a Vault EDC. Vault

stores both documents and structured data about the trial. For data engineers, Vault can be a source of operational data – for example,

using Vault CTMS data on site performance (like how quickly each site enters data after a visit) to correlate with data quality metrics in the

EDC. Vault eTMF is a source of truth for documents required for compliance; data engineers might not directly analyze documents, but

ensuring that all required documents are in place can be tracked with reports. Vault’s advantages are similar to those in regulatory: built-in

compliance (every action is logged), cloud accessibility, and a unified platform linking different aspects (it can link a protocol document to

the actual electronic forms used in EDC if within the same ecosystem). While analytic workflows might export Vault data to a warehouse, the

trend is that more trial data and metadata reside in Vault, so data engineers increasingly will incorporate Vault’s API or data feeds in their

pipelines.

Example: A clinical data management team needs to clean and integrate data for a phase III trial and prepare analysis datasets. The

trial uses an Oracle Clinical EDC and collects patient sensor data from a wearable. First, they use Informatica to ETL the clinical

data: mapping the Oracle tables to standard SDTM datasets (creating tables for Demographics, Adverse Events, Lab Results, etc.).

Informatica applies data quality checks (flagging any out-of-range lab values for review) and loads the transformed data into a

Snowflake schema for that study. Meanwhile, the wearable data (huge JSON files) are stored in Azure Data Lake. They run an

Azure Databricks (Spark) job to process this – aggregating raw sensor readings into daily summaries per patient (like average

heart rate, step count). The Spark job writes these summaries into Snowflake as well (into, say, a “Daily Activity” table). Now

Snowflake has all trial data: conventional eCRF data and novel sensor endpoints. Statisticians can connect with their preferred tools

(JMP, R, etc.) via Snowflake connectors to analyze the data. They join, for example, adherence data from eCRF (when patients

reported wearing the device) with the actual sensor data from Spark to check compliance. The safety team uses Power BI against

Snowflake to monitor adverse events – they have a dashboard that shows accrual of adverse events by severity and treatment arm,

updating whenever new data flows in (Informatica runs ETL nightly). On the operations side, data engineers also pull data from

Veeva Vault CTMS – such as site enrollment numbers and query resolution times – into a small Redshift warehouse that the clinical

operations team uses for reporting. They integrate that with finance data to see cost per enrollment. Finally, when the study is
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completed, the biostatistics team uses the Snowflake data to create analysis datasets (ADaM datasets for FDA submission). Those

are exported out of Snowflake as SAS files for the regulatory submission (since the FDA still commonly receives SAS XPT files).

Throughout, compliance is maintained: all transformations are done under change control (the ETL code is validated), Snowflake is

in a validated cloud environment with access controls (unblinded data only accessible to certain users until database lock), and data

transfers are encrypted. By using this mix – ETL tools, cloud warehouse, Spark for big data – the team was able to handle both

traditional and high-volume data in a unified way and deliver quality data for analysis faster than in past trials where separate siloed

systems were used.

Comparison: Technologies for Clinical Trial Data

Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

MongoDB

(Document

DB)

Flexibility: Can adapt to

any trial’s data structure

without upfront schema

design. Great for

unstructured or evolving

data (e.g., genomic or

imaging results attached to

a patient). Rapid

development: Changes in

eCRFs or new data types

can be ingested with

minimal admin. Scales out

for large studies or many

concurrent studies. Useful

for building APIs and web

apps for data review

(fetching whole patient

JSON in one query).

Not optimized for heavy analytical

queries across many records (lack of

joins, complex aggregation is possible

but not SQL-easy). For example,

summarizing across all patients might

require map-reduce or exporting data

to a relational form. Also, many clinical

data managers are more familiar with

SQL, so a pure Mongo approach

requires upskilling or specialized

developers. Additionally, ensuring data

integrity (foreign key-like constraints

between forms, etc.) is left to the

application layer.

Adoption: Some innovative

trial sponsors or CROs use

Mongo for specific

applications like clinical data

review portals or patient

diary data capture. Most core

clinical databases remain

relational (Oracle, Medidata,

etc.), but Mongo might

mirror that data for flexible

access. As trials incorporate

more unstructured data

(images, genomic

sequences), MongoDB usage

in trials could grow to store

such data with metadata

alongside standard data.

Hadoop &

Spark

Big data integration:

Efficient at combining data

from many studies or

external sources for cross-

trial analysis or large-scale

simulations. Spark can also

speed up creation of

analysis datasets (e.g.,

deriving complex endpoints

that involve large data

manipulations like time-

series analysis of every

patient’s data). Machine

learning on clinical data:

Spark MLlib can be used to

build predictors (e.g., likely

dropouts) using the full

dataset. When trial data

volume is very high (e.g.,

omics data in trials, or

hundreds of millions of rows

from digital health devices),

Spark handles it gracefully.

Overkill for single studies (where data

fits well in a database or SAS

environment). Typically requires a data

engineer or savvy programmer – not

usually directly used by clinical data

managers or statisticians who lean on

SAS. Thus, Spark might sit behind the

scenes (perhaps hidden in tools like

Databricks with a UI). Also, results from

Spark might need to be validated and

back-ported to SAS for regulatory

filings, since SAS is the gold standard

for FDA submissions. This duplication

can be a consideration (though FDA is

open to other tools, SAS remains

entrenched).

Adoption: Large pharma

have experimented with

Spark for integrated clinical

data analysis – for example,

pooling patient-level data to

develop predictive models

(like which patients are at

risk of adverse events).

CROs have interest in Spark

to optimize data cleaning

across their portfolio. Still, in

daily trial conduct, Spark is

not widely used except in

tech-forward trials (like those

involving tons of device data

or genetic data). It’s more

seen in pharma R&D

analytics groups looking to

reuse trial data at scale.
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Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

Cloud Data

Warehouse

(Snowflake,

Redshift,

Synapse)

Centralized repository:

Once trial data is in a

warehouse, it’s easily

accessible with SQL by

statisticians, medical

monitors, data managers,

etc. Supports multiple

concurrent users (e.g.,

medical monitors querying

safety data while data

managers check data

quality). Scalable

reporting: Can generate

complex outputs (like a

combined efficacy dataset

from multiple studies)

quickly. Integration with BI

allows creation of live

dashboards for trial status

(enrollment, data entry lag,

queries) that were difficult

to achieve with legacy

systems. Data blending:

Can join clinical data with

operational or real-world

data for enriched analysis

(e.g., linking a trial’s

subjects to background data

from insurance claims to

augment analysis).

Requires careful governance – need to

ensure proper blinding (e.g., treatment

assignments might be restricted until

unblinding). Also, one must enforce

standards so that different studies’

data are comparable in the warehouse

(common data model or use of CDISC

SDTM). The initial setup of a study in

the warehouse (defining the tables,

loading mappings) is an extra step that

some may see as overhead if they’re

already managing the data elsewhere.

Cost can be an issue if the warehouse

is queried extensively with large data

(but for typical trial sizes, this is minor

compared to overall trial costs).

High adoption: Many

pharma have established

clinical data warehouses. In

the past these were Oracle

or Teradata based; now

migrating to cloud

(Snowflake is popular for its

low admin needs). For

example, Janssen has a

known data science platform

where they load clinical trial

data into Snowflake for

scientists to analyze. Eli Lilly

used a data warehouse

approach to do cross-trial

analyses that informed trial

design decisions. Synapse is

used by some CROs and

smaller sponsors who are

Microsoft-centric. Overall,

using a warehouse for clinical

data is standard for insight

generation beyond individual

study reporting.

Informatica

(ETL/MDM)

Enterprise-grade ETL:

Reliable, auditable

processes to integrate data

from EDC, lab systems,

IVRS, etc. Minimizes manual

data reconciliation. Visual

data flows make it easier to

validate transformations

(important for regulatory

compliance). Reusability:

Common transformations

(like unit conversions or

dictionary mappings) can be

reused across studies. MDM

ensures consistency in

reference data (e.g., same

lab test coded the same

way across studies).

Metadata management:

Informatica can also load

Licenses and skilled developers add

cost. Some newer companies opt for

open-source or cloud-native tools, but

those may require more coding.

Informatica’s strength is in traditional

structured data; for newer data types

(e.g., unstructured notes or images),

additional tools might be needed. Also,

ETL processes need to be kept in sync

with changes – if an EDC is updated

with new fields, the Informatica job

must be updated too, requiring change

control. Turnaround for changes might

not be as fast as an agile team directly

writing code, but it provides more

assurance.

Very high in big pharma

and CROs: Almost all large

sponsors have used

Informatica (or similar ETL

like SAS ETL or Talend) in

their clinical data pipelines.

As data moves to cloud,

many are adopting

Informatica’s cloud offerings

to feed Snowflake/Redshift.

For example, CROs like IQVIA

have tools to map client data

into their warehouses likely

powered by such ETL. MDM

usage is somewhat less

universal but still common for

managing entities like

investigator master lists or

concomitant medication

dictionaries across trials.
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Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

metadata hubs (like data

catalogs or define.xml for

submissions) which helps in

automation of analysis

dataset creation.

Neo4j /

Graph DB

Relationship analysis:

Could uncover hidden

connections – e.g., if

patients in different trials

share certain characteristics

and outcomes, or if sites

that perform well in one

study also do in others (to

inform site selection). Also

could link trial data to

scientific literature or

molecular data in a graph,

supporting translational

research queries (like linking

an adverse event in a trial to

known biological pathways).

Not mainstream – requires graph data

modeling which is not typically taught

in clinical data contexts. Potential is

there, but first need is to aggregate

data (which can be done in SQL).

Graph might shine in unique analyses

like network of adverse events or

patient similarity networks (to find

patient clusters across trials).

Justifying the implementation in a GxP

environment could be hard unless it

clearly answers questions not

answerable otherwise.

Limited currently: Graph

tech in clinical domain is

mostly experimental – e.g.,

some research on using

knowledge graphs for

eligibility criteria and

protocol design optimization.

Over time, as more data is

digital and connected, graph

queries might become useful

(like querying a knowledge

graph that includes trial and

real-world data to identify

patients for trials). For now,

most companies rely on

warehouses for integrated

trial data rather than graphs.

Veeva Vault

(Clinical)

Unified trial management:

Vault eTMF ensures all

required documents are

tracked and accessible;

Vault CTMS tracks

operational data

(milestones, site

performance); Vault EDC

(for those using it) captures

patient data with direct

integration to Vault for

downstream use. The

unified platform reduces

friction – e.g., a protocol

amendment document in

Vault eTMF can trigger an

update in Vault EDC forms.

Compliance: Vault is

validated and Part 11

compliant by design,

reducing validation effort for

companies. All trial master

file documents and audit

trails are in one place, which

is critical during inspections.

Integration: Vault’s open

APIs and data export

capabilities allow extracting

Vault is more of an operational system

than an analytics system. You typically

wouldn’t run complex analyses within

Vault; instead, you’d export data to

analytics environments. So while it

centralizes data, data engineers still

need to move data into warehouses or

lakes for intensive analysis. Also,

migration to Vault from legacy systems

is a multi-year effort for big companies

– during transitions, data is in multiple

places, complicating integration.

Rapidly growing adoption:

Most big pharma are either

using Vault Clinical or in

process of implementing it.

This means the future state

is a lot of clinical data

(operational and some

patient data) will reside in

Vault, and data engineers will

increasingly pull from Vault

rather than directly from EDC

or CTMS databases. For

example, during a trial, a data

engineer might use Vault

reports to get the latest

enrollment by country to

feed a simulation model.

Veeva’s dominance in CRM

for pharma is repeating in

clinical with Vault, so

understanding how to

integrate with Vault is a

emerging necessity.
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Technology
Strengths in Clinical Data

Use Case
Weaknesses/Considerations Real-World Adoption

structured trial information

(like enrollment status,

protocol deviations, etc.) to

combine with data analysis

in warehouses.

In summary, managing clinical trial data involves orchestrating multiple technologies: operational systems (EDC, CTMS, eTMF, etc.)

to collect and manage the data, and analytics platforms (ETL pipelines, warehouses, big data tools) to aggregate, analyze, and

learn from the data. Data engineers play a central role in linking these worlds – ensuring that high-quality data flows from where it’s

captured to where it’s analyzed without silos or integrity loss. By using modern big data tech alongside traditional tools, they can

handle new data types and larger scale (like digital health data in trials), enable real-time insights (like dashboards for trial

management), and reuse data across studies (for example, pooling control arm data to reduce the need for new placebo patients).

All of this must be done under rigorous compliance controls, as patient data in trials is highly confidential and regulated. When done

successfully, these approaches reduce trial execution risks (through better monitoring and faster decision-making) and accelerate

the path to clinical insights (by making it easier to query and analyze the rich data collected in trials).

Regulatory Data Management and Compliance

Pharmaceutical companies operate in a strictly regulated environment, generating enormous amounts of documentation and data to

meet requirements from agencies like the FDA and EMA. Regulatory data management encompasses handling submission content

(e.g., eCTD documents for drug approval), tracking product registrations and approvals worldwide, managing regulatory

commitments and correspondence, and ensuring that all records are audit-ready and compliant with regulations. The challenges

here are less about raw volume (though large companies manage millions of documents) and more about complexity, traceability,

and integrity – every submission has dozens of components and dependencies, and errors or inconsistencies can lead to approval

delays or compliance actions. Key technologies focus on content management, workflow, and structured tracking of regulatory

information:

Veeva Vault RIM (Regulatory Information Management): Vault RIM has become a leading solution for managing regulatory content and

data on a single cloud platform. It includes modules for document management (authoring, reviewing, approving all the documents that go

into a submission) and for tracking the lifecycle of regulatory activities (submission planning, health authority questions, approvals,

variations, renewals). A major benefit is that it replaces disparate tools (like separate tracking spreadsheets, document repositories, email

trails) with one platform. For example, when assembling an eCTD dossier for a new drug, teams use Vault Submissions to organize

documents into the correct hierarchy, link supportive documents (like raw data) to summary documents, and ensure everything is present

for each region. Vault can then publish the eCTD sequence (compiling the XML backbone and PDF files) and once submitted, the sequence

is locked in Vault Submissions Archive for future reference. All this occurs with Part 11 compliant audit trails and electronic signatures in

Vault. Data model integration is a differentiator: Vault doesn’t just store PDFs; it also stores metadata (like submission ID, product, country,

regulatory category, etc.) in structured fields. This allows powerful queries and reports – e.g., “show all pending submissions by region and

phase” or “list all documents that were reused from a previous submission”. It also avoids mistakes like forgetting a document in a

submission, since Vault can validate content against a predefined checklist. The Vault platform is highly scalable, used by large companies

to manage tens of millions of documents. It provides APIs and reporting tools, which data engineers can use to extract structured

regulatory data (for instance, a list of approved indications per country for a product) to combine with other data (like sales data or

manufacturing data for product launch planning). From a compliance perspective, using Vault simplifies validation because Veeva provides a

validated state – customers mainly need to validate their configuration and usage, not the whole infrastructure.

Legacy Regulatory Systems (Documentum-based and custom trackers): Many companies historically used enterprise content

management (ECM) systems like Documentum (with solutions like CSC FirstDoc or OpenText) for regulatory document management. These

are on-premises systems that provide similar functionality (document version control, workflows, basic metadata). Some companies built

extensive custom databases to track things like submission status, commitments, and product registrations in different countries. For

instance, an Oracle database might store all the details of each product’s approval (like regulatory application number, submission dates,

approval dates, local license numbers, etc.) and be paired with a front-end for data entry by local regulatory affiliates. These tools served

well but often aren’t integrated (document management separate from tracking database), which leads to duplication of data entry and risk

of inconsistencies. Data engineers historically had to pull from multiple systems: the document repository for lists of submissions, the

tracking database for dates and statuses, and maybe spreadsheets for commitments. This made comprehensive reporting difficult (imagine

answering “How many submissions did we file worldwide this year and how many were approved on first pass?” when data is siloed). The

transition to Vault RIM consolidates these, but companies in transition have to integrate new and old – for example, migrating historical data

from a tracking database into Vault’s Registrations object or linking Documentum documents to Vault records. During this period, data

engineers might maintain pipelines that push new records from legacy systems into Vault or vice versa to keep them in sync.
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Relational databases/warehouses for regulatory analytics: Even with Vault or a comprehensive system, many companies use a data

warehouse to aggregate regulatory KPIs (key performance indicators). For example, they might use Snowflake or Redshift to combine data

like submission timelines, approval dates, labeling changes, and create dashboards for management. These warehouses can also integrate

regulatory data with other business data: e.g., linking the approval date of a drug in a country (from a regulatory system) with the date the

product was launched in that country (from a supply chain system) to evaluate launch efficiency. In Vault, one can run reports, but complex

multi-dimensional analysis (like trends over time across regions) may be easier in a BI environment. Data engineers might schedule regular

exports from Vault RIM or legacy systems to the warehouse. Informatica is often in play here too, extracting from source (Vault or others)

and loading into the warehouse.

Spark/NLP for regulatory intelligence: Regulatory intelligence involves monitoring and analyzing regulatory information (guidelines, past

decisions, competitor filings, etc.) to predict or strategize for future submissions. Big data tools come into play for parsing large volumes of

text – for instance, using Spark NLP to read through hundreds of pages of regulatory guidelines to identify changes or key points relevant to

a product. Another use: analyzing all questions asked by FDA in past review cycles of similar drugs (which might be buried in PDFs of

approval packages or meeting minutes). Spark could extract these questions and categorize them to help a team prepare better submission

documents addressing those likely concerns. Some companies also monitor public forums or use text analytics on health authority

communications (which can be semi-structured letters) to glean insight. These applications are relatively novel – historically, regulatory

intelligence was a manual expert-driven task – but big data tech is gradually being explored to augment it. For example, an NLP algorithm

might help flag that a new EMA guideline draft has added a requirement for a certain analysis, so companies can proactively implement that

in their upcoming submissions. While not mainstream, such applications show the potential of big data to improve compliance and strategy

in regulatory affairs.

Graph databases for regulatory knowledge graphs: A knowledge graph in regulatory could connect entities like drugs, submissions,

countries, manufacturing sites, documents, and even regulations. Queries on such a graph could be powerful: e.g., “Find all submissions

worldwide that involve Manufacturing Site Z (to assess impact of a site change)” – a graph would let you traverse from the site node to all

submission nodes that reference it (via edges representing site approval in that submission). Or “What differences exist between the FDA

and EMA approval (by linking to label content differences)” – if the label texts are nodes or attached, one could highlight discrepancies.

Novartis and others have talked about capturing their regulatory and scientific knowledge in graphs to enable such queries. Again, early

stages, but in principle a regulatory graph could even include the content of regulations and guidance: you could then trace how each

regulatory requirement has been fulfilled by which document in a submission, an ultimate traceability that ensures compliance. Some

companies are likely experimenting with graph in the background for such traceability and impact analysis use cases.

Example: A regulatory affairs department is managing a new drug application (NDA) in the US, an EMA centralized application, and

numerous national submissions. Using Veeva Vault RIM, they organize all submission content and metadata. When the FDA asks a

question, they log it in Vault as a “health authority query” linked to the submission and to the relevant document (e.g., a question

about clinical data is linked to the clinical study report document). Once they answer and send a response document, that too is

logged and linked. All this information (dates of questions, response times, statuses) is now stored in Vault as structured data. The

regulatory operations team uses Vault’s built-in dashboards to track outstanding queries and commitments. Separately, the

company’s global regulatory head wants a summary of all product approvals and pending submissions worldwide. The data

engineers use Vault’s reporting API to pull a list of all product registration records (which include country, approval date, conditions,

etc.). They load this into a Tableau dashboard (via a Snowflake intermediate) which shows a world map with markers for

approved/pending. This integrates with sales data: when an approval happens (entered in Vault or automatically updated by Vault via

an affiliate user), it triggers a pipeline that updates the supply chain and sales forecasting systems (so they know the product can

launch in that market). Meanwhile, a regulatory intelligence analyst wants to ensure their new submission preempts known issues.

He has a corpus of 50 FDA review summaries for similar drugs. The data engineer uses Spark NLP to extract all the text in those

documents under sections like “Issues raised during review”. They create a word cloud and frequency analysis of these issues,

finding common phrases like “missing genotoxicity study” or “inadequate stability data”. Seeing this, the team double-checks that

their submission has robust data in those areas. This NLP-driven insight (big data on unstructured text) potentially helps them avoid

a deficiency. On compliance: every regulatory record is in Vault with audit trails, fulfilling their legal requirements. Their use of

Snowflake and Spark for analysis is on copies of data – these systems are internal tools to aid strategy, not the primary records

(which remain in Vault). They ensure any personal data (like names of reviewers in letters) are either not extracted or are

anonymized, focusing only on content needed for analysis. As a result, they maintain a strong compliance posture (with Vault

handling authoritative data and documents) while also leveraging big data techniques to inform and streamline their regulatory

efforts. In the end, the NDA is approved on first cycle – something they attribute in part to thorough preparation aided by their data-

driven regulatory intelligence – and all the data and documents from that process are readily accessible for future reference, via

Vault and their reporting warehouse.

Comparison: Technologies for Regulatory Data Management

Technology
Role in Regulatory

Use Case

Differentiators and

Compliance
Real-World Adoption

Veeva Vault RIM One-platform

solution for

Differentiators: Combines

content management (with

High adoption: Most large

pharma and many mid-size
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Technology
Role in Regulatory

Use Case

Differentiators and

Compliance
Real-World Adoption

managing regulatory

documents and

tracking submission

status across

products and regions.

Used from early

dossier authoring

through publishing,

health authority

interactions, and

post-approval

changes. Replaces

multiple disparate

tools with a unified,

cloud-based process.

robust versioning and access

control for documents) and

structured data (records for

submissions, approvals,

variations). Built specifically for

life sciences, with pre-

configured workflows that align

to regulatory processes (e.g.,

review and approval of

labeling). Vault’s cloud

architecture enables easy

collaboration with

affiliates/partners (just one

system to log into).

Compliance: Delivers Part 11

compliance out-of-the-box with

e-signatures, full audit trails on

documents and fields, and

validation packages from

Veeva. Can enforce business

rules (e.g., cannot mark a

submission “complete” until all

required documents are

attached).

use Vault RIM or are

implementing it (often

replacing Documentum-based

systems). e.g., Moderna, a

newer company, adopted Vault

RIM early on; older ones like

Pfizer and Merck are in

process or completed

migration. Regulators

themselves are aware of Vault

– during audits, showing data

from Vault is becoming

common. This widespread use

means regulators increasingly

expect sponsors to quickly

retrieve any requested info

(which Vault makes easier).

Data engineers at these

companies now often pull data

from Vault to feed regulatory

dashboards and analytics,

rather than maintaining

separate tracking databases.

Documentum/OpenText

(Legacy ECM)

Managed regulatory

documents for

decades at many

companies. Often

paired with custom

solutions for

submission assembly

(like eCTDXPress)

and tracking

databases. Provided

the controlled

document repository

function (with audit

trails and access

control) needed for

regulatory filings.

Differentiators: Highly

configurable to company needs

– many companies built custom

data models and interfaces

(which is also a downside:

upgrades were painful). Could

be hosted on-prem, giving

companies full control of data

location (some companies still

prefer this for sensitive IP).

Compliance: Could be made

Part 11 compliant with proper

SOPs and configuration.

However, heavy customization

sometimes risked compliance

issues if not thoroughly

validated. Typically had a web

UI and an integration with MS

Office for authoring support.

Was standard, now

declining: Nearly every big

pharma had something like “

Document Management

System” built on Documentum

or similar. Many still use it for

archival or in parallel with Vault

until migration finishes. Data

engineers might still extract

data from these for historical

reporting (e.g., mining years of

old submissions in

Documentum to plan new

ones). For example, GSK and

AZ were known to use

Documentum-based RIM

(Enlight) before moving to

Vault. These systems are

gradually being retired as Vault

or other cloud solutions take

over.

Regulatory Tracking DB Custom or semi-

custom relational

databases for

tracking product

approvals,

Differentiators: Can be tailored

to specific company reporting

needs; some had complex logic

(e.g., automatically send

reminders for upcoming license

Adoption: Common in

companies that didn’t have an

all-in-one RIM. E.g., a pharma

might have used an Access or

Oracle-based tool for tracking
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Technology
Role in Regulatory

Use Case

Differentiators and

Compliance
Real-World Adoption

submission

milestones, and

commitments. Often

an Oracle or SQL

Server with a front-

end where local

regulatory personnel

enter updates (like

“Approved on X date

with conditions Y”).

Allows generating

reports like “Where is

product X approved?”

or “What variations

are pending?”.

renewals). They handle

structured data well but not

documents. Compliance: These

are GxP systems – companies

validated them and maintained

audit trails (some built audit

triggers in the DB, or the front-

end application did it). If not

integrated with document

systems, there could be data

mismatches (like a submission

marked “submitted” but a

document not actually filed or

vice versa).

while using an ECM for docs.

Many are decommissioning

these as Vault’s Registrations

and Tracking modules replace

the functionality. Until then,

data engineers may need to

merge data from these and

ECMs for comprehensive

reporting. In smaller pharma,

even spreadsheets are used

(not ideal, but happens), which

again might be consolidated

via Vault or at least centralized

into a small database by IT.

BI/Analytics Warehouse

After data is

centralized (via Vault

or other systems),

companies use BI

tools and warehouses

to analyze regulatory

performance. For

instance, average

approval time by

region, percentage of

submissions on-time

vs delayed, number

of queries per

submission, etc. This

helps management

identify process

improvements.

Differentiators: By blending

data (e.g., linking regulatory

milestones to project

management data or sales

data), companies can quantify

the impact of regulatory

processes on business

outcomes. Warehouses can

easily aggregate across

products, whereas

transactional RIM systems

focus on per product or

submission. Compliance: The

warehouse is usually for

internal metrics and decision

support – not a source of

record – so it doesn’t require

the same level of validation,

though data should be

traceable back to validated

systems.

Standard practice: All large

companies produce regulatory

KPI reports. Historically, this

might have been done in Excel

(painfully). Now tools like

Tableau, Power BI connected

to a data mart are common.

For example, a company might

have a dashboard showing

“Submissions planned vs

actual this year” drawing from

their RIM. Data engineers set

up these pipelines. Another

real example: a pharma used

their data warehouse to

correlate health authority

query turnaround time with

ultimate approval time to make

the case that faster response =

quicker approval, thus

encouraging teams to improve

speed. Such insights require

pulling data out of RIM and

analyzing historically.

Spark/NLP for Reg

Intelligence

Processing large sets

of external

unstructured data –

regulations,

guidelines,

competitor filings,

drug labels – to

extract insights.

Could automatically

populate a database

of requirements (e.g.,

Differentiators: Can

dramatically cut down manual

review load. If an AI can flag

“EMA now expects X in

modules”, regulatory teams can

adapt faster. Over time, could

help answer “what is the likely

question from agency given

this submission?” by learning

from past patterns.

Compliance: Using these tools

Emerging: Some companies

have internal “Regulatory

Intelligence” teams

experimenting with these

techniques. For instance, GSK

has publicly mentioned using

AI to predict regulatory

outcomes. Still, it’s not

widespread to rely on AI; most

decisions are based on human

experts. Likely in the next few
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Technology
Role in Regulatory

Use Case

Differentiators and

Compliance
Real-World Adoption

list of studies

required by FDA for

oncology drugs) or

detect changes in

new regulatory

guidance (by

comparing versions).

doesn’t directly affect

submissions (they aid humans),

so compliance focus is mainly

on ensuring data is from

credible sources and the

process is documented (so

management can trust the

insights).

years, such tools will become

part of the toolkit (perhaps

integrated into Vault as

features or separate

intelligence platforms like

Parexel’s LIQUENT). For now,

data engineers might do ad-

hoc projects using

Spark/Python to assist Reg

Intel groups on specific

questions.

Graph DB for

Knowledge Graphs

Integrating regulatory

data into a broader

knowledge graph that

includes R&D and

commercial data.

Could connect a

product node to its

submissions, which

connect to

documents and also

to conditions of

approval, which

connect to post-

market study nodes,

etc., yielding an end-

to-end view of a

product’s lifecycle.

Differentiators: Enables

complex queries that span

traditionally separate domains

(e.g., “did any trial results in

development correspond to an

eventual safety warning in the

label post-approval?” by

traversing development →

regulatory → safety edges).

Could also link regulations to

products (like “this new rule

affects these 5 products

because they contain

substance Y”). Compliance: As

a knowledge tool, it

supplements rather than

replaces validated systems. If

well-maintained, it provides

rapid impact analysis for

compliance management (e.g.,

new law requiring serialization

might be traced through graph

to all products and supply

chains impacted, a process that

normally requires many

meetings).

Forward-looking: A few

companies are building

enterprise knowledge graphs.

For example, AstraZeneca has

talked about their “Enterprise

Knowledge Graph” connecting

research, clinical, and

regulatory data. This is

cutting-edge and not yet

routine. Data engineers

involved in such projects are

basically pioneering new ways

to query cross-domain

questions. In time, as these

graphs mature, they could

become a standard interface

for strategic queries, with

graph AI algorithms

highlighting patterns humans

might miss in the massive web

of pharma data.

Regulatory data management, once considered a back-office record-keeping function, is being transformed by these technologies

into a more proactive, data-driven discipline. With systems like Vault RIM, companies achieve a single source of truth for

regulatory documents and data, dramatically improving efficiency and compliance (no more hunting through shared drives or

disparate databases during a filing – everything is in one validated system). Big data tools like Spark and NLP are starting to

supplement human expertise by digesting vast external information, thus refining regulatory strategy and preparation. The result is

that pharma companies can manage increasingly complex global regulatory requirements with fewer errors and delays: submissions

are more complete and timely, responses to authorities are faster (since data is organized and accessible), and compliance

obligations (like post-market studies or periodic reports) are tracked so none are missed. For a data engineer in this space, success

means not only maintaining the integrity of regulatory data (which is absolutely critical) but also unlocking it – integrating and

analyzing it so that the organization can glean insights (e.g., performance metrics, predictive intelligence) that confer a competitive

advantage in gaining approvals. All of this ultimately helps in getting new therapies to patients faster while staying fully compliant

with the law.
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Pharmacovigilance and Drug Safety Analytics

Pharmacovigilance (PV) – the monitoring of drug safety post-approval (and during clinical trials) – generates and consumes huge

amounts of data. Every year, millions of adverse event (AE) reports are collected worldwide through spontaneous reporting systems,

patient support programs, medical literature, and more. The goal is to detect any safety signal (an unexpected pattern that might

indicate a new risk) as early as possible and take action (label changes, further studies, even product withdrawal). Key challenges

include volume (large datasets of individual case safety reports), variety (structured reports, call center logs, social media,

literature abstracts), velocity (the need for prompt signal detection), and veracity (ensuring data quality in often anecdotal reports).

Big data technologies are increasingly crucial for efficient PV:

Hadoop/Spark for adverse event data processing: Many pharma companies augment their internal safety data (cases from their

products) with external data like the FDA’s FAERS and WHO’s VigiBase, which are large (FAERS has ~15 million reports). Spark is ideal for

crunching these datasets to compute disproportionality metrics (like reporting odds ratios or Bayesian EBGM values) to find drug-event

combinations reported more frequently than expected. In an example from OpenTargets, Spark and Scala were used to analyze ~130GB of

FAERS data, filter and group by drug-event pairs, and calculate a likelihood ratio for signals. This took minutes, whereas a single-thread

process could take hours or more. Similarly, a pharma may use Spark to merge their own global safety data (from systems like Oracle Argus)

with FAERS, allowing them to see the broader context. Hadoop HDFS might store years of raw safety data (in CSV or Parquet files), which

Spark can quickly filter (e.g., all reports for a drug class) and analyze. Additionally, Spark’s machine learning can be applied to PV – for

example, building predictive models of which patients are at higher risk of certain side effects using real-world data. While traditional PV

relies on descriptive statistics, advanced analytics with Spark can incorporate multiple variables. Some companies also use Flink or Kafka

Streams for real-time processing of incoming cases (to flag severe ones immediately for medical review). But Spark is widely adopted for

batch signal detection runs (e.g., monthly safety data surveillance) because of its rich ecosystem and proven capability in such big data

tasks.

Cassandra/MongoDB for real-time case management: PV departments need robust intake and data management for individual case

safety reports (ICSRs). While the final storage is usually a relational safety database (for regulatory reporting), ingesting and routing data

can be enhanced by NoSQL. For instance, if a company has multiple intake channels (email, web, phone) globally, they might push all

incoming case data into a Cassandra cluster to ensure it’s captured quickly and can be consumed by downstream processes even if one

system is down. Cassandra’s high write throughput means it can log thousands of events per second (useful if there’s, say, a product issue

causing a spike in reports). Another use is storing aggregated safety data in Cassandra to power a real-time dashboard (for example, a live

count of reports by seriousness for a product, updating as new cases come in). The results from Cassandra might be visualized on a web UI

for the safety team to monitor during, say, the launch of a new drug. MongoDB could be used to store the unstructured parts of case

reports (narratives, doctors’ notes) in a flexible way, and even to apply text search to them for signal detection (though more often,

specialized text mining tools are used).

Signal detection algorithms and specialized tools: Beyond general big data platforms, PV uses specialized statistical tools (like

EudraVigilance’s EVDAS or Oracle Empirica Signal). Data engineers might have to integrate outputs from these tools into internal systems.

For example, Empirica might flag a signal and then data engineers ensure the data on that signal (case counts, etc.) is pipelined into a safety

issue tracking system. Increasingly, companies are building custom signal detection pipelines (especially to integrate multiple data sources),

leveraging Spark and R/Python for flexibility. They may incorporate not just disproportionality but also more advanced methods (clustering,

social media trend analysis, etc.). In doing so, maintaining a big data environment (with historical data lake, updated incremental data, and

compute to run algorithms) is key.

Graph databases for pattern recognition: Adverse events can be multi-factorial (multiple drugs, diseases, patient factors). Neo4j can

represent an ICSR as a subgraph: a patient node connected to drug nodes (they were taking) and event nodes (they experienced).

Analyzing the full safety graph might reveal, for example, that two drugs often appear together in serious cases (signaling a potential drug-

drug interaction) – this is naturally queried in a graph by finding frequent subgraph patterns, whereas in a relational model it requires

complex self-joins. Graph algorithms (like community detection) could identify clusters of events that co-occur, suggesting a syndrome. For

instance, drug-induced liver injury might manifest as a cluster of lab abnormalities and symptoms – a graph algorithm might cluster those

event nodes together across many cases and associate them with certain drugs, even if each individual event doesn’t trigger a signal on its

own. TigerGraph with its ability to handle very large graphs might be applied to national or international datasets to find such multi-hop

relationships quickly (e.g., a four-hop path linking a drug to a series of intermediate reactions to an outcome). While these approaches are

exploratory, some academic and industry research is moving PV in this direction (treating safety data as a network problem).

Machine learning and AI in PV: Big data tech also enables machine learning in PV beyond signals – for example, natural language

processing (NLP) to auto-extract information from case narratives or literature. Companies train models (which requires large training

datasets – a big data task) to do things like classify the seriousness of a case from the text or suggest the most likely cause among multiple

drugs. Automated case processing is a hot topic: using AI to do the first pass data entry for cases, which could dramatically reduce

workload. Data engineers help by integrating these AI models into the PV data pipeline and by providing the computing environment for

training them (often using Spark or TensorFlow on large GPUs). This crosses into big data because training an NLP model on tens of

thousands of case narratives is data-intensive and may need distributed training. Once deployed, these models produce structured outputs

from unstructured inputs, effectively turning text into data that can be stored in the safety database or analyzed. Another use of ML is

predictive safety – e.g., using real-world data to predict the probability of a rare event occurrence, or identifying patient subgroups at risk

(for labeling). These require blending clinical data, claims data, and case data – a multi-source big data integration.

Example: A pharmacovigilance team monitors a portfolio of drugs, including a new biologic that just hit the market. They receive

adverse event reports through various channels worldwide. Each incoming report is first captured by a custom intake system that
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writes key fields (drug, event terms, timestamps) to a Cassandra database in real time. This acts as a buffer and single feed into the

core safety system (Oracle Argus). A Spark Streaming job subscribed to the Kafka queue of new reports also writes to Cassandra,

ensuring even if Argus goes down for maintenance, no reports are lost (Cassandra is always available). Now every day, a scheduled

Spark job reads the latest data from Argus (via an export or direct connection) and from the FDA’s FAERS (which they download

quarterly and store in HDFS). It updates a running count of drug-event pairs and calculates disproportionality metrics (say PRR and a

95% CI). It finds that for their new biologic, reports of a certain infusion reaction are higher than expected in the first three months.

This signal (with PRR > 2 and statistically significant) is flagged. Spark automatically outputs a report of all cases contributing to that

signal (listing case IDs, patient demographics, etc.) and saves it as a file. It also inserts the signal summary into a Snowflake table

that tracks signal detection results over time. Simultaneously, their data science team has an NLP model that reads case narratives.

When Argus gets a new case, the text is sent to a REST API running a PyTorch model; the model returns a predicted MedDRA coding

of the narrative and highlights of key symptoms. These suggestions appear to the safety data specialist doing data entry, speeding

up their work. All narratives are also stored in a MongoDB for text mining. The PV team uses a Neo4j graph to map relationships:

each case is a graph of Patient -> Drug(s) -> Event(s). They query this graph to see if any patients had the same combination of two

drugs and a serious event; indeed, they notice a few cases where their biologic and a certain other immunosuppressant were used

together and serious infections occurred. While numbers are small, this pattern emerges visually in the graph (a cluster of infection

nodes connected to both drug nodes). They raise this as a potential interaction to# Big Data Technologies in Pharma: Use Cases,

Implementation, and Comparisons

The pharmaceutical industry generates vast and diverse datasets – from genomic sequences and clinical trial results to regulatory

documents, safety reports, and supply chain logs. Data engineers in pharma must choose appropriate big data technologies to

store, process, and analyze this information at scale. This report explores key technologies – Hadoop (HDFS, Hive, HBase),

Apache Spark, Cassandra, MongoDB, Snowflake, AWS Redshift, Azure Synapse Analytics, Azure Data Lake, Google

BigQuery, Neo4j, TigerGraph, Veeva Vault, Informatica, DNAnexus, and Illumina BaseSpace – and how they are applied across

major use cases. Each section focuses on a specific use case (e.g., genomics data analysis, clinical trials, regulatory data

management, pharmacovigilance, manufacturing and supply chain, sales and marketing analytics), detailing which technologies are

most commonly used, how they are technically implemented, what differentiates them, and providing concrete examples.

Comparisons are provided in tables for attributes like scalability, cost, performance, integration ease, compliance features, and real-

world adoption, to help data engineers evaluate solutions.

Genomics Data Analysis and Bioinformatics Pipelines

Genomic and multi-omics data analysis in pharma involves processing massive sequencing outputs (DNA/RNA reads, variant files)

and integrating results for drug discovery or precision medicine. Key challenges include scalability (handling petabytes of

sequencing data), processing speed (aligning reads or calling variants across thousands of genomes), flexible pipelines, and

compliance (securely handling potentially identifiable genetic data). Data engineers leverage a mix of on-premises big data

frameworks and specialized cloud platforms:

Hadoop Distributed File System (HDFS) for large-scale storage: Genomic files (FASTQ, BAM, VCF, etc.) are enormous. HDFS provides

distributed storage across clusters, making it feasible to store and process terabytes of sequence data in parallel. For example, biomedical

research projects have utilized Hadoop to manage large volumes of NGS and clinical data (Maximizing pharmaceutical innovation with data

engineering tools - Secoda). Apache Hive (SQL-on-Hadoop) can impose structure on variant data (storing variant calls in tables for query),

and HBase (Hadoop’s NoSQL store) enables fast random access to specific genomic records (e.g., retrieving all variants at a particular

gene). While Hadoop’s batch-oriented MapReduce model was historically used in genomics, modern pipelines favor more efficient in-

memory frameworks.

Apache Spark for distributed computing: Spark is a cluster computing engine ideal for iterative algorithms and large-scale analytics. In

genomics, Spark accelerates variant analysis pipelines by parallelizing tasks across cores or nodes. For instance, the GATK4 toolset from

the Broad Institute offers Spark-based versions of key algorithms to speed up processing of large genome cohorts. Spark can run on

Hadoop (using YARN) or in cloud-managed environments (Databricks, Amazon EMR, Google Dataproc). Specialized frameworks like ADAM

and Hail build on Spark to provide genomic data models and APIs, enabling scalable genomic analyses (e.g., joint genotyping on thousands

of genomes). Spark’s in-memory processing provides major performance gains over Hadoop MapReduce, making it “one of the most

promising technologies for accelerating pipelines”. Its machine learning libraries (MLlib) also support advanced analyses (clustering variants,

predicting phenotypes from genotypes, etc.).
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Cloud Data Warehouses (Snowflake, BigQuery, Redshift) for multi-omics integration: After primary genomic analyses, results (variants,

expression matrices, etc.) often need to be integrated with clinical and reference data. Cloud data warehouse platforms excel at

aggregating results and enabling interactive analytics on genomic data combined with other datasets. Snowflake has been used as a

bioinformatics data warehouse, providing a convenient SaaS platform to join genetic data with clinical phenotypes. Researchers

demonstrated a Snowflake framework for storing diverse biological datasets and performing integrated analysis like disease variant filtering

and in-silico drug screening. Snowflake’s multi-cloud compatibility and near-zero maintenance appeal to pharma R&D teams – it runs on

AWS, Azure, or GCP, reducing vendor lock-in risks. Features like secure data sharing and zero-copy cloning also facilitate collaboration

(e.g., safely sharing a subset of variant data with external partners without duplicating it). Google BigQuery is similarly leveraged for large

genomic datasets, aided by Google’s ecosystem – for instance, BigQuery has native support for public genomic databases (TCGA, 1000

Genomes) and integrates with Google’s AI/ML tools (TensorFlow, Vertex AI) for tasks like protein folding analysis. Amazon Redshift is often

chosen if a company’s infrastructure is AWS-centric – it integrates with AWS services (S3 for storage, AWS Batch or SageMaker for analysis

pipelines) to facilitate genomic data processing. Redshift now supports semi-structured data and RA3 nodes with managed storage, but it

may require more tuning than Snowflake/BigQuery for peak performance. In practice, pharma teams might stage genomic data files in a

cloud data lake (S3 or Azure Data Lake) and use external tables or services like Redshift Spectrum or Synapse to query them as needed.

NoSQL and graph databases in genomics: Some genomic applications benefit from NoSQL or graph data models. MongoDB can store

experiment metadata or gene annotations as JSON, offering schema flexibility for evolving datasets. HBase or Cassandra could store large

key-value pairs like k-mer counts or variant calls keyed by genomic coordinate, supporting fast lookups in association studies. Neo4j

appears in drug discovery knowledge graphs that include genomic information – for example, linking genes, variants, pathways, and

diseases, which allows complex queries like finding drug targets associated with pathogenic variants. While NoSQL/graph databases are not

typically the core pipeline tools, they can add value in organizing and querying genomic knowledge extracted from analyses.

Specialized Genomic Platforms: Many pharma rely on platforms like DNAnexus or Illumina BaseSpace for genomic data management

and analysis. DNAnexus provides an end-to-end cloud platform for NGS data, offering scalable storage and compute, a library of

bioinformatics tools, and secure collaboration features. It’s built for scale – managing over 80 petabytes of genomic and multi-omic data on

behalf of users (Fabric Genomics and DNAnexus Team Up to Improve Scale and Speed of Data Analysis for Genomic Medicine - Fabric

Genomics) – and for compliance (audit trails, permission controls, and certifications for clinical use) (Fabric Genomics and DNAnexus Team

Up to Improve Scale and Speed of Data Analysis for Genomic Medicine - Fabric Genomics). DNAnexus allows data engineers to focus on

pipeline development rather than infrastructure. Illumina BaseSpace Sequence Hub connects directly to Illumina sequencers to stream

data to the cloud for storage/analysis. It provides push-button DRAGEN pipelines (hardware-accelerated) for ultra-fast secondary analysis,

with an interface that is easy for lab scientists. BaseSpace is designed to be secure and compliant (ISO 27001 certified, HIPAA compliant)

with features supporting data encryption and controlled access. These platforms reduce the need to build in-house clusters, though data

engineers often export results from them to integrate with broader data platforms (like warehouses or AI modeling environments).

Example: A pharmaceutical research team sequences tumor samples for a cancer drug trial (whole exomes for 500 patients). They

use Illumina NovaSeq sequencers with BaseSpace to handle data capture and initial processing (alignment and variant calling

with DRAGEN). As soon as each sample is sequenced, BaseSpace processes it and stores the resulting VCF (variant calls) and

quality metrics. Data engineers then transfer the VCFs to an Azure Data Lake and use Azure Databricks (Spark) to run joint variant

calling across all patients and perform quality filtering. They also use Spark’s MLlib to cluster tumors by mutation profiles and

identify mutation patterns associated with drug response. The consolidated variant data, along with cluster assignments and key

clinical attributes, are loaded into a Snowflake data warehouse. In Snowflake, biostatisticians and bioinformaticians join the genomic

data with clinical outcome data and run SQL queries to find correlations (e.g., does a particular mutation correlate with better

response?). They use a BI tool to visualize results. Additionally, the team loads the data into a Neo4j knowledge graph linking

variants to genes, pathways, and existing drugs. This helps them explore if patients with certain mutations might benefit from other

therapies by traversing connections between mutated genes and known drug targets. Throughout the process, patient identities are

coded and all systems (BaseSpace, Azure, Snowflake) are configured for compliance (encrypted data at rest, access limited to

authorized researchers). By combining specialized tools (BaseSpace) with general big data platforms (Spark, Snowflake, Neo4j), the

team efficiently extracts insights from massive genomic datasets while maintaining data security and integrity.

Comparison: Technologies for Genomics Data

Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

Hadoop

(HDFS,

Hive,

HBase)

High horizontal

scalability (add

nodes to store

petabytes;

throughput

scales with

cluster size).

Suitable for on-

Great for batch

processing of

large files;

MapReduce is

reliable but

slower than in-

memory

frameworks for

iterative

Requires significant

setup and cluster

admin expertise.

Integrates well with

Spark and other

Hadoop ecosystem

tools (Kafka, Oozie),

but not a plug-and-

play solution. Many

Secureable via

Kerberos and

Apache Ranger;

can be kept

entirely on-prem

to satisfy data

residency or

internal policy.

Requires custom

Historically high for

large projects (e.g.,

1000 Genomes).

Many pharma

maintained Hadoop

clusters for omics in

the 2010s; now

shifting to cloud or

specialized
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

prem or IaaS

clusters.

algorithms. Hive

enables SQL

queries on big

genomic tables

(e.g., variant

frequencies

across samples)

but with higher

latency

(seconds–

minutes). HBase

allows

millisecond

retrieval by key

(e.g., by

genomic

coordinate) on

huge datasets.

newer genomic

pipelines prefer

cloud

storage/compute for

ease of use, though

Hadoop remains

useful for cost-

effective on-prem

storage and batch

computing.

validation for

GxP use.

Historically,

satisfying

regulatory

validation on

Hadoop was

non-trivial, so

it’s often used in

research

contexts rather

than regulated

clinical

pipelines.

platforms. Still used

in certain high-

performance

computing

environments or

when massive multi-

omics data lakes are

maintained on-prem

for cost or security

reasons.

Apache

Spark

Scales from a

single server to

large multi-node

clusters. In-

memory model

accelerates

iterative tasks;

can spill to disk

for very large

data if needed.

Cloud-managed

Spark

(Databricks,

EMR) allows

dynamic scaling

per workload.

Excellent for

large-scale

transformations

and analytics.

Far faster than

MapReduce for

variant

processing and

statistical

analysis due to

in-memory

computation.

Can handle

interactive

queries (via

notebooks) on

moderately

large genomic

sets and batch

process huge

sets (e.g., joint

calling tens of

thousands of

genomes). MLlib

enables

machine

learning on full

genomic

datasets rather

than samples.

Offers APIs in

Python, R, Scala,

etc., easing

integration with

bioinformatics

codebases.

Connectors for all

common data

sources (HDFS, S3,

Azure Blob, GCS,

JDBC to

warehouses). Often

used via notebooks

which scientists can

use with some

training. Requires

coding –

bioinformaticians or

data engineers build

the pipelines; not a

point-and-click tool.

No built-in

compliance

controls; inherits

environment’s

security (can run

on HIPAA-

compliant cloud

with encryption).

Logging and

version control

of code are

needed for

validation. Often

used in non-

clinical research

or exploratory

analysis, with

results later

confirmed in a

validated system

for regulatory

submission.

Widely used in

genomics R&D.

Many pipelines

(Broad’s GATK4,

Regeneron’s ATLAS)

leverage Spark.

Databricks is used

by biotech/pharma

to analyze large -

omics and imaging

datasets. In clinical

contexts, Spark is

emerging in

pharmacogenomics

analysis and

adaptive trial

simulations.

Snowflake Near-infinite

scalability via

High

performance for

Very easy to

integrate – standard

Strong

compliance:

Rapidly growing in

life sciences. Used
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

decoupled

storage

(automatically

scales on cloud

object storage)

and compute

(warehouses can

scale up/down or

cluster for

concurrency).

Easily handles

petabyte-scale

warehouses and

high user

concurrency.

complex SQL

queries on large

data. Uses

columnar

storage and

automatic query

optimization.

Particularly

good for

aggregating and

joining

heterogeneous

data (genomic +

clinical).

Automatic

micro-

partitioning

means minimal

tuning needed.

Not designed

for low-latency

single-record

lookups, but

excels at

analytical

workloads.

SQL interface with

extensive

connectors (Python,

R, Java). Supports

semi-structured data

(JSON) which can

hold, e.g., variant

annotation info.

Zero-copy clone and

data share features

enable collaboration

and sandboxing

experiments without

extra storage cost.

Little admin

overhead (no

indexing/partitioning

for user to manage).

Snowflake is

HIPAA- and

HITRUST-

compliant; data

is encrypted by

default. Provides

role-based

access control

down to

row/column

level. Query

logging for audit

is built-in. Many

pharma have

validated

Snowflake for

use with

clinical/genomic

data by

controlling

change

management on

schemas and

code accessing

it.

by pharma and

genomic analysis

companies as a

central data

repository (e.g.,

storing population

genomics and

accompanying

clinical data).

Examples: A large

pharma uses

Snowflake to allow

researchers to query

integrated genomic

and clinical trial data

in one place to

identify biomarkers.

Genomics England

set up a Snowflake

instance for

researchers to query

the 100K Genomes

data securely.

Google

BigQuery

Massive, elastic

scalability

(Google handles

sharding and

distributed

execution

automatically).

Can scan

terabytes to

petabytes in

seconds to

minutes. Scales

transparently

with data size

and query

complexity (with

cost scaling

accordingly).

Extremely fast

for scan-heavy

queries and

aggregations.

Ideal for

exploring large

datasets and

running cohort

queries on

genomic variant

tables joined

with phenotype

tables. Supports

join and window

functions on

nested data

useful in

genomics (e.g.,

per-sample

genotype

arrays).

Performance on

complex joins or

user-defined

functions is

Standard SQL (with

extensions for

nested data). Direct

integration with

Google’s analytics

ecosystem (Data

Studio for BI, Colab

for notebooks,

AutoML for model

training on data in

BigQuery). Minimal

setup – load data to

BigQuery and query

immediately. The

availability of public

genomics datasets in

BigQuery allows

effortless joining

with one’s private

data.

Fully managed

security: data

encryption at

rest/in-transit by

default, fine-

grained IAM

controls,

detailed audit

logs. BigQuery is

HIPAA-

compliant

(under BAA) and

used in Google’s

own healthcare

projects. It

offers features

like row-level

security and

dynamic data

masking for

privacy.

Used by genomics

and health

informatics teams,

especially those

leveraging Google

Cloud’s AI (e.g.,

using BigQuery as a

data lake for training

genomic prediction

models). Examples:

Verily’s research

platform, and the

CDC’s Covid tracing

analytics have used

BigQuery. Some

pharma use

BigQuery to

aggregate real-

world data and then

combine it with trial

or omics data for

outcomes research

due to its speed on

large data.
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

good, but may

require query

optimization

techniques

(flattening data,

etc.).

AWS

Redshift

High scalability

(petabyte-scale)

with ability to

add nodes for

more storage or

throughput. RA3

nodes let

storage scale

transparently on

S3 while keeping

frequently

accessed data

cached locally.

Concurrency

Scaling spools

up extra clusters

for spikes of

users.

Excellent

performance for

structured,

repeated

queries, after

tuning

distribution keys

and sort keys

for the data.

Good for data

marts like

“analysis-ready”

datasets in

clinical or

genomics where

query patterns

are known.

Spectrum

extends queries

to S3, enabling

analysis of raw

files without full

import. Can

saturate

network for

large joins, but

proper design

yields fast

results.

PostgreSQL-

compatible SQL

makes it accessible.

Integrates with AWS

Glue (ETL) and

SageMaker (for ML

using Redshift data).

Needs more

maintenance

(vacuuming,

analyzing) and query

optimization by

admin compared to

Snowflake. Many

tools (Tableau, etc.)

natively connect.

Output to QuickSight

for quick internal

dashboards is

straightforward if

staying in AWS

ecosystem.

Mature and

secure: Deploy

in Amazon VPC,

encryption via

KMS, CloudTrail

auditing.

Redshift is

covered under

AWS’s HIPAA

compliance

program. Fine-

grained access

control via roles

and AWS IAM.

Often part of a

validated AWS

environment

with defined

change control

for schema

changes.

Widely adopted in

pharma that went

“all-in” on AWS.

E.g., Moderna’s

cloud-native data

platform used

Redshift early on for

various data

including clinical

data integration.

Many legacy on-

prem warehouses

migrated to

Redshift. Some have

since moved to

Snowflake for ease-

of-use, but others

stay with Redshift

especially if heavily

integrated with AWS

pipelines. It remains

a workhorse for a lot

of clinical and

preclinical data

marts in industry.

DNAnexus Highly scalable

cloud platform

(runs on

AWS/Azure).

Launches

ephemeral

compute

clusters for

large-scale jobs

(e.g., secondary

analysis of

thousands of

genomes

simultaneously).

Manages data in

Optimized for

NGS pipelines:

specialized in

handling

thousands of

FASTQ/BAM

files and running

workflows

(CWL/WDL) at

scale.

Performance is

high for I/O and

compute due to

optimized cloud

provisioning

Accessible via web

UI, CLI, and APIs.

Integration ease

depends: easy within

its ecosystem, but to

integrate outputs to

external systems,

one uses API or

export. Supports

Docker app

packaging, which

makes it flexible (any

tool can be wrapped

and run at scale).

Workflows can be

Designed for

compliance:

offers controlled

access (project-

based

permissions),

audit logs, and is

used in clinical

settings (has

support for PHI

de-identification

and compliance

with CLIA/CAP

for labs). Many

customers use

Growing usage for

genomics-driven

projects: e.g., UK

Biobank’s RAP is

built on DNAnexus,

enabling global

researchers to run

big analyses without

local data download.

Pharma use it

especially when they

collaborate (so

partners can analyze

data in a secure

environment). It’s
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

cloud storage

with over 80 PB

in production

use (Fabric

Genomics and

DNAnexus Team

Up to Improve

Scale and Speed

of Data Analysis

for Genomic

Medicine -

Fabric

Genomics),

scaling as users

add more.

(e.g., packs data

locally to

compute, uses

high-memory

instances for

heavy tasks). As

a managed

service, scales

without users

needing to

configure

clusters.

configured via GUI or

JSON without

hardcore

programming, which

is friendly to

bioinformaticians.

DNAnexus in

validated

pipelines for

companion

diagnostics,

indicating its

compliance

readiness.

probably less used

for non-genomic

data. Some

integrate DNAnexus

with their internal

pipelines by using

its APIs (for

example, pulling

analysis results into

an internal data

warehouse for

further integration

with clinical data).

Illumina

BaseSpace

Scales with

Illumina’s cloud

infrastructure;

effectively

unlimited for

sequencing

output (users

just pay for

storage). New

runs are added

seamlessly;

concurrent

pipeline runs

scale as needed

(Illumina

manages

underlying

compute, so labs

don’t worry

about it).

High

performance

secondary

analysis with

DRAGEN greatly

accelerates

turnaround

(clinical labs can

get variants

same day). For

data storage,

BaseSpace

ensures fast

upload from

sequencers and

decent

download

speeds for

users. Focused

on genomics, so

performance is

tuned for those

file types and

typical

workflows.

Extremely easy

integration – built

into Illumina

machines: a few

clicks to sync runs to

cloud. No need for

users to manage

software updates for

pipelines – Illumina

updates its apps

(e.g., new genome

references). Limited

external integration:

if needing to

combine BaseSpace

data with clinical trial

databases, one must

export or use

Illumina’s newer

Connected Analytics

platform with APIs.

Illumina’s cloud

is HIPAA-

compliant; they

provide BAAs for

clinical users.

Data is

encrypted and

isolated per

project. E-

signatures for

any manual edits

(like sample

info) support

Part 11 in their

Clinical

BaseSpace

version. Audit

logs track data

access and

pipeline

execution. Many

diagnostics

companies trust

BaseSpace for

handling patient

genomic data,

reflecting its

compliance.

High adoption in any

setting with Illumina

sequencers.

Pharma: widely used

in research units for

convenience of

primary analysis

(then data often

moved in-house for

secondary/tertiary

analysis). Some

pharma running

adaptive trials with

genomic

components use

BaseSpace to get

near-real-time

sequencing results

to inform trial

decisions. It’s

basically standard in

genomics labs, with

the choice mostly

between local

DRAGEN servers vs

BaseSpace cloud –

increasingly cloud is

chosen for flexibility.

Key Takeaway: In genomics, data engineers often combine multiple technologies to address different needs – e.g., using Spark on

HDFS for heavy-duty variant processing, a cloud warehouse (Snowflake/BigQuery) for integrating genomic data with clinical and

other data, and specialized platforms (DNAnexus/BaseSpace) to handle raw sequencing and initial analysis with ease and

compliance. Each technology has unique strengths – Hadoop for cost-effective on-prem storage and batch processing, Spark for

fast distributed computing and ML on big data, Snowflake/BigQuery for easy sharing and interactive analysis, graph databases for

connecting biological knowledge, and domain-specific platforms for pipeline management and regulatory compliance. By leveraging

the right tools for each task, data engineers enable faster insight generation from genomic data while maintaining data security and
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regulatory compliance (critical when dealing with human genetic information). Ultimately, this accelerates target discovery,

biomarker identification, and the development of precision medicines.

Clinical Trials Data Management and Analytics

Clinical trials generate diverse data – patient demographics, treatment assignments, eCRF (electronic case report form) data, lab

results, imaging data, patient-reported outcomes, adverse events, and operational metrics (enrollment, site performance, etc.).

These come from multiple systems (EDC databases, central labs, imaging core labs, ePRO devices, CTMS for operations) and must

be consolidated for analysis, reporting, and regulatory submission. Key requirements include flexibility to handle different study

designs and data schemas, scalability to manage large Phase III or portfolio-level datasets, and compliance with regulations (21

CFR Part 11 for data integrity, ICH GCP for trial conduct). Technologies supporting this use case focus on integrating heterogeneous

data sources, ensuring data quality, and enabling analysis in a controlled, auditable manner:

MongoDB for flexible trial data capture: Clinical trial data structures can vary widely between studies and change mid-study (new

protocol amendments adding fields, etc.). MongoDB’s schema-less JSON model is well-suited for capturing such evolving or study-specific

datasets. For example, a trial’s patient record could be stored as a document containing all forms and visits as sub-documents – if a new

form is introduced, it can simply appear in new records without altering a global schema. The FIMED project (a flexible biomedical data

management tool) highlights MongoDB’s benefit in dealing with “the dynamic nature of clinical data” (Integration and analysis of biomedical

data from multiple clinical trials). It allows schema changes on the fly and can handle semi-structured data easily. Scalability is achieved via

sharding – e.g., by study or site – enabling horizontal scaling across studies. This means a pharma could store dozens of trials’ datasets in

one MongoDB cluster and query them as needed. Performance is strong for retrieval of whole patient records or subsets of data (with

appropriate indexes), which is useful in medical data review applications. However, complex cross-patient or cross-study queries (like a join

of all patients over 65 across trials) are not as straightforward – those are typically done after exporting to SQL or using Mongo’s

aggregation pipeline (which, while powerful, can become complicated for heavy analytics). Thus, MongoDB often serves as an operational

data store in trials: for ingesting data from various sources quickly and serving it to web applications or APIs (like a clinical data review

tool), while heavy-lifting analysis (like generating tables for a study report) happens in SQL-based systems after ETL.

Hadoop and Spark for large-scale trial data processing: When pharmaceutical companies want to analyze data across multiple trials or

incorporate external real-world data alongside trial data, the volume and variety can become a big data problem. HDFS can act as a landing

zone for massive combined datasets (e.g., pooling patient-level data from hundreds of trials to look for overall patterns or to create

synthetic control arms). Spark is then used to clean, standardize, and combine these datasets. For example, a company may use Spark to

transform all trial datasets into a common model (mapping different terminologies to standard ones, aligning data formats). Spark is also

used for analysis of aggregated trial data: a pharma might run a Spark ML algorithm to find predictors of patient dropout using data from

many studies (lots of records and features). Additionally, with the rise of digital trials, streaming data (like continuous glucose monitor

readings in a diabetes trial) might be processed with Spark Streaming to summarize into daily or hourly metrics per patient. Spark can

dramatically speed up what used to be SAS programs running for days on one server by distributing the load. It also allows using Python/R

libraries within a distributed context, which many biostatisticians find attractive for advanced analysis. A concrete scenario: analyzing 20

years of clinical trial data (~several TB across all studies) to answer “How do placebo response rates change over time or vary by region in

our CNS trials?” – this is something Spark can enable by crunching through all those datasets (after they’ve been standardized) and

computing summary statistics. Historically, such an analysis might not even be attempted due to time/complexity, but big data tools make it

feasible to derive insights from the troves of past trial data (often called “data reuse” or “clinical data mining”).

Cloud Data Warehouses (Snowflake, Redshift, Synapse) for integrated analytics: After trial data is cleaned and aggregated, it’s

typically loaded into a relational warehouse for easy querying and reporting. Snowflake is a popular choice for modern clinical data

warehouses because of its flexibility and support for high concurrency. A company might maintain a Snowflake database where each clinical

study’s data resides in a schema (structured as per CDISC SDTM or a company-specific model). Statisticians and data managers can then

query using SQL, or connect BI tools to create dashboards (e.g., a data cleaning dashboard that shows query rates by site). Snowflake

easily handles moderately large trial datasets and can join them with reference data (e.g., protocol metadata or public disease ontologies).

AWS Redshift similarly is used as the backend for clinical data marts at companies that already have AWS infrastructure. For example, after

each trial database lock, the data might be pushed into Redshift for archival and future cross-trial analysis. Redshift’s SQL and integration

with AWS analytics allow creation of combined datasets (like integrating pharmacovigilance data post-approval with clinical trial data to

study long-term outcomes). Azure Synapse Analytics is often used when the data lake strategy is on Azure – raw data lands in Azure Data

Lake Storage, and Synapse’s serverless SQL pools or dedicated pools query and join the data for consumption. Synapse also can directly

connect to Power BI for interactive analytics. A case study described using Synapse to unify and analyze pharmacy chain inventory data in

real-time, which is analogous to using Synapse to unify trial operational data (e.g., site startup timelines, enrollment trends) for near real-

time analysis by study managers. These cloud warehouses provide integration ease (with analysis tools) and strong security/compliance

features (encryption, user management) to satisfy GxP requirements when handling patient data. They are typically validated as part of the

clinical data flow (with controlled updates, etc.).
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Informatica for ETL and data quality: Informatica (PowerCenter or IICS) is widely used to extract, transform, and load clinical trial data

from source systems into a warehouse or data lake. For instance, Informatica can connect to an EDC database (like Oracle Clinical or

Medidata Rave), extract patient data, transpose it into a flat structure, apply transformations (units conversion, coding medications to a

standard dictionary), and load it into target tables. It excels at building reusable, auditable data pipelines – critical in a regulated trial context

where every data transformation should be traceable. It also can perform data quality checks during ETL (e.g., flagging missing or out-of-

range values for data managers to investigate). Many companies also use Informatica to manage reference data – for example, an MDM

hub for all investigators and site information ensures that across different trials, “Dr. Jane Smith” is identified consistently, enabling cross-

trial analytics by site or investigator performance. While newer cloud ETL options (AWS Glue, Azure Data Factory) exist, Informatica’s

domain knowledge and validation pedigree keep it as a staple in trial data management. It provides a visual interface that both IT and

domain experts can review, which is helpful for validation and maintenance. On the downside, it requires licensing and skilled developers,

but the trade-off is robust, documented processes – vital when preparing data for regulatory submission.

Graph databases for study relationships and oversight: While not yet mainstream, graph databases offer novel capabilities for clinical

trial operations analytics. For example, a Neo4j graph could map relationships between investigators, sites, and studies: this could help

identify that two different studies are using the same site and enrolling similar patient populations, which might present an opportunity or a

conflict. Or a graph could link trial eligibility criteria to patient characteristics; querying it might find if patients who failed screening in one

trial could be eligible for another (helping recruitment). Some research even uses knowledge graphs to design trials by linking inclusion

criteria to databases of patient populations. TigerGraph could handle a very large network of patients from real-world data to find matches

for trials, effectively a feasibility analysis at big data scale. While currently much of trial data analysis is relational, graphs might become

more used as data linking needs grow (especially in decentralized trials or when linking trial data with real-world data in complex ways).

Example: A clinical data management team needs to integrate and clean data for a large Phase III trial and prepare analysis

datasets. The trial uses a Medidata Rave EDC and also collects continuous ECG data from a wearable patch. First, they use

Informatica to ETL the clinical eCRF data: mapping the Rave export (with many tables) into a standardized set of SDTM datasets

(like demography, adverse events, labs, vital signs). Informatica applies transformations (converting lab units, coding verbatim terms

to MedDRA) and populates the SDTM fields, flagging any discrepancies (e.g., lab values outside expected ranges) for review. This

ETL job runs nightly, loading into a Snowflake schema for that study. Parallelly, the wearable ECG data (huge JSON files with

timestamped heart rate, etc.) arrives in an Azure Data Lake. They run a Spark job on Databricks to process this raw sensor data for

each patient: computing derived metrics like daily mean heart rate, detecting any arrhythmic events, etc. Spark writes these results

into Snowflake as additional tables (linked by patient ID and date). Now Snowflake holds both traditional CRF data and the novel

sensor data, all queryable with SQL. Statisticians connect to Snowflake with SAS and R to perform interim analyses, like correlating

the continuous heart data with reported adverse events. They create some custom metrics (like time to arrhythmia after dose) using

SQL window functions in Snowflake due to the large volume of data (Snowflake handles it efficiently). Additionally, the study’s

project manager uses Tableau connected to Snowflake to monitor data quality – e.g., a dashboard showing number of missing data

points per site, number of protocol deviations per week, etc. Meanwhile, on the operations side, the team uses Vault CTMS to track

site performance (enrollment numbers, protocol deviations). The data engineer sets up a feed from Vault CTMS (via API) into the

Snowflake warehouse so they can combine it with the data metrics. They notice via a Tableau visualization that one site with many

protocol deviations also has a high variability in the wearable data – possibly indicating training issues at that site – and they alert

the clinical operations lead. Throughout, patient identifiers in Snowflake are coded, and only authorized users can access the re-

identified mapping (stored securely in Vault). The ETL and analysis processes were validated (with test cases comparing output to

known correct values), and all transformations are documented for the CSR (clinical study report). By blending Informatica, Spark,

and Snowflake, they managed both conventional and high-volume streaming data in one analytical environment, yielding richer

insights (like identifying safety signals in ECG data early and site performance issues) while meeting compliance requirements

(traceability of data transformations, access control, audit trails of who queried data via Snowflake’s logs).

Comparison: Technologies for Clinical Trial Data

Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations Real-World Adoption

MongoDB (Document DB) Flexibility: Adapts to

evolving CRF

structures without

schema redesign.

Ideal for storing all

data for a patient or

site in one JSON

document, including

unstructured entries

(notes, images

references). Rapid

Not optimized for heavy cross-

record analytics (complex

aggregations require MapReduce

or aggregation pipelines). Many

analysis tools expect relational

data, so additional steps may be

needed to use Mongo data in SAS

or Tableau. Lacks built-in

referential integrity – ensuring

consistency across documents

(e.g., patient exists before events

Niche use but

growing: Some

pharma employ Mongo

in clinical data review

platforms (where

medical reviewers

browse patient profiles

that include forms,

labs, etc.). Also used in

trials that collect a lot

of unstructured data
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations Real-World Adoption

development: New

studies or

amendments can be

accommodated

quickly. Also useful

for building APIs for

clinical data retrieval

(one query can fetch

a whole patient’s

data JSON).

are added) is up to the application.

Domain teams may be less familiar

with querying Mongo (though tools

like Compass or custom UIs help).

(e.g., patient diaries,

genomic info) to store

alongside structured

data. Traditional EDC

vendors are also

looking at NoSQL to

handle ePRO and

wearable data influx.

Mongo isn’t replacing

core EDC yet, but acts

as a complementary

store for new data

types in trials.

Hadoop & Spark

Big data

integration:

Efficiently combines

data across multiple

studies or huge

internal/external

datasets for meta-

analysis. Complex

analytics: Enables

simulations (e.g., trial

outcome simulations

using resampling) or

ML (predict patient

dropout, etc.) on full

datasets, which

would be slow or

infeasible in serial

fashion. Spark’s

parallel processing

can drastically

reduce time to derive

analysis datasets

when data volume is

very large (like

processing high-

frequency sampling

data from hundreds

of patients).

Overkill for single-study analysis –

SAS or SQL on a smaller dataset

may be simpler. Requires

engineering: setting up clusters or

using services like Databricks, plus

writing Spark jobs in Python/Scala.

Clinical programmers largely use

SAS/R; getting them to use Spark

might require a wrapper or training.

Thus, Spark often sits behind a

user-friendly layer. From a

validation standpoint, outputs from

Spark might need reconciliation

with SAS results to ensure

acceptability for regulators.

Emerging adoption:

Big pharma have

started “data science”

teams that reuse

clinical data via Spark

to inform design of

new trials (e.g.,

establishing historical

control distributions).

CROs like IQVIA use

big data platforms to

offer aggregated

insights across

sponsor trials. For

routine study work,

Spark is less visible

but may underlie tools

that handle high-

volume data like

continuous monitoring

platforms or risk-

based monitoring tools

analyzing central lab

data trends.

Cloud Data Warehouse

(Snowflake/Redshift/Synapse)

Unified repository:

Puts all cleaned trial

data in one place

where it can be

easily queried with

SQL or connected to

BI/analysis tools.

Great for ad-hoc

queries during

Initial setup effort to define data

models (often SDTM-like) and build

ETL. Users need SQL skills or

front-end tools to use the

warehouse (though many in clinical

ops and stats do have those). Cost

can accumulate if very large data

or many queries, but generally

minor vs. trial costs. One must

Very high adoption:

Most pharma have a

clinical data mart or

warehouse. In modern

setups, this is often on

cloud (Snowflake is a

popular choice in

several top 10 pharma;

others on Redshift or
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations Real-World Adoption

medical review or

regulatory

submission

preparation (e.g.,

“list all patients who

had event X within Y

days of dosing”).

Scalability: Can

handle large Phase III

data and multiple

studies concurrently,

supporting

corporate-level

analytics (portfolio

safety summaries,

etc.). Security: Fine-

grained access

control means, for

example, unblinded

data can be

restricted to certain

users automatically.

ensure the warehouse stays

synchronized with source data

(ETLs after major database

updates). Also, making the

warehouse part of validated

workflow means change control on

its structure and careful testing of

ETL, which is extra overhead but

manageable.

Synapse per their

cloud alignment).

These warehouses are

used for medical

monitoring (during

trials) and for

integrated analyses

(like pooling data for

submission). For

example, one big

pharma used

Snowflake to integrate

data from all Phase I

studies to find

common safety signals

and streamline Phase II

design. Another uses

Synapse to allow

project managers to

track study milestones

and data in one

interface. These

warehouses become

more crucial as trials

incorporate more data

streams – they serve

as the hub to bring it

all together for

analysis.

Informatica (ETL/MDM) Robust, repeatable

ETL: Ensures that

data from EDC, labs,

and other sources

are merged correctly

every time.

Minimizes manual

data handling,

reducing errors. Data

quality firewall:

catches issues

during ETL so they

can be resolved (e.g.,

patient mismatch

between datasets).

MDM provides

consistent reference

data (investigator,

site, drug

dictionaries) across

all studies, enabling

easier cross-study

Proprietary tool requiring specific

expertise and licensing. Changes in

source schemas (like a new CRF

version) require updating mappings

which can be bureaucratic in

validated environments. Some agile

teams prefer code (Python, etc.)

for flexibility, but then lose the

built-in lineage and governance

Informatica provides. Also, for very

novel data types (images, genomic

data), Informatica might not have

out-of-box support, requiring

custom solutions in those cases.

Industry standard:

Virtually all large

organizations have

used Informatica for

clinical data

warehousing or data

migration in some

form. It’s common for

companies to have

automated extraction

from EDC with

Informatica. As they

move to cloud, many

are adopting

Informatica’s cloud

services for continuity.

MDM usage in clinical

context (like

maintaining a global

site master) is also

common – e.g.,

companies require any

Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

© 2025 IntuitionLabs.ai. All rights reserved. Page 89 of 105

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf


Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations Real-World Adoption

analysis and

compliance (like

ensuring consistent

investigator names in

filings).

new site to be checked

against the master to

avoid duplicates,

which Informatica

MDM or similar

handles. The longevity

of Informatica in

pharma attests to its

trustworthiness in

validated processes.

Neo4j / Graph DB

Relationship

analysis: Could help

identify patterns like

site networks (if one

PI works at multiple

sites or trials, helpful

for study planning),

patient journey

outside of trial

(linking trial data to

subsequent real-

world data via patient

as node), or adverse

event networks.

Graph traversal can

answer complex

questions that would

require many SQL

joins. For example,

“find all trials where a

certain lab test

elevated and the

patient later had an

adverse event

related to it” – a

multi-hop query a

graph can handle.

Niche and requires graph thinking

shift. Not many off-the-shelf graph

applications for clinical trial

management; likely requires

custom development by data

engineers and collaboration with

domain experts to encode relevant

nodes/edges. Ensuring data

privacy in a graph that might

include patient connections to

external data is crucial (need to

anonymize properly). So far,

regulatory submissions and trial

reporting don’t accept graph

outputs directly; graphs would

supplement human decisions or

feed into standard analysis.

Limited but

experimental: Some

large sponsors have

exploratory projects

linking their trial data

with real-world data or

research data in a

knowledge graph to

enable holistic queries

(for internal decision-

making). For example,

a company might link

trial eligibility criteria

with real-world patient

data to inform protocol

design – a graph query

might find how many

patients in a claims

database would meet

proposed criteria. This

is still an emerging

application, but as

data integration

becomes more

complex, graph

approaches may gain

traction for internal

analytics.

Veeva Vault (Clinical) Unified trial

operations and

content: Vault’s

clinical suite (eTMF,

CTMS, Study Start-

up, eConsent, etc.)

brings all operational

data and documents

into one platform,

breaking down silos.

This improves data

consistency (e.g.,

Vault is more about operational

data and documents than the

subject data – you wouldn’t

analyze efficacy results in Vault.

Therefore, data engineers still need

to integrate Vault data with clinical

datasets in warehouses for

complete picture. During transition

to Vault, companies have data in

legacy systems and Vault, requiring

consolidation. Also, customizing

Vault (adding fields/objects) should

Rapidly becoming

standard: Many

sponsors have

adopted Vault eTMF

and are adding CTMS.

This means a lot of

previously

unstructured tracking

data is now accessible

in a database form via

Vault. Data engineers

are leveraging Vault’s
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Technology
Strengths in Clinical

Data Use Case
Weaknesses/Considerations Real-World Adoption

site information in

CTMS matches

what’s on documents

in eTMF). Real-time

tracking: Teams can

see up-to-date

status of documents,

approvals, and

milestones. From a

data perspective,

Vault’s structured

objects (like study,

country, site,

milestone) provide a

readily queryable

source via API for

trial management

data.

be done carefully to maintain

upgrade paths – some analytics

needs might require creative use of

standard fields or external

calculations.

reporting API to pull

metrics like “average

site activation time” or

“number of protocol

deviations per site” to

warehouses. As more

adopt Vault EDC, even

clinical patient data

could come through

Vault (though typically

that will be exported

out for analysis).

Companies like GSK,

Novartis, BMS etc., are

known Vault users in

clinical – this trend

likely continues. Vault’s

presence ensures that

operational analytics

(like performance

KPIs) are far easier –

data engineers can get

those from one source

instead of collating

spreadsheets from

each study.

In summary, managing clinical trial data involves orchestrating multiple technologies: operational systems (EDC, CTMS, eTMF, etc.)

to capture and manage trial execution data, and analytics platforms (ETL tools, data warehouses, big data processors) to

aggregate, analyze, and learn from the data. Data engineers serve as the bridge between these, ensuring that high-quality data

flows from where it’s captured to where it’s analyzed without silos or integrity loss. By using modern big data tech alongside

traditional tools, they can handle new data types and larger scales (like digital health data in trials), enable real-time insights (like

dashboards for trial monitoring), and reuse data across studies (for example, pooling control arm data to reduce the need for new

placebo patients). All of this must be done under rigorous compliance controls, as trial data is highly regulated and privacy-

sensitive. When done successfully, these approaches reduce trial execution risks (through better monitoring and faster decision-

making) and accelerate the path to clinical insights (by making it easier to query and analyze the rich data collected in trials). In

short, big data technologies – used appropriately – are helping clinical teams run trials more efficiently and get new treatments to

patients faster.

Regulatory Data Management and Compliance

Pharmaceutical companies operate in a strictly regulated environment, generating enormous amounts of documentation and data to

meet requirements from agencies like the FDA and EMA. Regulatory data management encompasses handling submission content

(e.g., eCTD documents for drug approvals), tracking product registrations and approvals worldwide, managing regulatory

commitments and correspondence, and ensuring that all records are audit-ready and compliant with regulations. The challenges

here are less about raw volume (though large companies manage millions of documents) and more about complexity, traceability,

and integrity – every submission has dozens of components and dependencies, and errors or inconsistencies can lead to approval

delays or compliance actions. Key technologies focus on content management, workflow, and structured tracking of regulatory

information:
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Veeva Vault RIM (Regulatory Information Management): Vault RIM has become a leading solution for managing regulatory content and

data on a single cloud platform. It includes modules for document management (authoring, reviewing, approving all the documents that go

into a submission) and for tracking the lifecycle of regulatory activities (submission planning, health authority questions, approvals,

variations, renewals). A major benefit is that it replaces disparate tools (like separate tracking spreadsheets, document repositories, email

trails) with one platform. For example, when assembling an eCTD dossier for a new drug, teams use Vault Submissions to organize

documents into the correct CTD hierarchy, link supportive documents (like raw data or literature references) to summary documents, and

ensure everything is present for each region. Vault can then publish the eCTD sequence (generating the XML backbone and distributing the

PDF files as required) and once submitted, the sequence is locked in Vault Submissions Archive for future reference. All this occurs with

Part 11-compliant audit trails and electronic signatures in Vault. Data model integration is a differentiator: Vault doesn’t just store PDFs; it

also stores metadata (like submission ID, product, country, regulatory procedure, status, dates, etc.) in structured fields. This allows

powerful queries and reports – e.g., “show me all pending submissions by region and phase” or “list all documents reused from a previous

submission.” It also avoids mistakes like missing a required document, since Vault can validate content against a predefined checklist.

Vault’s cloud architecture is highly scalable (used by large companies to manage tens of millions of documents) and accessible globally (via

web, with performance optimized by CDNs). It provides APIs and reporting tools, which data engineers can use to extract structured

regulatory data (for instance, a list of approved indications per country for a product) to combine with other data (like manufacturing or

launch data for planning). From a compliance perspective, using Vault simplifies validation because much of the platform’s functionality is

pre-validated by Veeva – customers focus on validating their configuration and usage, not the underlying software.

Legacy Regulatory Systems (Documentum-based ECM and custom trackers): Many companies historically used enterprise content

management (ECM) systems like Documentum (with life-science add-ons like FirstDoc) for regulatory document management, and separate

tracking databases (often custom) for structured data about submissions and approvals. These systems served well to store files and basic

metadata, but they often weren’t unified – e.g., the Documentum repository might not know the status of a submission (that info could be in

a spreadsheet or an Access database). Data engineers often had to pull data from multiple places to get a full regulatory picture. For

example, answering “Which markets have we submitted for this product and what is each status?” might involve consulting a tracking

database for markets and statuses, and the document repository for confirming submission contents. With Vault RIM, that answer is in one

system now. However, during transitions, many companies still have regulatory data split among old systems and Vault, requiring integration.

Data engineers may need to migrate historical data into Vault or build interim reports that merge data from Documentum and Vault.

Relational databases/warehouses for regulatory analytics: Even with Vault or similar, companies often maintain a data warehouse for

regulatory KPIs (key performance indicators). This warehouse might integrate data from RIM, HR systems (for resource metrics), and even

external benchmarks. For example, management may want to know the average time from submission to approval for each region over the

past 5 years, and compare it to industry averages – a warehouse would collect internal data and perhaps industry data to produce that

analysis. Data engineers could use Snowflake or Redshift to host this, pulling data from Vault (e.g., submission and approval dates) and

storing it alongside targets or benchmarks. They can then feed a Power BI or Tableau dashboard that visualizes trends like “Submission

approval time by region by year” or “Proportion of submissions approved on first cycle vs requiring additional information.” These insights

help optimize regulatory strategy (e.g., identifying regions where submissions lag so they can add resources or adjust processes). A

warehouse also helps in global regulatory compliance oversight – e.g., tracking that all post-approval commitments (like Phase IV studies

required by authorities) are being met. If Vault is used to log commitments, that data can flow into the warehouse and a dashboard can show

which commitments are due next quarter, ensuring nothing falls through the cracks.

Spark/NLP for regulatory intelligence: Regulatory intelligence involves monitoring the external environment – new regulations, guidelines,

competitors’ approvals and failures, etc. This often means sifting through unstructured text: health authority guidelines, meeting minutes,

public assessment reports, etc. Spark NLP or other text mining tools can be used to process this. For example, a data engineer might use

Spark to parse all FDA briefing documents for Advisory Committee meetings in a therapeutic area to find common concerns raised – helping

their team prepare better documents addressing those concerns. Another example: using NLP to identify when a new guideline draft from

EMA contains requirements that differ from the previous version, flagging it so the regulatory policy team can respond. This is akin to “big

data” because it might involve scanning thousands of pages of text and comparing versions or summarizing content, which manual reading

can’t scale to easily. While much regulatory intelligence is still human-driven, these tools augment that by catching details or patterns

humans might miss. They must be used with caution (not to miss nuanced context), but they can dramatically cut the labor of scanning

documents. For compliance, these tools output recommendations or summaries – humans still make decisions – so they don’t directly need

validation like a system of record would, but they do need quality control to ensure they’re reliable enough to act on.

Graph databases for regulatory knowledge graphs: A regulatory knowledge graph could link many entities: products, submissions,

countries, manufacturing sites, documents (like label texts), and even regulations and guidelines. Querying this can answer multi-

dimensional questions that are cumbersome otherwise. For instance, “Find all products that have manufacturing site A in their approval, and

list which countries those approvals are in, and whether any of those approvals required a site-specific inspection” – this could be traversed

in a graph (Product -> Manufacturing Site -> Submission -> Country -> Inspection outcome). With relational data, it might require numerous

joins and data from multiple systems. As companies compile more comprehensive digital records (with Vault RIM holding many connections

already, plus supply chain systems tracking sites), constructing a graph on top of them for advanced queries is plausible. It can also assist

in impact analysis: if a regulation changes (a node in the graph), one can traverse to see which products or submissions or processes are

linked to that regulation and need updating. This futuristic use of graphs could greatly improve proactive compliance management (imagine

a graph that instantly shows that a new environmental regulation affects the packaging of 12 products – triggering the regulatory team to

file appropriate variations). This is still forward-looking, but data engineers should be aware of graph technology’s potential as the industry’s

data becomes more interconnected and query complexity grows.

Example: A regulatory affairs department is preparing a global rollout for a new vaccine. They use Veeva Vault RIM to manage the

core dossier and country-specific variations. After initial approvals, they have commitments: for instance, to conduct a post-

marketing safety study and submit periodic safety update reports (PSURs) yearly. Vault’s tracking shows these commitments, with
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due dates. The data engineer sets up a Vault API extraction to pull all open commitments and their due dates into a Power BI

dashboard that also shows responsible owners. This ensures visibility so nothing is missed – e.g., a commitment to submit a PSUR

to Japan is highlighted as due in 2 months, prompting action. Meanwhile, the global regulatory head asks: “How do our approval

timelines compare to the industry average?” The data engineer obtained industry benchmark data (perhaps from a consultant or

public sources) and stored it in Snowflake. They combine it with their internal Vault data of actual submission and approval dates.

The resulting analysis shows, for example, that their EMA approval took 15% longer than industry average. Investigating why, they

use Spark NLP on the EMA’s public assessment report and extract major objections raised. They find the EMA had concerns about a

specific efficacy endpoint definition. The team realizes that providing more clarity in initial submissions could avoid such delays.

They update their global submission template accordingly – a direct process improvement derived from big data analysis of text.

Separately, a new guideline on vaccine adjuvants is released. The data engineer uses a Python script with NLP to compare it to the

prior guideline. It flags that a new requirement is to include a specific analysis in the submission. They verify this and alert all

product teams to incorporate that analysis for any future submissions involving adjuvants. Finally, they leverage their internal data

for a knowledge graph pilot. Using Neo4j, they connect each product to its regulatory submissions, those submissions to their

approval dates and any post-approval changes (like label updates), and also link products to any safety signals (from PV data).

When a safety signal arises for the vaccine, they query the graph: it shows the signal node connecting to the vaccine node and also

to an “ongoing study” node (because a post-marketing safety study is in progress for that issue). Thus, they know data to address

the signal will come from that study, and they coordinate with PV to prioritize its completion – a holistic view that came from

connecting regulatory and PV data. Throughout, all official data (submissions, approvals) remain mastered in Vault (with audit trails

for any changes). The analytics outputs (dashboards, reports) are used internally for decision-making but any data going into filings

(like responses to authorities) is sourced from validated systems (Vault, safety DB, etc.) to maintain compliance. In essence, they

used Vault for operational control and big data tools for strategic insight, marrying compliance with intelligence. The outcome is

faster approvals in some regions (thanks to learning from benchmarks and guidelines) and proactive risk management (thanks to

integrated data views).

Comparison: Technologies for Regulatory Data Management

Technology Role in Regulatory Use Case Differentiators and Compliance Real-World Adoption

Veeva Vault

RIM

Unified platform for regulatory

document management and

tracking of

submissions/registrations. Used

to author, approve, and archive

submission documents, and to

maintain structured data on each

submission (status, dates, health

authority interactions,

commitments). Orchestrates

global regulatory processes in

one system.

Differentiators: Purpose-built for

life sciences; includes standard

object models for submissions,

products, regions, etc., aligning

with common regulatory

scenarios. Combines content +

data: e.g., a submission record

ties together all supporting

documents and metadata like

indications. Offers automated

workflows (e.g., routing a draft

label for approval to all

stakeholders) with e-signatures

compliant with Part 11. Cloud-

based, so updates (like new fields

for IDMP compliance) are

delivered regularly by Veeva.

Compliance: Delivers a validated

state – agencies trust systems

like Vault for document integrity

and audit trails. It enforces

security (each user only sees

permitted data; e.g., regional

affiliates see their region’s

submissions). Full audit logs on

every field and document action.

High adoption: Most major

pharma and many biotechs

use Vault RIM or are

transitioning to it. E.g., GSK,

Sanofi, and others have

publicly shared Vault RIM

success stories (cutting

dossier prep time, improving

tracking of global filings).

Regulatory agencies have

begun receiving more

consistent submission

packages as a result (since

Vault encourages using

templates and reusing

content). Data engineers at

these companies now often

retrieve data via Vault reports

instead of hunting through

spreadsheets, dramatically

increasing efficiency in

regulatory operations

reporting.

Legacy ECM

+ Trackers

Historically,

Documentum/SharePoint for

Differentiators: Systems could be

heavily tailored to company

Waning adoption: Still in use

at companies that haven’t
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Technology Role in Regulatory Use Case Differentiators and Compliance Real-World Adoption

documents and separate

databases (or spreadsheets) for

tracking submission status and

registrations. These were used to

fulfill the regulatory function

before integrated RIM solutions.

needs; some built very detailed

tracking systems capturing

minutiae of regulatory processes.

Those with on-prem ECM liked

control over data location and

system changes (no vendor-

driven updates). Compliance:

When well-maintained, also Part

11 compliant (with custom

workflows, audit trails). However,

integrations between systems

(e.g., marking a submission as

“approved” in tracking DB and

making sure all final approved

documents are in ECM) relied on

procedural controls, which could

fail – hence the push to unify in

Vault.

fully migrated. For example, a

mid-size pharma might still

use Documentum for doc

management and an Excel

workbook for tracking where

each product is approved.

Data engineers sometimes

have to consolidate such data

for global reports – a

painstaking manual or semi-

manual process. Most large

companies have recognized

the inefficiency and moved or

are moving to integrated RIM.

Those who haven’t often cite

cost or complexity, but they

pay in manual labor and

potential compliance risk.

Relational

Data

Warehouse

for Reg

Affairs

A centralized database (or data

mart) integrating regulatory data

for analytics and KPIs. Typically

pulls from RIM (or legacy

systems) and possibly external

benchmark or project

management data. Used for

dashboards and reports by

management.

Differentiators: By decoupling

reporting from the live RIM

system, complex analytics can be

done without impacting the

performance or data integrity of

the operational system. Allows

combining data sources: e.g.,

headcount data (from HR) with

number of submissions (from

RIM) to calculate submissions per

employee. Compliance: Since it’s

primarily for internal decision

support, it’s usually not strictly

validated to the same degree as

RIM. However, source data from

validated systems means outputs

are trustworthy for management

(but if any output is used in a

filing, it would be cross-checked

against validated source).

Common practice: e.g., A

pharma uses an Oracle data

warehouse to produce a

monthly “Regulatory

Dashboard” showing how

many submissions planned vs

delivered, reasons for any

delays, upcoming approval

projections, etc., across all

regions. This is fed by their

RIM and project management

tools. Another company

might use Tableau on top of

Vault’s reporting database for

real-time metrics, but to do

multi-year trends they export

into a Snowflake warehouse.

This approach is widely

adopted because it provides

strategic visibility –

regulatory VPs can see

trends like improvement in

first-cycle approval rates

after a process change.

Spark/NLP

for

Regulatory

Intelligence

Processing large volumes of

external text (regulations, health

authority meeting minutes,

competitor filings, etc.) to

extract insights or summarize

changes. Helps regulatory policy

groups stay informed and

anticipate requirements.

Differentiators: Automates what

was a very manual, labor-

intensive task (scanning gazettes,

journals, websites). Can catch

subtle changes (like wording

differences in draft vs final

guidelines) that humans might

overlook. Over time, an AI might

even predict likely questions or

Emerging: Large companies

have dedicated Reg Intel

teams using tools like

Cortellis, but also

experimenting with custom

NLP. For example, Pfizer

might use NLP to review all

FDA Advisory Committee

transcripts on gene therapies
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Technology Role in Regulatory Use Case Differentiators and Compliance Real-World Adoption

concerns based on what’s been

asked for similar products.

Compliance: This supports

regulatory strategy, but decisions

guided by it are still made by

experts. It’s part of knowledge

management, not official records,

so it’s not validated – however,

traceability of sources is

important (if an AI says “expect X

request,” one must trace that to

actual past instances in

documents to be credible).

to glean common panel

concerns, feeding that into

how they prepare their panel

briefing. This is not yet

mainstream daily practice,

but pilot projects abound. As

NLP tech matures, we can

expect it to become a

standard aid (maybe

integrated into RIM systems

or as separate AI assistants)

– data engineers will be

involved in feeding these AI

the right data and capturing

their outputs.

Graph DB

for

Knowledge

Graph

Integrating regulatory data

(submissions, approvals,

requirements) into a broader

R&D knowledge graph

connecting research, clinical,

safety, and commercial

information. Answer cross-

domain questions and enable

holistic decision-making.

Differentiators: Breaks silos

between departments – one

query could traverse from a

drug’s mechanism of action

(research data) to its clinical trial

outcomes to its regulatory

approval status to its commercial

performance. For regulatory

specifically, it can highlight the

context of a submission in the

product’s lifecycle. Compliance:

As with other graphs, it’s for

analysis, not a source of official

record, so validation is lighter. But

it could be used in audits to

quickly retrieve linked info (if an

inspector asks how a certain

post-marketing commitment is

being addressed, a graph could

show the commitment node

linking to the ongoing study node

and perhaps interim report

documents).

Futuristic but plausible:

Companies like AstraZeneca

are pioneering enterprise

knowledge graphs. Right

now, these are mostly internal

experimental tools. Over the

next decade, if successful,

more companies will adopt

them. Data engineers would

then need to integrate

regulatory nodes (like a node

per submission, per

regulatory query, per

approval) into these graphs.

This could greatly enhance

institutional memory – new

employees could query the

graph to learn everything

about a product’s history

without digging through

archives. Currently, only

advanced analytics groups in

some pharma are touching

this, but success stories

could lead to broader

adoption.

Regulatory data management, once a predominantly manual and document-centric endeavor, is being transformed by these

technologies into a data-centric, proactive process. With systems like Vault RIM, companies have near-instant access to any piece

of regulatory information, with full context – this not only improves compliance (reducing the chance of missing a commitment or

making a submission mistake) but also speeds up the regulatory timelines (teams spend less time chasing information, more time

analyzing and responding). Big data and AI tools provide an edge in regulatory intelligence – by learning from vast amounts of

external data, companies can foresee potential hurdles and address them in advance, leading to smoother approvals. Data engineers

in regulatory affairs now find themselves enabling not just compliance reporting, but strategic insights – whether through

dashboards that identify process bottlenecks or NLP analyses that help craft better submissions. The end result is that regulatory

processes become more efficient and data-driven: submissions are more complete and aligned with expectations, authorities get

the info they need with fewer questions, and products reach patients sooner. Moreover, improved tracking and analytics ensure

ongoing compliance (no missed reports or commitments), protecting the company from regulatory penalties. In summary, big data
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technologies – from unified content management to advanced analytics – are empowering regulatory teams to manage complexity

and volume with greater agility and intelligence than ever before.

Pharmacovigilance and Drug Safety Analytics

Pharmacovigilance (PV) – monitoring drug safety post-approval (and during trials) – generates and consumes huge amounts of

data. Every year, millions of adverse event (AE) reports are collected worldwide through spontaneous reporting systems, patient

support programs, medical literature, and digital media. The aim is to detect any safety signal (an unexpected pattern that might

indicate a new risk) as early as possible and take action (update product labels, issue warnings, or even withdraw a product). Key

challenges include volume (large datasets of individual case safety reports), variety (structured forms, free-text narratives, social

media posts, etc.), velocity (the need for prompt signal detection and regulatory reporting), and veracity (ensuring data quality in

often anecdotal reports). Big data technologies are increasingly crucial for efficient PV:

Hadoop/Spark for adverse event data processing: Many pharma companies augment their internal safety data (cases from their own

products worldwide) with external datasets like FDA’s FAERS and WHO’s VigiBase, which are large (FAERS alone has >15 million reports).

Spark is ideal for crunching these datasets to compute disproportionality metrics (like reporting odds ratios or Bayesian EBGM values) to

find drug-event combinations reported more frequently than expected. For example, an open-source project leveraged Spark and Scala to

process ~130GB of FAERS data and calculate likelihood ratios for signals. With Spark’s parallelism, this finished in minutes rather than

hours. Similarly, a pharma can use Spark to merge its global safety database (e.g., Oracle Argus data) with FAERS to see a fuller safety

picture. Hadoop HDFS might store years of raw safety data (structured CSVs or Parquet files), enabling Spark or Hive queries across the

entire history for trends (e.g., query 10 years of data to see if a subtle signal is emerging gradually). Spark’s MLlib can also support PV by

clustering cases or predicting outcomes. For instance, clustering all AE reports for a drug might reveal natural groupings of symptoms that

constitute previously unrecognized syndromes. Spark is also used for data cleaning: it can harmonize drug names (which might be reported

differently by different reporters) using big reference tables. Overall, Hadoop/Spark provide the muscle to handle the sheer scale of PV data

integration and computation that traditional tools (like VBA or even SAS on a single server) struggle with.

Cassandra/MongoDB for real-time case management: PV requires real-time or near-real-time processing for serious cases. Cassandra

can be used as a high-throughput store for incoming adverse event streams. For example, if a patient app allows adverse event reporting,

each submission can be immediately written to Cassandra for durability and fast retrieval by safety staff. Cassandra’s multi-datacenter

replication ensures that reports are safe and accessible globally (important if companies have regional PV centers). It can also serve as the

backend for a live PV dashboard (e.g., showing current volume of reports by product). MongoDB might be used to store the full JSON of

case reports (including nested elements like multiple suspect drugs, multiple reactions in one case). This allows flexible querying (like

searching text of narratives) and easy updating if new fields are added (like if regulatory requirements change to collect new info). In

practice, the official case data ends up in a relational safety database (because ICH E2B reporting standards are often relational in

structure), but these NoSQL systems can act as ingestion and working copies. They feed the relational system (with ETL or API), and

provide a buffer that can be scaled out to handle spikes (e.g., a surge of reports after a safety alert). The benefit is reduced risk of losing

data or system downtime – the case can be captured in NoSQL instantly and then processed into the safety system asynchronously.

Signal detection algorithms and specialized tools: Many PV teams use dedicated signal detection tools (such as Oracle Empirica Signal

or MHRA’s Sentinel). These tools use statistical algorithms on safety databases to highlight disproportionate reporting. Data engineers often

integrate the output of such tools into workflows – for instance, writing new signals into a tracking system or combining them with clinical

data to assess causal plausibility. However, big data tech allows customization beyond these tools. A company might develop its own signal

detection pipeline with Spark that includes not just disproportionality but also trends analysis (using Spark time-series libraries to see if a

particular AE is increasing over time for a drug) and even incorporates external data like frequency in untreated population (from an EHR

dataset) to calculate empirical Bayes metrics. The advantage is flexibility – they can fine-tune algorithms and include any data source. The

challenge is validating those custom methods and ensuring regulatory acceptance. But big data capability is a prerequisite to even explore

advanced methods like logistic regression on millions of case data points (which Spark can do). Some are exploring ML-based signal

detection (training models to classify if a drug-event pair is likely a true signal vs noise by learning from past signals). That requires feeding

a model huge amounts of historical data – again a job for a big data environment.

Graph databases for pattern recognition: Adverse events often involve multiple factors (polypharmacy, comorbidities). Neo4j can

represent the relationships in safety data naturally: a case can be a subgraph linking a patient node, drug nodes, event nodes, perhaps

condition nodes (indicating the patient’s medical history). By aggregating all cases into a graph, you can query patterns like “find any two

drugs that share many event nodes in common” (potential drug interactions) or “find communities of patients based on event similarity” (to

identify a syndrome). For example, if Drug A + Drug B together often lead to a triad of symptoms, a graph query can discover that by finding

a cluster of cases (patient nodes) all connected to both Drug A and B and the same 3 event nodes. A traditional SQL approach might require

complex self-joins and still not be straightforward to identify such a cluster. Graph algorithms like PageRank or community detection

could highlight influential nodes (e.g., an event that is commonly connected to many drugs – perhaps a generic symptom like headache – vs

a more specific event that might be more telling). TigerGraph’s ability to handle very large graphs quickly could allow near real-time queries

on a global graph of safety data (imagine querying a TigerGraph instance of all global ICSRs for complex patterns with sub-second latency –

that could enable interactive safety analysis tools). This is cutting-edge and mostly in research or pilot phases at present – but some

regulatory agencies themselves are looking into graph tech for their data, so industry may follow.

Big Data Technologies in Pharma: Use Cases, Implementation, and Comparisons

© 2025 IntuitionLabs.ai. All rights reserved. Page 96 of 105

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=big-data-technologies-in-pharma-use-cases-implementation-and-comparisons.pdf


Machine learning and AI in PV: Big data technologies enable various ML and AI applications in PV. NLP is widely used to process case

narratives and literature. For instance, an NLP model can extract drug names, event terms, and medical history from free-text narratives,

speeding up case processing (some companies report >50% efficiency gain by assisting case entry with AI suggestions). Training such NLP

models requires a large annotated dataset of narratives, which can be facilitated by big data (using Spark to assemble and preprocess tens

of thousands of narratives for model training on GPUs). Another AI use is duplicate detection – identifying when two reports actually refer

to the same patient and event (common in global reporting when a case might be reported by a doctor and the patient separately). ML

models can compare cases and estimate a duplication probability. Implementing that across millions of# Big Data Technologies in Pharma:

Use Cases, Implementation, and Comparisons

The pharmaceutical industry generates vast and diverse datasets – from genomic sequences and clinical trial results to regulatory

documents, safety reports, and supply chain logs. Data engineers in pharma must choose appropriate big data technologies to

store, process, and analyze this information at scale. This report explores key technologies – Hadoop (HDFS, Hive, HBase),

Apache Spark, Cassandra, MongoDB, Snowflake, AWS Redshift, Azure Synapse Analytics, Azure Data Lake, Google

BigQuery, Neo4j, TigerGraph, Veeva Vault, Informatica, DNAnexus, and Illumina BaseSpace – and how they are applied across

major use cases. Each section focuses on a specific use case (e.g., genomics data analysis, clinical trials, regulatory data

management, pharmacovigilance, manufacturing and supply chain, sales and marketing analytics), detailing which technologies are

most commonly used, how they are technically implemented, what differentiates them, and providing concrete examples.

Comparisons are provided in tables for attributes like scalability, cost, performance, integration ease, compliance features, and real-

world adoption, to help data engineers evaluate solutions.

Genomics Data Analysis and Bioinformatics Pipelines

Genomic and multi-omics data analysis in pharma involves processing massive sequencing outputs (DNA/RNA reads, variant files)

and integrating results for drug discovery or precision medicine. Key challenges include scalability (handling petabytes of

sequencing data), processing speed (aligning reads or calling variants across thousands of genomes), flexible pipelines, and

compliance (securely handling potentially identifiable genetic data). Data engineers leverage a mix of on-premises big data

frameworks and specialized cloud platforms:

Hadoop (HDFS, Hive, HBase) for distributed genomic storage and query: Genomic files (FASTQ, BAM, VCF, etc.) are enormous. HDFS

provides a fault-tolerant distributed file system to store terabytes of sequence data across clusters, enabling parallel access. Hive (SQL-on-

Hadoop) can be used to impose structure on variant call data, allowing analysts to query large variant datasets using SQL (Maximizing

pharmaceutical innovation with data engineering tools - Secoda). HBase (NoSQL on Hadoop) supports fast lookups (e.g., by genome

position), which is useful for random-access queries in genomics. These Hadoop components allow data engineers to manage huge NGS

datasets on-prem or in IaaS environments, though newer cloud object storage is also popular.

Apache Spark for large-scale genomic processing: Spark is a cluster computing engine ideal for iterative algorithms and large-scale

analytics. In genomics, Spark accelerates pipelines by parallelizing tasks like sequence alignment, variant calling, and joint genotyping

across nodes. For example, the GATK4 toolset from the Broad Institute uses Spark to speed up variant analysis on large cohorts. Spark’s in-

memory processing provides major performance gains over MapReduce, which is why it’s considered “promising” for genomic pipelines.

Data engineers use Spark (often via Databricks or cloud EMR) to run distributed transformations (e.g., computing allele frequencies on

billions of variants) and machine learning on omics data (e.g., clustering gene expression profiles). Spark can connect to HDFS, cloud

storage, or NoSQL stores, making it a flexible backbone for genomic data workflows.

Cloud Data Warehouses (Snowflake, BigQuery, Redshift) for multi-omics integration: After raw genomic results are produced,

researchers often need to integrate them with clinical data or metadata. Cloud warehouses excel at joining and analyzing such

heterogeneous data. Snowflake has been used to store combined datasets (genomic variants, clinical traits, assay results) in a queryable

form. It handles complex joins and aggregations with ease and minimal tuning. Google BigQuery similarly allows interactive querying of

large genomics datasets (and provides access to public genomics data like the 1000 Genomes), enabling easy comparison and annotation.

Amazon Redshift is often chosen by AWS-centric teams to integrate NGS data (e.g., variant tables) with other research data; Redshift

Spectrum can even directly query variant files in S3 without full ingestion. These warehouses provide SQL interfaces, concurrency, and

integration with BI tools, which help data engineers deliver genomic insights to scientists and clinicians in familiar formats (e.g., dashboards

of key variants by patient subgroup).

NoSQL and Graph Databases in genomics: Some genomic data doesn’t fit well in tables. MongoDB can store experiment metadata or

gene annotations as JSON, offering schema flexibility for evolving data types (like new sequencing metrics). It’s used to store and query

semi-structured results (e.g., variant annotations or functional genomic data) across experiments. HBase/Cassandra can handle time-

series from sequencers or stream genomic sensor data (like real-time DNA sequencing devices), ensuring high write throughput and quick

retrieval by key (e.g., run ID). Neo4j and TigerGraph can represent biological knowledge graphs – linking genes, proteins, pathways, and

phenotypes. Data engineers use graphs to enable queries like “find drug targets that interact with genes mutated in this dataset”, which

involves traversing relationships that are cumbersome in SQL. Graph analytics can highlight network patterns (for instance, Neo4j’s

algorithms can find clusters of genes that share many connections to diseases, hinting at polygenic effects). While core genomics pipelines

rely more on HPC and Spark, NoSQL and graph databases play supporting roles in storing and exploring the massive web of metadata and

knowledge around genomic findings.
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Specialized Genomic Platforms (DNAnexus, Illumina BaseSpace): Many pharma leverage domain-specific cloud platforms for NGS data.

DNAnexus provides end-to-end management of genomic data and pipelines in a compliant cloud environment. It can handle petabytes of

data and orchestrate complex workflows (written in WDL/Nextflow) on scalable compute clusters, all with audit trails and fine-grained

access control. DNAnexus actively manages >80 PB of data (Fabric Genomics and DNAnexus Team Up to Improve Scale and Speed of Data

Analysis for Genomic Medicine - Fabric Genomics), illustrating its scalability. Data engineers integrate DNAnexus by using its APIs to launch

jobs and retrieve results into broader data ecosystems (like pulling variant calls into a warehouse for cross-patient analysis). Illumina

BaseSpace Sequence Hub is another widely used platform, especially in labs directly using Illumina sequencers. It offers one-click

secondary analysis with Illumina’s DRAGEN pipeline (hardware-accelerated), drastically reducing turnaround time for results. BaseSpace is

designed to be user-friendly for bench scientists and provides a secure environment (HIPAA and GDPR compliant) for genomic data. Data

engineers typically export data from BaseSpace into company databases for downstream integration, but Illumina’s newer Connected

Analytics platform is bridging that gap by allowing more custom analysis on BaseSpace-hosted data. These platforms reduce the

infrastructure burden on data engineers for primary analysis, letting them focus on downstream processing and integration.

Example: A pharmaceutical genomics team is analyzing whole genome sequences from 1,000 cancer patients to discover

biomarkers for drug response. Raw data (~300 TB) is stored on HDFS in a secure on-prem cluster. They use a Spark cluster on Yarn

to run GATK4’s Spark-enabled variant callers, processing all genomes in parallel – cutting variant calling time from weeks to days.

The resulting VCF files (variant lists) are saved back to HDFS and also loaded into Google BigQuery. In BigQuery, they join variant

data with a clinical outcomes table (response = responder or non-responder) to perform a genome-wide association – essentially

scanning for variants enriched in responders. BigQuery’s speed allows them to execute this giant join and aggregation across billions

of data points in a manageable time. They identify a set of candidate variants. For deeper insight, they push these results into Neo4j

to see biological context: they load nodes for genes containing those variants, and connect to known pathways and drugs (using

data from public knowledge graphs). Neo4j reveals that several hit genes cluster in the same pathway – a strong clue about the

drug’s mechanism. While this is happening, new sequencing data arrives from ongoing experiments. Those FASTQ files go straight

to Illumina BaseSpace, where the DRAGEN pipeline calls variants in a couple of hours. Data engineers set up an automatic export:

as soon as BaseSpace produces a VCF, it triggers a Lambda function that writes the data to their HDFS for Spark processing and

also appends it to BigQuery via streaming insert. This keeps their datasets up-to-date seamlessly. Throughout, compliance is

maintained by using a secure cluster (with Kerberos) for HDFS/Spark, and ensuring patient identifiers are coded (the BigQuery data

is de-identified, with only a study ID to link back if needed). By mixing these technologies – Hadoop/Spark for heavy-lift

computation, BigQuery for interactive analysis, Neo4j for context, and BaseSpace for efficient pipeline execution – the team rapidly

iterates on genomic hypotheses. They not only discover a biomarker (variants in a pathway predicting response) but also generate

biological hypotheses for follow-up, all in a fraction of the time a traditional approach would take. The findings are then validated

and moved into the clinical trial’s analyses, providing the team with a data-driven biomarker to test in future trials. This showcases

how data engineering with big data tech accelerates precision medicine discoveries.

Comparison: Technologies for Genomics Data

Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

Hadoop

(HDFS/Hive)

Scales to

petabytes

across

commodity

clusters; add

nodes to

increase

storage and

throughput.

Great for high-

throughput

batch

processing of

large files

(alignments,

etc.). Hive

enables SQL

queries on huge

variant tables

but with higher

latency

(minutes).

Requires expertise

to set up and

manage. Integrates

with Spark, but less

so with user-friendly

BI tools. Many

genomic pipelines

now use cloud

storage in place of

HDFS for simplicity.

On-prem

deployment

gives full control

(important for

protecting

sensitive

genomic data).

Security via

Kerberos; can

be validated

internally

(though not

trivial).

Historically high

(1000 Genomes used

HDFS). Many large

institutes had Hadoop

clusters; now often

supplanted by cloud

storage/compute. Still

used in organizations

with existing big data

infrastructure for

omics (e.g., NIH

institutes).

Spark Scales from a

laptop to large

clusters on-

prem or cloud

(Databricks,

EMR). Can

Excellent for

iterative

algorithms

(variant calling,

joint

genotyping) and

Accessible via

Python (PySpark) or

R (SparkR), which

lowers barrier for

bioinformaticians.

Connectors for

Can be run in

secure

environments

(e.g., VPC with

encryption).

Logging and

Widely used in

genomics research

and pipeline

development (e.g.,

GATK4 Spark tools).

Many top pharma
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Technology Scalability Performance Integration Ease
Compliance

Features

Adoption in

Genomics

utilize

thousands of

cores for

massive

parallelism.

distributed ML

on genomic

data. In-memory

processing

provides 10–

100x speedups

over disk-based

methods for

these tasks.

HDFS, S3, JDBC to

warehouses, making

it fit in many

workflows. Requires

coding; benefit if

team has data

engineering support.

versioning of

code needed for

GxP compliance

if used in clinical

context. Often

used in research

(non-GxP) or in

validated

pipelines where

outputs are

verified by

secondary

methods.

(Regeneron, AZ) use

Spark

clusters/Databricks

for large-scale omics

analytics and pipeline

optimization.

Snowflake

Virtually

unlimited

(auto-scales

storage;

compute can

scale up or out

with multi-

cluster

warehouses).

Handles

terabyte–

petabyte scale

with high

concurrency.

High

performance for

complex queries

joining genomic

and clinical

data. Automatic

tuning means

even non-DBAs

get good

performance.

Not intended for

quick single-

record lookups

(but that’s rarely

needed in

genomics

analytics).

Very easy to load

data (COPY from

cloud storage) and

query with SQL.

Many genomic

analysis results

(variants, counts) fit

naturally into tables

that Snowflake can

handle. Integrates

with Python/R via

connectors for

further analysis or

visualization.

Offers HIPAA

compliance,

encryption,

network

isolation

options. Fine-

grained access

control (down to

columns, which

could be used to

mask patient

IDs). Often part

of validated

analytic

pipelines for

regulated

submissions

(with controlled

schema

changes).

Rapidly adopted for

integrative analytics

in life sciences.

Pharma biomarker

teams use Snowflake

to join N##

Pharmacovigilance

and Drug Safety

Analytics (continued)

Machine learning and AI in PV: Big data technologies enable various ML/AI applications in PV that can learn from the wealth of

safety data. For instance, natural language processing (NLP) models are trained on millions of case narratives to

automatically extract structured information (drugs, adverse events, patient history) from free text. This significantly speeds up

case processing – some companies have reported that AI-assisted case intake has automated up to 50% of data entry, allowing

safety specialists to focus on assessment rather than transcription. Training such NLP models requires distributed computing

(e.g., using Spark or TensorFlow on a cluster) to handle the volume of text data. Another AI application is duplicate case

detection – using algorithms to identify when two adverse event reports likely refer to the same underlying incident (important

for data cleanliness). A machine learning model can compare new incoming reports against a database of cases and flag

probable duplicates (based on similarities in patient demographics, dates, drug, and event descriptions). Implementing this

across millions of records is computationally intensive, so companies leverage big data tools to generate feature vectors for

each case and perform similarity matching at scale. AI is also used for signal prioritization: for example, a predictive model

might combine multiple inputs (disproportionality scores, clinical plausibility features, literature mentions) to rank safety signals

by likely significance, helping PV teams focus on the most relevant signals first. These models are trained on historical signal

outcomes (learning from past signals which turned out to be important vs those that were refuted) – a task requiring

aggregation of diverse data (structured safety data, unstructured text, outcomes of investigations) in a big data environment.

While regulators still expect human judgment in safety decisions, AI is becoming a valuable decision-support tool in PV, made

possible by the ability to crunch vast datasets.
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Example: A pharmacovigilance team monitors safety for a portfolio of drugs, receiving adverse event reports from around the world.

All incoming cases (from call centers, partner companies, health authorities, and literature) are funneled into a central data lake on

AWS S3 in near real-time. A Spark job runs every night to integrate that day’s new cases with the master safety dataset (which

includes 20 years of global safety data for all products). This Spark job updates disproportionality calculations for each drug-event

pair. In one such run, it flags a new signal: a rare renal disorder appears disproportionately in reports for a recently launched

medicine. The signal is automatically written to a “signal tracking” table in Snowflake and triggers an alert to the safety physician.

Simultaneously, the PV team has an NLP pipeline (developed with spaCy and Spark NLP) that processes each case narrative upon

arrival. For a new serious case related to this signal, the NLP model extracts that the patient had pre-existing diabetes and was on

two other medications. It suggests MedDRA coding for the narrative (which the case processor verifies) and highlights that the

patient’s concomitant drugs are known to affect kidneys (information retrieved from a knowledge graph). This context – gleaned

automatically – helps the safety physician quickly assess causality, noticing a possible drug-drug interaction. Meanwhile, the safety

data scientist uses Neo4j to visualize all cases of this renal disorder: a graph query finds that many involve the combination of the

new drug and one particular concomitant medication (the same one flagged by NLP). This insight (a potential interaction) is added

to the signal evaluation report. Over the next week, an AI model for signal prioritization (trained on past signal outcomes) ranks this

signal as high priority, given the strong disproportionality, supporting mechanistic plausibility (the drug combo could synergistically

harm kidneys), and increasing reporting trend. Based on all this data-driven input, the PV team rapidly escalates the signal, leading

to an update in the product label warning against concomitant use with that medication. All steps are documented: Spark logs the

data processing and statistical outputs, Neo4j stores the evidence of relationships among drugs and events, and Snowflake holds

the data that went into decision-making (with audit trails). This comprehensive, big-data-powered approach allowed the company to

detect and act on a serious safety risk within weeks of launch, potentially preventing patient harm. Importantly, although AI and big

data expedited the process, human experts reviewed the evidence and made the regulatory decisions, satisfying compliance while

benefiting from advanced analytics.

Comparison: Technologies for Pharmacovigilance

Technology
Role in PV Use

Case

Benefits and

Differentiators
Considerations

Real-World

Adoption

Hadoop/Spark

Batch integration

and analysis of

large safety

datasets (internal

and external).

Calculates

disproportionality

metrics (PRR, ROR,

EBGM) on millions

of case records.

Performs large-

scale merging of

databases

(company data +

FAERS/VigiBase)

and historical trend

analysis.

Scale: Can process

entire global safety

databases quickly (Spark

can compute a new

signal index across 10

million records

overnight). Flexibility:

Custom algorithms (e.g.,

detecting temporal

clusters or geographic

patterns) can be

implemented beyond

what off-the-shelf PV

tools provide. Enables

advanced analysis like

clustering of cases or

machine learning on case

features that wouldn’t be

feasible on single-server

solutions.

Requires data

engineering

expertise and

validation of new

methods

(regulators are

used to traditional

statistics in PV;

novel metrics from

Spark analysis

must be

understood and

confirmed by PV

experts). Also need

to ensure data

privacy (personally

identifiable info in

case narratives

should be

protected when

using big data

environments –

typically done by

using case IDs and

keeping patient

identifiers only in

the secure source

system).

High adoption in

large pharma and

regulators: Many

companies use

Spark or similar to

support signal

detection (often

alongside traditional

tools). Regulators

like FDA and EMA

use Hadoop/Spark in

their signal

detection platforms

(FDA’s FAERS public

dashboard is

powered by

Hadoop). Industry

examples: GSK built

a Hadoop-based

signal detection

platform to combine

company data with

external data; Roche

uses Spark to refine

signal detection

algorithms

incorporating

Bayesian methods.
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Technology
Role in PV Use

Case

Benefits and

Differentiators
Considerations

Real-World

Adoption

Cassandra

Real-time ingestion

and querying of

adverse event

streams. Used as a

buffering layer to

capture all

incoming case data

from various

sources with high

availability. Also

backs real-time

safety monitoring

dashboards (e.g.,

current case count

by product, day-

by-day reporting

rate during a

product launch).

High write throughput:

Can ingest thousands of

case records per second

without downtime,

ensuring no loss of data

even during spikes.

Durability and

availability: Replicated

across data centers –

critical for 24/7 PV

operations globally. Fast

key-based reads enable

quick retrieval of a case

or set of cases (e.g., all

reports for a single

patient or all cases in the

last hour) to facilitate

rapid triage.

Not ideal for

complex analytical

queries – data

typically flows from

Cassandra into a

warehouse or

Spark for heavy

analysis. Data

model must be

designed carefully

(e.g., might store

data indexed by

drug or by region

for the queries

needed).

Maintenance and

scaling of

Cassandra requires

expertise. Some

companies opt for

cloud alternatives

(like DynamoDB or

Cosmos DB) to

reduce ops burden.

Moderate adoption:

Some large PV

departments use

Cassandra or similar

(DynamoDB) in their

global intake

systems – especially

those that built

custom PV case

handling solutions.

For instance, a

company that

developed a custom

adverse event intake

portal might use

Cassandra under the

hood for resilience.

Not every pharma

does this – many

rely on vendor safety

systems that have

their own intake

logic. But as PV

goes more real-time

and data-heavy,

these technologies

are creeping in to

ensure scalability.

Neo4j / TigerGraph Graph

representation of

safety data:

patients, drugs,

events, outcomes

connected as a

network. Enables

detection of

complex

associations (like

multi-drug

interactions or

syndrome of co-

occurring events).

Also used to link

safety data with

other knowledge

(e.g., linking an

adverse event node

to literature or

biological pathways

that explain it).

Reveals relationships:

Can find non-obvious

connections – e.g.,

Neo4j can quickly find

that “Drug A + Drug B”

share an unusually large

number of serious

pneumonia nodes,

suggesting a drug-drug

interaction, as seen in

the example. Graph

algorithms can rank

signals (PageRank could

identify which adverse

event nodes are most

central – often reported

with many drugs – to

filter out common

background events).

TigerGraph’s speed

allows enterprise-scale

graphs (billions of

Graph approach is

new for many PV

teams – need

training to interpret

results. Data

preparation for

graphs (especially

merging data from

multiple sources

and defining

meaningful

relationships) is

intensive. Also, the

volume of data can

be huge (each case

can introduce

many

nodes/edges), so a

robust graph

infrastructure is

needed. Regulatory

decisions would

Experimental with

increasing interest:

A few pharma

companies and

research

collaborations are

exploring knowledge

graphs for drug

safety (often part of

broader healthcare

graph projects). For

example, a

collaboration

between pharma

and academia might

use Neo4j to study

polypharmacy

adverse outcomes in

elderly patients by

graphing medical

records and adverse

events. Tools like
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Technology
Role in PV Use

Case

Benefits and

Differentiators
Considerations

Real-World

Adoption

nodes/edges) to be

queried almost instantly,

which could support

interactive signal

exploration tools for PV

experts.

not be made solely

on a graph insight;

graphs serve as a

supportive analysis

requiring validation

through more

traditional

methods.

AstraZeneca’s

“Safety Intelligence”

initiative have looked

at linking safety data

with mechanistic

data via graphs.

While not

mainstream, graph

analytics in PV is on

the radar, especially

to tackle problems

like drug interactions

and syndrome

identification.

Snowflake/BigQuery

(Data Warehouse)

Central repository

for integrated

safety data and

analytics outputs.

Stores historical

signal metrics, case

metadata, product

exposure data, etc.,

allowing analysts to

query and join

these easily. Also

used to produce

regulatory reports

(like PSUR tables or

annual safety

summaries) by

aggregating large

safety datasets.

Easy slicing/dicing:

Safety scientists can run

SQL queries (e.g., “count

of events by system

organ class for drug X vs

comparators”) without

needing specialist tools,

complementing

dedicated PV systems.

Warehouses handle

concurrency, so multiple

teams (signals,

compliance,

epidemiology) can query

data at once.

Integration: Can join

safety data with

prescribing/exposure

data to calculate

reporting rates, or with

clinical trial data to

reconcile post-marketing

vs clinical profiles.

BigQuery’s speed on

huge datasets enables

quickly answering ad-

hoc safety questions that

would otherwise take

long database queries or

manual work.

Needs robust data

feeds from source

systems (cases still

maintained in

validated safety

databases; the

warehouse gets

copies for

analysis). Data in

the warehouse

must be kept in

sync with official

safety data and

properly

anonymized.

Analysts must be

careful to interpret

results correctly;

warehousing safety

data can

sometimes lead to

slight differences in

counts (if, say, data

was refreshed

before

reconciliation of

some cases). Thus,

outputs used for

regulatory

purposes usually

undergo

verification.

High adoption for

analytics: Many PV

departments

complement their

safety database

(e.g., Argus,

ArisGlobal) with a

data warehouse for

analytics and

reporting. Often the

safety system

vendor provides BI

extracts or the

company builds ETL

to a warehouse.

Snowflake is used by

some large pharma

PV teams to host

integrated safety

data marts that

combine

spontaneous

reports, literature

cases, and even

medical inquiries,

enabling

comprehensive

oversight. BigQuery

is used in some

innovative PV

setups, especially

where they integrate

real-world data

(claims/EHR) to

stratify safety data

by exposure metrics.

These warehouses
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Technology
Role in PV Use

Case

Benefits and

Differentiators
Considerations

Real-World

Adoption

are typically internal

tools for trend

analysis, benefit-risk

assessments, and

management

reporting (number of

cases, processing

times, compliance

with regulatory

reporting timelines,

etc.).

Informatica & Other

ETL

Automated data

pipelines to move

safety data from

intake systems to

analysis platforms.

Ensures data

consistency

between the source

of truth (safety

database) and

analytical copies

(warehouse,

Hadoop). Also used

to integrate diverse

data sources (lab

data, EHR data for

epidemiology

studies, etc.) into

safety analyses.

Reliability: Critical for

meeting regulatory

reporting timelines –

automates workflows like

“extract all serious cases

for quarterly analysis”

with guaranteed

repeatability. Data

quality: Can enforce

business rules (e.g.,

ensure all required case

fields are populated

before data is used in

analysis). Reduces

manual error in

assembling datasets for

things like periodic

reports.

Needs

configuration and

maintenance,

particularly when

source systems

change (like safety

database upgrades

or changes in data

dictionaries). As

with clinical ETL,

any

transformations

must be validated.

Also, volume can

be a challenge –

but modern ETL

tools (Informatica

Cloud, etc.) can

handle large

increments and

have connectors

for big data

sources (like

pulling data into

Hadoop or

Snowflake

directly).

Standard practice:

PV IT teams

commonly use

Informatica or similar

(Talend, etc.) to

manage data flows.

For example, GSK

might use

Informatica to

nightly update a

safety data mart

from their live safety

system and to feed

data to Empirica

Signal. Essentially,

wherever safety data

needs to move from

its operational home

to somewhere else

for analysis or

sharing, ETL

processes are set

up, and those are

often built with

enterprise tools to

ensure auditability.

Pharmacovigilance is being transformed by big data technologies from a reactive, report-by-report process into a proactive,

analytics-driven discipline. By aggregating vast amounts of safety data and applying advanced analytics:

Signal detection becomes faster and more sensitive – Distributed computing (Spark) spots subtle patterns in millions of records, and

graphs or ML can uncover complex risk factors (like interactions or patient subgroups) that traditional methods might miss. In our example,

these tools helped identify a drug-drug interaction signal within weeks of launch, something that might have taken much longer with manual

review alone.

Case processing is more efficient and consistent – NLP and automation handle repetitive tasks (extracting data from narratives, coding

events), reducing human error and freeing experts for deeper analysis. That means companies can keep up with growing case volumes

without linear increases in headcount. Importantly, it also means regulatory compliance (like timely case reporting) is maintained or

improved because cases are processed swiftly.
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Benefit-risk evaluation is more comprehensive – Data warehouses and integration of real-world data allow safety teams to contextualize

adverse events against how many patients are exposed and what risk factors they have. This leads to more informed decisions (e.g.,

determining if an adverse event rate is actually higher than background or not) and better communication with regulators and the public.

Throughout, compliance and patient safety remain paramount. Big data tools are used in PV to assist humans, not replace them:

signals flagged by algorithms are reviewed by safety physicians, and automated case coding is verified by case handlers. All these

processes are documented and auditable (with logs from Spark jobs, model outputs, etc.), so a regulator can see how a company is

monitoring safety diligently. The result is a PV system that can handle the ever-increasing data in modern drug safety (from

spontaneous reports, plus huge datasets like patient registries and social media) and extract actionable insights quickly, leading to

faster safety updates and risk mitigation. In essence, big data technologies – from Hadoop clusters to AI algorithms – are

empowering pharmacovigilance teams to detect risks sooner, analyze them deeper, and protect patients better, all while improving

efficiency and compliance in meeting global safety obligations.

Conclusion: Across all these domains – genomics, clinical trials, regulatory affairs, and pharmacovigilance – big data technologies

have become integral to solving pharma’s data challenges. They bring the ability to scale (storing and processing huge datasets),

speed (accelerating analyses that used to take days or weeks), integration (joining disparate data for holistic insights), and

intelligence (via advanced analytics and AI). Importantly, these technologies are implemented in ways that meet the strict

compliance requirements of pharma: validated workflows, audit trails, and data security measures ensure that even as data volume

and complexity grow, data integrity and patient privacy are maintained.
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DISCLAIMER

The information contained in this document is provided for educational and informational purposes only. We make no representations or

warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability of the information contained

herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or its representatives be liable for any loss

or damage including without limitation, indirect or consequential loss or damage, or any loss or damage whatsoever arising from the use of

information presented in this document.

This document may contain content generated with the assistance of artificial intelligence technologies. Despite our quality control measures,

AI-generated content may contain errors, omissions, or inaccuracies. Readers are advised to independently verify any critical information before

acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are the property of their respective

owners. All company, product, and service names used in this document are for identification purposes only. Use of these names, logos,

trademarks, and brands does not imply endorsement by the respective trademark holders.

IntuitionLabs.ai is an innovative AI consulting firm specializing in software, CRM, and Veeva solutions for the pharmaceutical industry. Founded in

2023 by Adrien Laurent and based in San Jose, California, we leverage artificial intelligence to enhance business processes and strategic

decision-making for our clients.

This document does not constitute professional or legal advice. For specific guidance related to your business needs, please consult with

appropriate qualified professionals.
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