
A Comparison of AI Code Assistants for

Large Codebases
By InuitionLabs.ai • 8/1/2025 • 75 min read

ai code assistant developer productivity code generation github copilot

amazon codewhisperer large scale development ide integration open source

An analysis of AI code assistants in large codebases. Evaluates Copilot, CodeWhisperer, and others on accuracy, context

handling, security, and IDE integration. - IntuitionLabs - Custom AI Software Development for pharmaceutical companies.

Leading AI Consulting USA and North American Pharmaceutical AI specialists. Led by Adrien Laurent, top AI expert USA,

multiple exit founder, patent holder, and 20 year software veteran based in San Francisco Bay Area. Premier biotech

consultancy specializing in: Custom CRM Development, ERP Development, AI Chatbot Development, Private AI

Infrastructure, Document Processing, PDF Extraction, Air-gapped AI, On-premise LLM deployment. #1 Veeva AI partner for

leading GenAI pharmaceutical solutions across North America biotech AI excellence.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 1 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

AI Code Assistants for Large Open-Source-

Integrated Codebases

Introduction

AI-powered code assistants have rapidly become part of the developer toolbox, promising to

boost productivity and streamline coding. Tools like GitHub Copilot, Amazon CodeWhisperer,

Tabnine, and emerging alternatives (e.g. Sourcegraphʼs Cody, Replitʼs Ghostwriter, Codeium,

and even ChatGPT-based plugins) all act as “AI pair programmers.” In this report, we compare

these assistantsʼ performance on large-scale codebases (e.g. big monorepos and modular

projects) that heavily rely on open-source libraries. Weʼll examine their code generation

accuracy, handling of large code context, real-time responsiveness, integration with popular

frameworks, IDE/build system compatibility, multi-language support, security and compliance

features, pricing, and developer feedback. All findings are supported by recent surveys,

benchmarks, engineering blog posts, and official documentation.

Overview of Leading AI Code Assistants

GitHub Copilot (by GitHub/Microsoft) is a cloud-based AI coding assistant originally powered by

OpenAIʼs Codex and now enhanced with GPT-4 for Business users. It provides context-aware

code completions and chat assistance in popular editors. Copilot was trained on billions of

public code lines (including open-source repositories) and has broad knowledge of programming

patterns. Itʼs widely adopted – used by 55% of developers in a 2023 survey (far more than any

other code tool) – and is known for strong general-purpose performance. Recent updates

(Copilot X) introduced features like an “agent mode” where Copilot can analyze your codebase,

suggest multi-file edits, run tests, and iterate on tasks autonomously.

Amazon CodeWhisperer (part of AWSʼs toolkit) is Amazonʼs answer to Copilot, initially

specializing in assisting with AWS-related code and cloud scripting. It provides real-time code

suggestions for a variety of languages and is especially tuned for AWS APIs and infrastructure

code. CodeWhisperer uses a proprietary transformer model trained on Amazonʼs in-house code

plus selected open-source code. It gained popularity among AWS-focused developers and those

interested in built-in code scanning. While newer and less broadly used (only ~5% of developers

in one survey used CodeWhisperer), it differentiates itself with security features and integration

into AWS workflows. As of 2024, CodeWhisperer is included in Amazon Q (Amazonʼs IDE toolkit)

and is free for individual use.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 2 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Tabnine is a pioneer in AI code completion, known for its privacy-focused approach. Unlike

Copilot and CodeWhisperer which run in the cloud, Tabnine offers the option to run models

locally or within a private cloud/VPC for enterprises. Its proprietary ML models are trained

exclusively on permissively licensed open-source code, explicitly avoiding code with restrictive

licenses. This means Tabnineʼs suggestions carry minimal licensing risk. Tabnine supports a wide

range of IDEs (VS Code, JetBrains, Vim, Sublime, etc.) and languages, and can even be self-

hosted on-premises for maximum control. It has over 1 million monthly users and often appeals

to companies with strict data compliance needs. Tabnineʼs completion quality historically was

slightly behind Copilotʼs (due to smaller underlying models), but it offers unique features like

team model customization and multiple AI model options for its chat assistant.

Other Notable Assistants: Sourcegraph Cody is an AI coding tool designed for large codebases

– it indexes entire repositories and uses embeddings to answer questions or generate code with

full project context. Replit Ghostwriter provides AI help within Replitʼs cloud IDE and is geared

toward quick prototyping across languages. Codeium is a free alternative plugin that offers code

completion and chat for many IDEs, positioning itself as an “open” source-friendly solution.

Developers also use ChatGPT (especially GPT-4) as an informal coding assistant – either via

OpenAIʼs web interface or VS Code plugins – which, while not an IDE-integrated tool by default,

can generate and explain code in many languages. These alternatives are relevant, but our focus

will remain on Copilot, CodeWhisperer, and Tabnine as representative leading tools (with notes

on others where appropriate).

Code Generation Accuracy and Relevance

For generating correct and relevant code, model quality and training data are key. GitHub

Copilot, leveraging OpenAIʼs advanced models (now GPT-4 for many users), generally provides

the most sophisticated suggestions in a wide range of scenarios. Its strength in understanding

context means it can often produce whole functions or classes that fit the codeʼs intent. In

benchmark tests on open-source repositories, Copilot tends to “win” general-purpose coding

tasks – particularly in well-represented domains like front-end web development (e.g.

suggesting idiomatic React or Vue code). Developers report that Copilotʼs suggestions feel

“smarter” and more logically on-target in complex code compared to smaller-model assistants.

An enterprise study noted Copilot offered “context-aware suggestions… not only syntactically

correct but also logically sound” for large, complex projects. However, Copilot can sometimes be

overconfident – e.g. inserting a variable or call that doesnʼt exist in your code – so a human must

still validate the AIʼs output.

Amazon CodeWhispererʼs accuracy excels in its niche: anything involving AWS services or

cloud infrastructure. Evaluations find that CodeWhisperer “dominates” tasks like generating

AWS CLI commands, AWS Lambda function code, or Terraform infrastructure-as-code snippets.

It is tuned with knowledge of AWS APIs and best practices, so it often suggests correct usage of

AWS SDK calls or cloud resource configurations out-of-the-box. For general-purpose coding

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 3 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

(say standard Python or Java algorithms), CodeWhisperer is competent but typically not

stronger than Copilot. One user testing both on Python found results “similar, with Copilot being

slightly better” in quality. CodeWhispererʼs model was initially smaller and limited in supported

languages, which meant it could lag on non-AWS tasks or less common frameworks. Amazon

has since expanded its language coverage (15+ languages), but some niche domains (e.g.

frontend UI code, niche frameworks) may still see less relevant suggestions than Copilot which

was trained on the broad GitHub corpus tabnine.com. CodeWhisperer also tends to be more

reactive – it often requires the user to start typing or press a trigger hotkey for suggestions –

whereas Copilot is more proactive in continuously offering completions. In summary,

CodeWhispererʼs accuracy shines for what it was designed for (cloud and secure coding

assistance), but for large-scale application code spanning many domains, developers often find

Copilotʼs suggestions more robust.

Tabnineʼs code generation has improved over the years but is generally described as reliable for

common patterns rather than highly complex logic. In benchmarks, Tabnine performed

“consistently” on basic code completions but struggled more than Copilot or CodeWhisperer

with generating complex algorithms or multi-step logic. Its underlying model (while continually

evolving) has been less powerful than OpenAIʼs GPT series that Copilot uses. For instance,

Tabnine might autocomplete a standard API call or small code block with high accuracy

(especially after learning your projectʼs patterns), but it may not synthesize an entire function to

meet a tricky specification as well as Copilot can. That said, Tabnine learns from your own

codebase over time – it “can be trained specifically on an organizationʼs proprietary code,” giving

it an edge in aligning with your coding style and naming conventions. This personalization means

that in a large enterprise codebase, Tabnine might start providing very relevant completions for

boilerplate and repetitive patterns unique to that codebase. Itʼs essentially a trade-off: Tabnineʼs

local model is safer and can be fine-tuned, but it isnʼt as generally intelligent as the massive

cloud models behind Copilot. For many day-to-day tasks, Tabnine is perfectly adequate (and it

never wanders off into non-permissible or weird suggestions due to its training constraints). But

for cutting-edge or highly intricate code generation, developers often augment it with Copilot or

ChatGPT when they need that extra “brainpower.” In fact, itʼs not uncommon to use multiple

assistants in parallel – e.g. accept Copilotʼs large suggestion for a complex function, but let

Tabnine provide quick small autocompletions elsewhere.

Other tools show strengths in specialized areas. Sourcegraphʼs Cody, for example, is excellent

at context-heavy tasks like refactoring or answering questions about your codebase. Itʼs been

described as “like having a senior engineer walking through your code” when you ask it to

improve or review code. Codyʼs suggestions prioritize consistency with the entire repository, so

its accuracy in large-scale refactors (e.g. renaming symbols project-wide, updating API usage

across files) is very high. ChatGPT (GPT-4), when used for coding, has extremely strong

generation capabilities – it can produce correct solutions to complex algorithmic problems or

even generate scaffolding for entire apps in one go. However, using a general chatbot lacks

direct IDE integration, so itʼs less context-aware of your code unless you paste relevant pieces

into the prompt. Newer entrants like Cursor AI attempt to combine a GPT-4 backend with direct

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 4 of 33

https://www.tabnine.com/blog/github-copilot-vs-amazon-codewhisperer/#:~:text=Announced%20in%20June%202021%20with,other%20programming%20languages%20and%20frameworks
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

codebase awareness; Cursor reportedly “uses GPT-4-turbo with context windows big enough to

process your entire repo in one go”, making its suggestions highly informed by the overall project

(weʼll discuss this more under large codebase support). In pure accuracy terms, GPT-4-based

tools (Copilot included) are currently top-tier, while smaller-model tools offer competent but

occasionally more limited suggestions. Itʼs worth noting that all these AIs can make mistakes –

an academic study found that Copilotʼs code solutions contained security vulnerabilities about

40% of the time in certain scenarios, underscoring that human review is still required

cyber.nyu.edu. In general, though, professional developers report that these assistants help

them write correct code faster – for example, Copilot users accept on average 30-40% of its

suggestions, which aligns with claimed productivity gains (e.g. “suggestions save ~55% of

development time on common tasks”).

Support for Large Codebases and Monorepo

Architectures

Working with a large codebase or monorepo (with many modules, packages, and cross-cutting

components) is a particular challenge for AI code assistants. The main limitation is the context

window – the amount of code the AI model can “see” at once. None of the mainstream coding

assistants can automatically ingest an entire multi-megabyte repository into a single prompt

(that would exceed model limits and be too slow). Instead, different tools use various strategies

to provide relevant context to suggestions:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 5 of 33

https://cyber.nyu.edu/2021/10/15/ccs-researchers-find-github-copilot-generates-vulnerable-code-40-of-the-time/#:~:text=A%20recent%20study%20by%20cybersecurity,be%20exploited%20by%20an%20attacker
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

GitHub Copilot focuses on the code youʼre actively editing and any open files. In fact, one of

Copilotʼs documented best practices for large projects is to open all relevant files for your current

task so Copilot can use them as additional context. GitHub calls this the “neighboring tabs”

technique – for example, if you open a file containing a class and its corresponding test file side by

side, Copilot will read both. It might then suggest an implementation in the class that satisfies the

testsʼ expectations, which it could not have known about if only the class file was open. This

approach yields measurably better suggestions – internal tests saw ~5% higher suggestion

acceptance when multiple open files were used as context. Copilot does not automatically scan

unopened files in your project (to avoid irrelevant noise and privacy issues). This means if something

important is defined elsewhere in the repo (e.g. a config constant, or a utility function), you need to

either open that file or copy it into the prompt for Copilot to know about it. While this may seem

limiting, itʼs by design: it keeps Copilot fast and focused, rather than overwhelming it with unrelated

code. In practice, when working in a monorepo, you might open the module(s) youʼre working on and

perhaps stub out references to other modulesʼ functions (so that Copilot has some hints). Copilotʼs

recent “@workspace” commands in Copilot Chat allow you to query the entire repository by

performing a search or index lookup behind the scenes. For example, you can ask Copilot Chat

something like “Find usages of function X in the workspace” and it will retrieve those from an index

to inform its answer. This is part of GitHubʼs evolving solution (Copilot Chat + repository indexing)

to better handle large codebases. Additionally, Copilot for Business can index an organizationʼs

private repos and use that for context in code suggestions and pull request analysis. In summary,

vanilla Copilotʼs inline suggestions have a limited view (just open files, typically a few hundred lines

of code), but Copilot Chat and associated features are extending that via code search and indexing

tools. Copilotʼs agent mode also shows promise in multi-file scenarios – it can automatically open

relevant files and even run build/test commands, effectively navigating a large project as a human

would. This agent capability (currently in preview) aims to “unlock new agentic workflows for large-

scale codebases” by letting Copilot traverse a monorepo for you.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 6 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Amazon CodeWhisperer operates on a similar principle of using the current file and any open

context. When youʼre coding in an IDE with the AWS Toolkit extension, CodeWhisperer will look at

your open editor content and recent lines to generate suggestions. It also pays attention to your

comments: you can write a comment describing a desired function and CodeWhisperer will attempt

to generate it. However, like Copilot, it will not automatically read through the entire project. In a

large modular codebase, CodeWhisperer might miss references that arenʼt in the immediate file.

Amazon hasnʼt (as of latest info) released an equivalent to Copilotʼs workspace-wide chat or indexing

for CodeWhisperer. They seem to rely on the developer to provide context (via open files or

descriptive comments). On the plus side, CodeWhispererʼs strong suit – AWS integration – means if

your large codebase is an AWS-focused monorepo (with e.g. CloudFormation templates, Lambda

functions across services, etc.), it might have relevant knowledge to connect the dots (like knowing

typical patterns of calling one AWS service from another). Furthermore, Amazon Q (which now

encompasses CodeWhisperer) includes features for understanding code: you can select lines of a

legacy codebase and ask Qʼs assistant to explain them. This is handy in large projects where

understanding existing code is as important as writing new code. So while CodeWhispererʼs core

completion isnʼt indexing everything, AWS is positioning it as part of a bigger toolchain (Q

Developer) that can help navigate and scan big codebases (through features like “security scanning”

across the code – more on that later). In practice, for a large monorepo using CodeWhisperer, a

developer might need to open relevant files or rely on the AWS console integration for certain things

(e.g. if editing an AWS Lambda function, the tool might know about related infrastructure defined in

other files if those are part of the AWS project context).

Tabnine being available as a local engine can potentially use slightly more context from your

machine, but it too is constrained by model input limits. By default, Tabnineʼs completion model looks

at the file youʼre editing and some surrounding text (and possibly other open buffers) to predict the

next tokens. One advantage of Tabnine Enterprise is that it can be fine-tuned on your entire

codebase and even run a dedicated indexing service. According to Tabnineʼs documentation, it can

leverage “locally available data in the developerʼs IDE” including things like imported libraries,

other open files, the current file, error messages, git history, and project configuration to

provide more accurate results. Moreover, Tabnine can connect to your teamʼs code repositories to

gain “global context,” and uniquely, it allows model customization – training a specialized AI on your

specific repo or codebase. This means that for a truly large codebase, an organization could have

Tabnine train on all the code (which captures long-range dependencies in the model weights), and

then the model inherently “knows” about functions and classes across the project even if they arenʼt

open. This isnʼt on-the-fly indexing, but rather an offline learning that improves suggestions over

time. So, Tabnineʼs approach to monorepos is to learn the projectʼs patterns in the background.

It wonʼt, in real-time, fetch an arbitrary file you havenʼt opened to answer a question (not without

some custom integration), but if your codebase has common architectures, Tabnine will start

reflecting that in completions. For example, if in a large repository you often call Module Aʼs methods

from Module B, Tabnine might autocomplete those calls correctly after seeing it a few times, even if

in a new file. The privacy of Tabnineʼs local operation also means you can let it “read” your entire

codebase without sending data out – something enterprises with monorepos appreciate. Still, when

it comes to ad-hoc queries like “find all references of X” or “rewrite every usage of Y across

modules,” Tabnine alone isnʼt sufficient – youʼd combine it with traditional IDE search or refactoring

tools, or use a specialized assistant like Cody.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 7 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Sourcegraph Cody and Cursor deserve mention as they explicitly target large codebase

understanding. Cody indexes your entire repository (creating vector embeddings for code snippets)

and uses that to answer questions or provide context for completions. For instance, you can ask

Cody “Where is this function defined?” or “How do I use class X?” and it will retrieve the relevant

files from the index and feed them into the LLM prompt. In effect, Cody can give meaningful answers

about code anywhere in your repo, not just open files. This makes it powerful for monorepos – you

can navigate code via natural language. Its code generation also uses the index: if you ask it to

implement something that relates to existing code, it will likely incorporate those related classes or

config from across the repo (by virtue of the retrieval step). Cursor, similarly, is an “AI-native” code

editor that can automatically search and open files as needed. Users note that Cursor can “navigate

large codebases” and perform multi-file refactors due to its agentic behavior and larger context

window (leveraging GPT-4ʼs extended context). The trade-off is these tools are newer and require

adapting to a new workflow (Cursor is its own editor, and Cody may need self-hosting for big private

repos). But if dealing with a huge codebase (millions of lines), these might be the only way to truly

have AI consider everything. For example, a Redditor discussing large projects said: “Cursor and

Windsurf (Codeiumʼs alias) are really the best for large projects due to their agentic natures that

automatically navigate large codebases.”. So, for a Google-scale monorepo, Copilot alone might not

cut it – an indexed approach like Codyʼs could be essential.

In summary, mainstream assistants like Copilot and CodeWhisperer mitigate large codebase

issues by limiting scope to relevant files (relying on the developer to guide context), which keeps

them responsive. They wonʼt magically know about code they havenʼt “seen” in the prompt, but

features like Copilotʼs @workspace search and Tabnineʼs project training help bridge gaps.

Newer AI dev tools are tackling the monorepo challenge by indexing whole repos or using huge

context windows, at the cost of more setup or different tooling. As of 2025, a pragmatic strategy

is to use Copilot (or CodeWhisperer) for day-to-day coding in large projects, but bring in tools

like Sourcegraph Cody when you need to ask questions across the entire codebase or apply

changes globally. GitHub has explicitly stated that not scanning the whole repo is a feature, to

avoid confusion and lag – the assistant stays focused. Indeed, if you need full-repo analysis

(security audits, architecture overhaul), those are considered outside Copilotʼs core mission and

better suited to dedicated tools. This division is likely to blur as AI models get larger context

capacities in the future.

Latency and Real-Time Responsiveness

When coding in real-time, the speed at which suggestions appear is crucial to maintaining flow.

GitHub Copilot generally feels very responsive – it streams suggestions as you type, often

almost instantly for small completions. Because Copilotʼs suggestion generation happens on

cloud servers, there is a slight network overhead, but Microsoft has optimized this heavily. Most

users find Copilotʼs latency unintrusive for day-to-day use. In fact, Copilotʼs ability to inject

suggestions on the fly (grayed-out text you can accept with a keystroke) is a major usability win

over needing to explicitly prompt each time. One caveat: when Copilot uses larger models like

GPT-4 (available in Copilotʼs higher tiers and chat mode), responses can be slower (on the order

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 8 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

of a couple seconds for a multi-line completion) compared to the near-instant Codex model

responses. Nonetheless, for typical line-or two-line completions, Copilot is tuned to be near-

real-time.

CodeWhisperer, at launch, was reported to be a bit slower on suggestions. A Copilot userʼs

first impression of CodeWhisperer noted that “CodeWhisperer took a bit longer to generate code

completions” and that it sometimes required pressing a shortcut (Option+C in VS Code) to fetch

a suggestion, whereas Copilot often just popped up suggestions without explicit prompts. This

implies CodeWhispererʼs integration might not pre-fetch as aggressively as Copilotʼs. The

difference in latency might be due to model size or AWSʼs cloud response times. The same user,

however, felt the slightly slower speed was not a dealbreaker, and expected AWS would improve

it. In general, CodeWhisperer provides suggestions “in real time” as you write code or

comments, but if weʼre splitting hairs, Copilot currently has the edge on feeling seamless. Itʼs

worth noting that CodeWhispererʼs free tier might even deliberately throttle or limit throughput

(to manage AWS costs), whereas Copilotʼs paid subscription is designed for continuous use.

Tabnine can often feel extremely fast, especially when using a local model. Since Tabnineʼs

lightweight model can run on your machine (leveraging CPU/GPU), completion suggestions can

appear with minimal lag (no network round-trip). Many developers appreciate this snappiness –

Tabnine “often feels snappier due to local inference”. Itʼs basically like having a super-charged

autocomplete thatʼs as responsive as your editor. Of course, if you use Tabnineʼs cloud and chat

features, speed will depend on the chosen model (using GPT-4 via Tabnine Chat will have similar

latency to Copilotʼs GPT-4). But for inline code completion, Tabnineʼs default model is optimized

for quick suggestions of a few words or a line. The trade-off, as mentioned, is that because itʼs

smaller, it may not generate large blocks as Copilot can – but for the small stuff, itʼs lightning

quick. In a large codebase scenario, Tabnineʼs speed means it can keep up even if you have an

older machine or spotty internet, since itʼs not constantly calling out to a server.

Other factors: All these tools have to strike a balance between responsiveness and

thoroughness of suggestion. Copilotʼs designers explicitly limited context size to keep latency

low – as one GitHub engineer noted, scanning hundreds of files for every completion “would be

slow and consume bandwidth,” harming that real-time feel. By focusing on just the open file(s),

Copilot keeps the data sent to the model small, enabling sub-second completions. Similarly,

Tabnineʼs local model doesnʼt consider your entire project at once, which keeps its computation

quick. Cursor and Cody, which do more heavy lifting (searching indexes, using GPT-4), might

incur more noticeable delays when answering complex queries or doing multi-file edits. For

instance, if you ask Cody a question that requires scanning 50 files, it will take a few seconds to

retrieve and synthesize that info – acceptable for a deliberate query, but not something youʼd

want happening on every keystroke. Thus, for “real-time coding”, Copilot and Tabnine currently

lead in responsiveness, with CodeWhisperer a close follower after some improvements. When

you trigger a suggestion manually (say hitting a hotkey for CodeWhisperer or Tabnineʼs longer

completion), expect maybe a 0.5–1.5 second pause for a multi-line suggestion to appear – still

quite fast in the scheme of things.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 9 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Concurrency and IDE load: In large codebases, your IDE might itself be under heavy load (e.g.

processing indexing or language server features). Running AI assistants can add to CPU/memory

usage. Tabnineʼs local model will consume RAM and some CPU/GPU. Copilot offloads compute

to cloud, so its extension is lightweight, but it uses some network and might pop up suggestions

asynchronously. Generally, users havenʼt reported major slowdowns from these tools except in

some cases with older PCs or extremely large files. One must be mindful that using multiple

assistants simultaneously (some devs do run Copilot and Tabnine together) could potentially

interfere or at least clutter the experience. But they can be configured with different trigger keys

to avoid race conditions. Itʼs actually interesting that some developers combine them: e.g. use

Copilot for on-demand code generation via chat, but keep Tabnine running for low-latency

autocompletion on routine stuff. This hybrid approach exploits each toolʼs strength in

responsiveness vs. capability.

To quantify latency: Copilotʼs average completion latency was reported by one source as around

0.2 seconds for frequent small suggestions (virtually instant), and a couple seconds for larger

(multi-line) suggestions. CodeWhisperer might have been, say, ~500ms to 1s on similar tasks

(anecdotally slightly slower). And Tabnine local can be under 100ms for completing the current

word or line (basically as fast as local IDE autocomplete). For chat interactions (full-function

generation on demand), Copilot (GPT-4) might take 5–10 seconds to generate a complex

answer, whereas Tabnineʼs smaller chat model could respond in 1–3 seconds but with simpler

output. These differences are narrowing as infrastructure and models improve. AWS likely

leverages its cloud efficiency to reduce CodeWhispererʼs latency over time, and OpenAI

continuously works on making large models faster. In any case, none of these tools have such

latency that you go get a coffee waiting for a result – theyʼre all designed to keep you in flow.

Integration with Open-Source Libraries and Frameworks

Modern large codebases pull in numerous open-source frameworks (React, Angular, TensorFlow,

NumPy, Spring, Django, Kubernetes APIs, etc.). A useful AI assistant must understand those

librariesʼ idioms to generate relevant code. Since these AI models were trained on vast amounts

of open-source code, they often excel at using popular frameworks correctly in suggestions.

GitHub Copilot clearly benefits from its training on GitHub data – it “learned” from countless

open-source projects using frameworks. As a result, Copilot can autocomplete typical

framework-specific code with uncanny accuracy. For example, if you start writing a React

component, Copilot might suggest the full function with hooks and state already filled in,

following best practices. Itʼs noted that “Copilot wins in general-purpose tasks, especially for

frontend frameworks like React and Vue”. It recognizes common patterns (like how to define a

React useEffect or how to set up Express.js routes) without needing much guidance. Similarly,

in a TensorFlow context, if you write a comment “# build a 3-layer neural network”, Copilot may

produce a reasonably well-structured TensorFlow/Keras model code, because it has seen similar

code before. The key advantage is breadth: Copilotʼs suggestions draw on examples from many

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 10 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

frameworks and languages. One slight disadvantage: because its training data included

everything (including possibly older or deprecated practices), it might occasionally suggest

outdated usage of a library if your context is ambiguous. But generally, Copilotʼs knowledge

stays up to date with major open-source trends (OpenAI has likely fine-tuned newer models with

more recent data up to 2021+). Copilot also has an OpenAI plugin ecosystem now (in Copilot

Chat) that can integrate documentation lookup – e.g. it could retrieve official docs for a library if

asked, which helps ensure correctness for frameworks usage. If your large codebase relies on

something less common (say a niche open-source library), Copilot might not be as fluent unless

that library was in the training set. But anything on PyPI, NPM, Maven Central etc. likely was.

CodeWhisperer likewise was trained on open-source code (though reportedly a more curated

set) and is proficient in common libraries, especially in its supported languages. It explicitly

supports 15 languages now, including Java, Python, JavaScript/TypeScript, C#, Go, Rust, PHP,

Ruby, C/C++ and more. This means it has seen plenty of open-source usage for things like

Pythonʼs pandas or Javaʼs Spring framework. In practice, CodeWhispererʼs marketing

emphasizes AWS cloud libraries (for example, generating code using AWS SDKs for S3, EC2,

etc., with correct API calls). Itʼs “optimized for the most-used AWS APIs”, so you can be

confident using it for AWS Lambda, S3, DynamoDB calls, infrastructure-as-code definitions,

etc… For other open-source integrations: developers have noted that Copilot currently does

better with front-end frameworks than CodeWhisperer. But CodeWhisperer is by no means

clueless – if youʼre writing, say, a Node.js app, it will complete code using Express or Axios

normally. One unique aspect: if CodeWhisperer suggests code that calls an open-source library

in a way very similar to a known snippet, it will cite the source repository and license (so you

know where that pattern came from) aws.amazon.com. This can indirectly help ensure youʼre

aware of how that library is used in context. CodeWhisperer also encourages good practice by

sometimes suggesting relevant documentation as comments. For example, it might insert a

comment like “// Using TensorFlowʼs Sequential model” if it generates such code, as a hint. Still,

CodeWhispererʼs relative newness shows in some gaps – an early review mentioned the lack of

support for things like Terraform, Markdown, HTML/CSS at launch medium.com. AWS is likely

expanding this, but Copilot already handles those (write a Terraform resource block in Copilot

and it will likely complete the whole thing). In big polyglot projects relying on many OSS tools,

Copilotʼs broader exposure may make it more versatile.

Tabnine supporting “officially a wide range of languages and frameworks” means it was trained

on code spanning major ecosystems – Angular, React, Node, Java, Python, etc. It will generate

code that uses these libraries properly, but thereʼs a nuance: Tabnineʼs model was trained only

on permissively licensed code (MIT, Apache, etc.). While most popular libraries have at least

some permissive examples, if a frameworkʼs best usage examples were primarily in GPL code

that Tabnine omitted, it might have a smaller pool of patterns to draw from. In reality, though,

frameworks like React, TensorFlow, Kubernetes have abundant Apache/MIT-licensed examples

(official examples, documentation code, etc.), so Tabnine likely picked up their usage. Users do

report Tabnine can autocomplete common framework code – e.g. completing a React useState

declaration or a Flask route. However, because Tabnineʼs core strength is completion rather than

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 11 of 33

https://aws.amazon.com/blogs/aws/amazon-codewhisperer-free-for-individual-use-is-now-generally-available/#:~:text=The%20code%20developers%20eventually%20locate,generated%2C%20helping%20lower%20the%20risk
https://medium.com/@thiagoalves/first-impressions-of-amazon-codewhisperer-from-a-github-copilot-user-cba5b03f65ac#:~:text=During%20my%20tests%2C%20I%20felt,file%20and%20writing%20Terraform%20code
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

generation, it might not invent a whole use of a library from scratch as readily. Itʼs more likely to

fill in the next bit once youʼve started using the library. The company also says they can fine-

tune models on your code which might include how you use certain libraries internally. So if your

project has a specific way of using an open-source framework, Tabnine can learn that and stick

to it.

Other assistants: ChatGPT (GPT-4) has an encyclopedic knowledge of libraries (including

documentation it ingested), so asking it how to use a certain open-source tool yields very

accurate code and explanations. It might even warn about version differences. For instance, it

can produce Kubernetes YAML or Dockerfiles from scratch based on general knowledge.

Sourcegraph Cody can search the web or your code for library usage examples if needed (in

enterprise mode it can combine documentation sources). Cody also can integrate with

Sourcegraphʼs search of open-source code, theoretically giving it an external memory of OSS

patterns. That said, Copilot and others already have the data baked in from training.

In large codebases, integration with frameworks often means dealing with lots of

import/require statements and ensuring the AI respects project-specific versions. Copilot tends

to automatically add import lines for libraries when suggesting code (e.g. if it suggests numpy

code, it might add import numpy as np at the top). CodeWhisperer also does this, but

interestingly, it will check if an import is already present to avoid duplicates. Both Copilot and

CodeWhisperer have seen so many open-source integrations that they often know by name what

something is. For example, if you name a variable df in Python and call df. – Copilot likely

assumes itʼs a pandas DataFrame and offers relevant methods (df.head() , etc.) because that

pattern is extremely common. CodeWhisperer might do the same if it infers context. For cloud

frameworks: Copilot is not specifically tuned for AWS, but it still suggests AWS usage correctly

much of the time (just from learning from GitHub). But CodeWhisperer might edge it out in

complicated AWS combos. One comparative note stated “Copilot may struggle in scattered or

poorly documented code. Tabnine can learn your patterns… CodeWhisperer goes beyond

suggestions and actually flags insecure code patterns” – this implies that all three can insert

open-source library calls easily, but CodeWhisperer might point out if you misuse them

insecurely (like using an old crypto function).

Kubernetes & DevOps frameworks: Many large systems have config files (YAML, Docker, etc.).

Copilot is known to do a solid job with these – for example, writing a GitHub Actions workflow or

a Kubernetes deployment YAML from a prompt. CodeWhisperer, being AWS-focused, is likely

good at CloudFormation or CDK snippets. Tabnine will complete config syntax too, though thatʼs

less about logic and more about structure. If you have Bazel build files (common in monorepos),

none of these have deep semantic knowledge of Bazel (since Bazel is more configuration than

code). However, you can guide them. In fact, GitHub recently introduced repository-level custom

instructions where you can tell Copilot about your build system – e.g. “We use Bazel, not Maven.

Always suggest code samples with Bazel.”. This kind of customization ensures Copilotʼs

framework suggestions align with your open-source stack (in this example, if you ask for a Java

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 12 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

dependency snippet, Copilot would give a Bazel BUILD rule rather than a Maven snippet

because you told it to). This is especially useful in large polyglot repos with custom tooling.

Bottom line: All the major assistants are quite adept with common open-source integrations.

GitHub Copilotʼs broad training data gives it an advantage in many popular frameworks (front-

end, data science, etc.), while Amazon CodeWhisperer is the go-to for AWS and related cloud

tech. Tabnine will not introduce code that violates open-source license policies and will generally

suggest framework usage consistent with what it has seen in high-quality permissive code. If

your project leans heavily on certain frameworks, itʼs worth checking if the assistant supports or

“knows” them: e.g. CodeWhisperer did not initially support Markdown/HTML completions, which

matter if your repo has a lot of documentation or web template code medium.com. Copilot does

handle those (it will auto-complete Markdown tables or HTML tags nicely). Both Copilot and

CodeWhisperer support Jupyter notebooks to some extent (Copilot works in e.g. VSCode

notebooks; CodeWhisperer can complete code in notebooks inside VSCode as noted by a user).

So data science workflows using open-source libraries (Pandas, Matplotlib) are well-covered by

both.

As large projects often integrate dozens of OSS components, using these assistants can be like

having an encyclopedia of StackOverflow at your fingertips – they recall not just your code, but

how the world uses these libraries. Just remain cautious: the code they suggest is only as good

as the examples theyʼve seen. If a particular open-source integration has tricky nuances

(threading in TensorFlow, or security config in Spring), double-check the suggestions against

official docs. The AI can get the gist right (because itʼs seen common usage) but might not know

the latest best practice if it changed recently.

IDE and Build System Compatibility

AI code assistants need to plug into developersʼ existing workflows. Letʼs compare their support

for IDEs, editors, and build systems:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 13 of 33

https://medium.com/@thiagoalves/first-impressions-of-amazon-codewhisperer-from-a-github-copilot-user-cba5b03f65ac#:~:text=During%20my%20tests%2C%20I%20felt,file%20and%20writing%20Terraform%20code
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

GitHub Copilot offers extensions for all major environments: Visual Studio Code, Visual Studio,

JetBrains IDEs (IntelliJ, PyCharm, WebStorm, etc.), Neovim/Vim, and even the command-line

(thereʼs a copilot-cli and a GitHub Codespaces integration). Itʼs pretty much ubiquitous in

support. By 2025, Copilot is even baked into VS Code by default (Microsoft bundles it). JetBrains

support means it works in Android Studio, CLion, etc. Thereʼs also an integration for Xcode via a

community plugin, and some have used Copilot in Jupyter as well. Copilot can thus be used whether

youʼre working in VSCode on a front-end JS project or in IntelliJ on a massive Java monorepo. It

doesnʼt particularly interact with build systems like Bazel or Maven except through how it generates

code. But as mentioned, Copilot has a new “repository custom instructions” feature where you can

inform it about your tooling. For example, you can put a note in your repo that “we use Bazel for Java

dependencies instead of Maven” – then when Copilot suggests build or dependency code, it will

prefer Bazel syntax. This effectively makes Copilot respect your build system conventions, which is

crucial in large projects (no one wants it suggesting a pom.xml change in a Bazel project!).

Additionally, Copilotʼs pull request features can generate descriptions and even code reviews,

which integrate with GitHubʼs platform rather than IDE, but thatʼs more for code review workflows. In

terms of build system compatibility, Copilot doesnʼt directly integrate with say, running Bazel builds,

but its agent mode can execute commands – theoretically, Copilotʼs agent could run bazel test

//... if instructed, then read errors and fix code. That is still experimental.

Amazon CodeWhisperer integrates via the AWS Toolkit extension. It supports VS Code, JetBrains

IDEs (IntelliJ, PyCharm, WebStorm, etc.), AWS Cloud9 (web IDE), and even the AWS Lambda

console. In JetBrains, it works where the AWS Toolkit works (which includes Rider, Eclipse via AWS

Toolkit, etc.). It doesnʼt have an official Vim/Neovim support as of yet. One criticism early on was that

installing CodeWhisperer felt heavier because you had to install the whole AWS Toolkit (which

includes a lot of AWS tools). But once set up, it behaves like Copilot in those IDEs (you get inline

suggestions). Eclipse support is mentioned as well (since many Java devs on AWS use Eclipse). For

build systems, CodeWhisperer doesnʼt have special hooks, but being AWS-centric, it likely is aware

of things like SAM or CDK used for building/deploying serverless apps. If youʼre using Bazel or

Bazelisk, CodeWhisperer isnʼt going to know that unless your code/comment tells it (and it probably

hasnʼt seen as much Bazel BUILD file syntax in training as Copilot, which has tons of GitHub data).

So you might have to provide hints in comments if you want completions of build files. There is no

known feature like Copilotʼs custom instructions for CodeWhisperer regarding build tools as of early

2025.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 14 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Tabnine supports an even broader range of editors because itʼs been around longer in this space. It

has plugins for VS Code, all JetBrains IDEs, Sublime Text, Atom, Emacs, Vim/Neovim, Jupyter

notebooks, and even newer IDEs like VS Code for Web or Eclipse Che. Basically, if you have a

favorite editor, Tabnine likely has a client or can be configured via a language server protocol. This

wide support made Tabnine popular with developers who werenʼt using VS Code. So if your large

codebase is primarily worked on in, say, CLion or an older editor, Tabnine might be your only choice

among these tools (Copilot and CodeWhisperer focus on modern IDEs). Tabnine doesnʼt need cloud

connectivity if using local, so itʼs fine in air-gapped development environments or behind corporate

firewalls – a huge plus for some enterprise setups. In terms of build systems, Tabnine doesnʼt

directly interact with them, but because it can be fine-tuned, you could conceivably train it on your

build files. If your codebase uses Bazel extensively (lots of .bzl and BUILD files), you might find

Tabnine completing those more intelligently after some use. Officially, Tabnine notes support for

frameworks like Angular, React, etc., which implies itʼll autocomplete config files like angular.json

or package.json entries as well. On compatibility: one scenario – if your company uses a custom

IDE or older version not supported, Tabnineʼs local model could still be used via their CLI or API.

Copilot and CodeWhisperer currently donʼt offer a standalone CLI tool (Copilot CLI exists but itʼs

limited to terminal translations).

Sourcegraph Cody is available as a VS Code extension and also integrates into the Sourcegraph

web UI. Cursor is itself a modified VS Code, so youʼd use that as your editor (which may be a

drawback if you love another IDE). Codeium offers plugins for VS Code, JetBrains, Vim, etc., similar

to Tabnineʼs range. And Replit Ghostwriter is tied to Replitʼs online IDE (not applicable outside it).

So, for professional large projects, youʼre likely in VS Code or JetBrains, and all three main tools

support those. If youʼre in something like IntelliJ with a Bazel plugin (a common setup for large

monorepos), Copilot and CodeWhisperer will work since they have IntelliJ plugins. They wonʼt

interface with Bazel directly, but you could still ask Copilot Chat something like “whatʼs the Bazel

target to build this module?” and if your BUILD file is open, it might figure it out.

Build and CI Integration: None of these coding assistants are build systems, but they can assist

with build config files. For instance, if you start writing a GitLab CI YAML or a GitHub Actions

workflow, Copilot can complete it since those are common OSS patterns. CodeWhisperer might

not have been explicitly tuned on CI config, but if itʼs just YAML, it could work with enough clues.

Tabnine will complete repetitive parts once itʼs seen a bit. Thereʼs also mention that

CodeWhispererʼs Q Developer ties into Slack and GitLab Duo, suggesting you might get code

assistant features in those environments (e.g., asking the bot in Slack about code). This

indicates broader integration beyond IDE, but details are sparse.

Compiler/Language Server Integration: One nice thing is that Copilot and Tabnine do not

conflict badly with language servers or linters – they insert code, which your normal tools then

compile/lint. Copilotʼs agent mode actually watches compiler output and test results to iterate,

which is a direct integration with build/run feedback. This is experimental but promising: imagine

writing code, having Copilot run the tests via your build system (Maven, Bazel, etc.), see failures,

and fix the code – all automated. Early demos show it responding to compilation errors and

adjusting code. Thatʼs a deep integration into the build/test loop (though requires granting

Copilot permission to run commands). Tabnine doesnʼt do that; it sticks to editing.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 15 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

CodeWhispererʼs security scan could be seen as integration into a static analysis build step (it

scans code for issues on demand).

In summary, IDE compatibility is strong for all (VS Code and JetBrains being common to each).

Build system compatibility is more about how the AI adapts to your projectʼs conventions:

Copilot is now customizable (via instructions) to follow your build and coding style, Tabnine can

be fine-tuned or self-hosted to know your environment, and CodeWhisperer works best in AWS-

centric build flows (like SAM CLI or CDK apps) but doesnʼt have explicit Bazel/Maven awareness

beyond what it learned. None of these require any change to your build system – they work at

the code editor level. So you wonʼt have a problem using them in a Bazel monorepo or a CMake

project; the only consideration is whether their suggestions align with your build tooling (for

which you might need to nudge them with comments or configuration). One notable pricing tier:

Copilot for Business includes “public code filtering” and policy controls, but also does not

retain your code (for privacy). Itʼs not directly about build, but it means enterprises can use it

without fearing code leakage, which is relevant when plugging an AI into your tightly controlled

build environment. Similarly, Tabnineʼs on-prem mode ensures nothing leaves your network,

which can be crucial if your build/test environment is isolated.

To wrap up: you can likely use any of these assistants in your preferred IDE for your large

codebase, but Copilot is the most plug-and-play across environments, CodeWhisperer ties into

AWSʼs ecosystem, and Tabnine offers the most flexibility (from Vim to enterprise on-prem IDEs).

If your build system is very custom, consider using Copilotʼs custom instruction file to teach it, or

use Tabnineʼs training. Developers have already found workarounds to get these AIs to generate

correct Bazel or other build config by providing examples or instructions. And as tooling evolves,

expect even deeper IDE integration – e.g. error-based suggestions, or chat ops that can run

builds and fetch logs to help you debug, further blending into the software development

lifecycle.

Multi-Language Support

Teams maintaining large codebases often work with multiple programming languages. A code

assistantʼs utility greatly increases if it can hop between languages and tech stacks. Hereʼs how

the tools stack up in terms of language coverage:

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 16 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

GitHub Copilot: Officially, Copilot is advertised to work for “dozens” of languages. It was initially

optimized for a core set: Python, JavaScript/TypeScript, Ruby, Go, C#, C++ among others

tabnine.com. In practice, because Copilotʼs underlying model (GPT) was trained on essentially all

public code, it can handle almost any language or file type, including less common ones. It can

generate SQL queries, shell scripts, PHP, Swift, even things like assembly or shader code if it saw

enough of it. If a language is extremely obscure or proprietary, Copilot might struggle simply due to

limited training data. But for all mainstream languages and many niche ones, Copilot will provide

suggestions. There are countless anecdotes of Copilot successfully completing code in Haskell, Perl,

Fortran, etc., even though those arenʼt “officially” listed – just because those languages appear on

GitHub. Notably, Copilot can also handle markdown text, writing documentation, and even translating

between languages (e.g., it can help port a snippet from Java to C# if prompted, leveraging its

multilingual knowledge). Its multi-language prowess is a big reason developers across different

domains adopted it so widely. If your large codebase has a frontend in TypeScript, backend in Java,

with some Python scripts and Terraform configs, Copilot can assist in all those contexts within the

same IDE.

Amazon CodeWhisperer: At GA (General Availability) in April 2023, CodeWhisperer announced

support for 15 programming languages: Python, Java, JavaScript, TypeScript, C#, Go, Rust, PHP,

Ruby, Kotlin, C, C++, Shell scripting, SQL, and Scala. This list is quite comprehensive and covers

most needs. It notably added languages beyond the early previewʼs Java/JS/Python, showing AWSʼs

commitment to broadening support. However, itʼs unclear how well CodeWhisperer works with

languages outside this list. For example, if you try to get suggestions for Swift or R or Haskell in

CodeWhisperer, it may simply have no training data or not trigger at all. So, CodeWhisperer is multi-

language but not “all-language.” It should handle typical enterprise stacks (the inclusion of Kotlin,

Rust, Scala is great for those ecosystems). It also covers SQL and shell, meaning it can suggest

commands or queries. It does lack some specific domains – e.g. no mention of Swift/Objective-C (for

Apple developers), no mention of MATLAB or Dart, etc., which Copilot would at least try. For multi-

language projects, CodeWhisperer will work as long as you stick to those 15 (which you likely are if

youʼre on AWS). One cool thing: CodeWhisperer can even help with two languages in one

environment, e.g., inside a Jupyter notebook mixing Python and shell, it can do both. It also was

noted to support Jupyter Notebooks in VS Code, which often means switching between Python code

and Markdown – it can do both (completing the Markdown documentation as well).

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 17 of 33

https://www.tabnine.com/blog/github-copilot-vs-amazon-codewhisperer/#:~:text=Announced%20in%20June%202021%20with,other%20programming%20languages%20and%20frameworks
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Tabnine: Tabnineʼs “official” supported languages and frameworks include Angular, C, C++, C#, Go,

HTML/CSS, Java, JavaScript, Kotlin, Node.js, Perl, PHP, Python, React, Ruby, Rust, Swift, TypeScript.

Thatʼs a large list hitting most web, systems, and mobile languages. Tabnine has been used for

YAML, JSON, and other config files too, though those arenʼt languages per se (itʼll autocomplete

based on patterns). Because Tabnineʼs underlying model can be fine-tuned on any code, you could

potentially use it for other languages by training it (e.g., some have tried it on COBOL or niche DSLs

after providing samples). By default, if you open a file type Tabnine doesnʼt explicitly know, it might

just treat it as text and still try to find patterns. So it might still provide some suggestions (like

completing repeating words, etc.), but not intelligent code. The list above is pretty broad – it even

has Swift which CodeWhisperer doesnʼt claim. And Tabnine had support for things like Xcode via

their app, so iOS/macOS devs could use it. In a polyglot monorepo, Tabnine will handle transitions

between languages seamlessly as you switch file types. One limitation: Tabnineʼs strength in each

language correlates with how much high-quality permissive code of that language was available. For

example, it might be excellent in Java or JS (tons of MIT/Apache code out there), but perhaps less so

in something like Swift if a lot of Swift code on GitHub is under GPL (hypothetically). However, since

Appleʼs code and many Swift projects are Apache, itʼs likely fine.

Others: Codeium boasts support for “over 20+ languages” – similar to Copilotʼs openness, including

less common ones. It tries to be an open alternative to Copilot, so multi-language is a given. Replit

Ghostwriter currently focuses on languages available on Replit (which include many mainstream ones

and some edu-focused ones like P5.js). ChatGPT can do any language if given enough context or

examples, even pseudo-code.

Crucially, all these assistants can often complete not just code in a single language, but multi-

language tasks like writing code that glues two languages. For instance, writing a C++ snippet

that calls Python (embedding Python interpreter) – Copilot could suggest that because itʼs seen

such cross-language patterns. Or writing a web app, where you have HTML, CSS, and JS in the

same file (like a .vue single-file component) – these tools handle that context switching. They

are aware of file context: e.g., in a .html file Copilot will offer HTML suggestions, in a

<script> tag inside it, it will start offering JS suggestions.

For build systems: those often involve DSLs (Bazelʼs Starlark, CMakeʼs syntax, Gradleʼs

Groovy/Kotlin DSL, etc.). Copilot and friends can attempt those as well, since they are present on

GitHub. Copilot has been known to help with CMakeLists or GitHub Actions YAML simply by

pattern. Tabnine might catch on after youʼve written a couple such files.

One more thing to consider: comment and documentation languages – writing commit

messages, README text, or docstrings. Copilot has special modes for that (it can suggest

natural language sentences). CodeWhisperer similarly can suggest comments and even translate

them (they highlight that it encourages writing comments to get better suggestions). Multi-

language in that sense also means combining natural language and code. All three handle that

(with Copilot Chat being explicitly good at conversational Q&A about code in English).

In a large enterprise, you might have some legacy languages (maybe some mainframe COBOL or

a MATLAB script for analytics). None of these are guaranteed to handle those well. Copilot would

try (it might actually do okay on COBOL as anecdotally some have tried). CodeWhisperer likely

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 18 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

wouldnʼt even activate for COBOL filetype (not supported). Tabnine if trained could, but out-of-

the-box no.

So, if your codebase spans everything from a web frontend to a kernel module, Copilot is

presently the most agnostic and far-reaching in language support. CodeWhisperer is strong but

within its supported list. Tabnine is broad and highly configurable, ideal if you want to extend

support to custom languages via training.

To quantify: Copilotʼs 2023 docs said it worked “especially well” for Python, JavaScript,

TypeScript, Ruby, Go, C#, C++, and indeed those are where it shines (also add Java, since

Codex was pretty good at Java too). CodeWhisperer listing 15 languages covers most

professional needs – they just lag on a few ecosystems (iOS, low-level embedded perhaps).

Tabnine listing ~18 languages and frameworks covers similar ground and even includes front-

end frameworks explicitly (Angular, React). So any codebase primarily in those languages will

get first-class support. Multi-language projects (like a microservices repo with some services in

Java, some in Python, etc.) could even use different assistants for different parts if one is better

in one language. But honestly Copilot and Tabnine donʼt require that – they handle switching on

the fly.

Edge cases: Things like regex or config languages: Copilot will cheerfully generate regex for you

if you comment what you want – a nifty use. CodeWhisperer also filters out “biased or unfair”

suggestions (like it wonʼt output slurs or problematic language) aws.amazon.com, which mostly

matters for natural language generation but could also apply to code (they avoid suggesting

something that looks like hardcoded credentials etc.). This is a safety measure but not directly

language support, though itʼs part of how it handles output in any language.

Overall, multi-language support is robust in these tools, with Copilot being the leader in

breadth due to its training, CodeWhisperer covering the major ones thoroughly, and Tabnine

giving a broad (and customizable) coverage with a focus on what enterprises use. If your large

codebase involves multiple languages, you can likely use a single AI assistant across all of them

in a unified way – a big plus for developer productivity since you donʼt need separate tools for

each tech stack.

Security and Compliance Considerations

As powerful as AI code assistants are, they raise important security and compliance issues in a

large codebase context. We need to consider two facets: (1) the security of the code they

generate (does it introduce bugs or vulnerabilities?), and (2) the licensing/IP compliance of

generated code (could it plagiarize code that puts you in legal risk?). Weʼll also note how each

tool handles sensitive data and privacy.

Code Generation Security: All AI suggestions should be reviewed for correctness and security,

but Amazon CodeWhisperer particularly emphasizes secure coding. CodeWhisperer is currently

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 19 of 33

https://aws.amazon.com/blogs/aws/amazon-codewhisperer-free-for-individual-use-is-now-generally-available/#:~:text=The%20code%20developers%20eventually%20locate,generated%2C%20helping%20lower%20the%20risk
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

the only assistant with built-in security scanning for vulnerabilities. It can perform a static

analysis (SAST) on your code – both the AI-generated code and your own – to detect issues like

SQL injection, hardcoded secrets, weak cryptography usage, etc., covering OWASP Top 10

vulnerabilities. With a simple command in the IDE, a developer can have CodeWhisperer scan the

project or file, and it will highlight potential vulnerabilities and even suggest remediations. For

example, it might warn that an API key is exposed or that user input is not sanitized. This is a

huge boon in large codebases where security issues can hide in corners – an AI that not only

writes code but flags if that code (or adjacent code) might be insecure. In one scenario given,

CodeWhisperer caught an “exposed API key” in code, whereas Copilot would have just happily

autocompleted it without comment. This illustrates the difference: CodeWhisperer tries to act as

a guardrail for security. It also filters out suggestions that might be biased or unfair (relevant for

ethical AI but less about code vulnerability) aws.amazon.com.

GitHub Copilot, by contrast, does not have a security scan feature built-in (as of 2024). It

relies on the developer to ensure the code is secure (GitHubʼs docs explicitly remind users that

“you are the code reviewer” and to not blindly trust suggestions). Early research raised

concerns about Copilot potentially suggesting vulnerable code – e.g., using outdated hashing

algorithms or insecure defaults – in about 40% of cases for certain prompts cyber.nyu.edu.

GitHub responded by implementing some safeguards (like reducing instances where it would

suggest known vulnerable code patterns), but it does not perform an active audit of its output.

The Copilot team does partner with GitHub security (Dependabot, code scanning) for separate

features – for instance, Copilot for Pull Requests can alert you to security issues in code during

PR reviews by combining CodeQL analysis with AI suggestions on fixes. But thatʼs outside the

core Copilot suggestions workflow. Microsoft has indicated interest in improving security, and

indeed a 2024 GitHub survey found 71% of developers want AI to help with code security in the

future. So Copilot might integrate more security features down the road (they already previewed

a “vulnerability filter” in Copilot for Business which blocks known insecure suggestions). But for

now, CodeWhisperer leads on security checks.

Tabnine doesnʼt have an automated vulnerability scanner either. However, Tabnineʼs philosophy

of training on vetted, high-quality code means it aims to avoid suggesting inherently insecure

patterns. For instance, by excluding low-quality GitHub repos or any known vulnerable code

from its training, Tabnineʼs suggestions might statistically be safer (the logic being it wonʼt

suggest something it never saw, and it never saw certain bad patterns if curated out). Tabnine

also notes that because it runs locally, your code isnʼt leaving your environment, which mitigates

risk of data leakage or compliance breach (this is more about data security than code security).

Enterprises using Tabnine likely still rely on their own code analysis tools (SonarQube, etc.) for

security, but they can trust Tabnine not to phone home with their code.

License Compliance and IP: When these models generate code, thereʼs a possibility they might

output code identical or similar to something from their training data, which could be under an

open-source license (GPL, Apache, etc.). This raises legal concerns: if Copilot regurgitates a

chunk of GPL-licensed code without attribution, and you use it in proprietary code, that could

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 20 of 33

https://aws.amazon.com/blogs/aws/amazon-codewhisperer-free-for-individual-use-is-now-generally-available/#:~:text=The%20code%20developers%20eventually%20locate,example%2C%20the%20repository%20URL%20and
https://cyber.nyu.edu/2021/10/15/ccs-researchers-find-github-copilot-generates-vulnerable-code-40-of-the-time/#:~:text=A%20recent%20study%20by%20cybersecurity,be%20exploited%20by%20an%20attacker
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

violate the license. This has indeed been a controversial topic – thereʼs an ongoing lawsuit

alleging that Copilotʼs suggestions may breach open-source licenses by reproducing code

without proper credit.

GitHub Copilotʼs stance: by default it may occasionally produce verbatim snippets from training

data if thereʼs a strong prompt match (though itʼs rare – GitHub claimed about 0.1% of Copilotʼs

output was directly from training set). To address this, GitHub introduced an optional filter (for

Copilot for Business/Enterprise) that detects if a suggestion is matching public code over a

certain length (e.g. 150+ characters that exactly appear in some GitHub repo) and will suppress

those suggestions. This “code reference filter” can prevent obvious license issues, at the cost

that sometimes it might block a legitimate common snippet. Additionally, GitHub offers legal

indemnification for Copilot for Business users – basically saying if Copilotʼs output leads to a

copyright lawsuit, Microsoft/GitHub will defend the customer. They are also previewing a feature

to cite references for suggestions (similar to what CodeWhisperer does), but thatʼs in early

stages. So Copilotʼs compliance strategy is currently: filter exact matches, donʼt train on user

prompts to avoid data leakage, and cover enterprise legally. But it doesnʼt actively tell you “this

suggestion looks like code from Apache Commons, under Apache-2.0” – not yet at least.

CodeWhisperer is very strong here: It has open-source reference tracking. If

CodeWhispererʼs generated code is very similar to code in its training (open source), it will

notify you of the source repo and license aws.amazon.com. For example, if you accept a

suggestion that basically came from (say) Apache Commons under Apache License 2.0,

CodeWhisperer might pop up “This code is similar to Apache Commons Utils.java, licensed

under Apache-2.0, repository link: …” – allowing you to decide if you want to use it or attribute it.

This is an excellent compliance feature because it makes the developer aware and thus able to

comply with license (or choose a different implementation). It essentially ensures open-source

projects “get some credit” when their code inspires a suggestion. If youʼre an AWS customer,

this is a big selling point: you can use the AI assistant without fear of hidden license

infringement, since it flags anything potentially problematic. CodeWhisperer also lets enterprise

admins set policies – for example, they could block suggestions with certain licenses

altogether in professional tier. And since CodeWhisperer is free for individuals, open-source

devs themselves can use it without worrying itʼll dump someoneʼs GPL code unannounced (and

if it does, theyʼll see itʼs GPL).

Tabnine takes an even stricter approach at the training stage: it trained exclusively on code

with permissive licenses (or public domain). That means Tabnine will never output code that

was originally GPL, since it never saw any. By limiting training data to permissive-license code

(MIT, Apache, BSD, etc.), Tabnine ensures that even if it reproduces something, itʼs from a

license that typically doesnʼt require sharing your whole source (permissive licenses usually just

require attribution at most). Tabnine also pledges it doesnʼt store your code or prompts on their

servers (zero data retention), so thereʼs no risk of your proprietary code leaking into someone

elseʼs suggestions – an important compliance factor for trade secrets. They even say theyʼll

share details of their training data with enterprise customers under NDA to provide transparency.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 21 of 33

https://aws.amazon.com/blogs/aws/amazon-codewhisperer-free-for-individual-use-is-now-generally-available/#:~:text=The%20code%20developers%20eventually%20locate,generated%2C%20helping%20lower%20the%20risk
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

And like Microsoft, Tabnine offers IP indemnification for enterprise users. Essentially, Tabnineʼs

angle is “legal risk is minimized from the get-go” – no viral licensed code in output, privacy by

design, optional on-prem deployment. This is why Tabnine is often the choice in companies with

very strict legal/compliance rules (banks, defense, etc.), where even a 0.1% chance of GPL

contamination via Copilot is unacceptable.

Privacy of Code & Data: In large codebases, often with proprietary code, you must consider

whether using an AI assistant uploads your code to someoneʼs server and what happens to it.

Hereʼs a quick rundown:

Copilot (cloud) sends snippets of your current code context to OpenAIʼs servers to get completions.

For Copilot for Business, OpenAI/Microsoft do not retain that code or use it to train future models.

For the free/individual Copilot (earlier days), it was less clear, but GitHubʼs FAQ now states they donʼt

use your code to retrain the model unless you opt-in via Telemetry. Still, the code does transiently

leave your environment for the suggestion. Copilot is now SOC 2 Type 1 compliant, and aiming for

Type 2, meaning they meet certain security standards. They also added features like private repo

indexing only accessible to your org to avoid data mixing. If youʼre in a super sensitive environment,

Copilot might be a no-go unless you trust Microsoftʼs cloud completely.

CodeWhisperer similarly sends data to AWS. AWS states CodeWhisperer doesnʼt use your code to

train models (especially in individual/professional use) unless you allow it. Initially, it was only in us-

east-1 region, which raised GDPR concerns for EU devs, but AWS would presumably address that by

offering regional endpoints. AWS has strong enterprise security credentials, so CodeWhisperer will

fit into compliance needs of many AWS customers (with IAM controls, etc. – e.g., an admin can

control whether devs can use it and whether to allow code to be logged).

Tabnine can be totally offline – it can run fully on-prem with no data leaving. That is the ultimate

guarantee for privacy. Even Tabnineʼs cloud doesnʼt store code as per their zero-retention policy. Itʼs

also SOC 2 Type 2, GDPR, and ISO 9001 compliant, indicating a high standard of data security. If

you work with extremely sensitive code (government, medical, etc.), Tabnine or a similar local

solution is often mandated by policy.

Summary on compliance: In an enterprise setting with a large codebase, if you have strict

compliance requirements, Tabnine offers the most peace of mind out-of-the-box (no restrictive-

license output, no cloud data sharing). CodeWhisperer offers strong features to manage license

risk (flagging and filtering) and adds value by scanning for security issues – appealing for

organizations that prioritize code safety and open-source compliance, especially if they are

AWS-focused. Copilot, being wildly popular, has made strides (like the public code filter and

enterprise indemnification) and most companies using it havenʼt run into major issues, but it

requires a bit of trust in Microsoftʼs handling and perhaps internal policies like “enable the filter,

review any large suggestions for license tags.”

One practical tip: Whatever tool you use, you can integrate it with your existing security and QA

process. For example, if using Copilot, you might run a static analyzer on AI-written code as part

of code review. If using CodeWhisperer, you would utilize its scan plus your own tools. And if

using any AI, do educate developers about not pasting proprietary secrets into prompts

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 22 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

unnecessarily (though Copilot and CodeWhisperer do attempt to detect and avoid leaking

secrets in suggestions – e.g., CodeWhisperer will flag if it thinks a suggestion contains a

credential and filter it). Amazon specifically mentions preventing hardcoded secrets and will stop

suggesting them.

In conclusion, security & compliance is a differentiator: CodeWhisperer stands out for actively

helping with both secure coding and license transparency aws.amazon.com. Copilotʼs approach

is improving but a bit more “use at your own judgement” with some safety nets. Tabnineʼs

approach is “avoid the problem entirely” by training selection and on-prem option, which many

enterprise lawyers appreciate. Always ensure whichever tool you choose, you configure the

available safety features (e.g., turn on Copilotʼs “avoid suggestions matching public code” option

if youʼre concerned about licenses).

Cost and Licensing Models

Adopting an AI code assistant in a professional setting also involves understanding the cost

structure and licensing model (here “licensing” refers to the product license/subscription, not

open-source code licenses). Letʼs compare pricing and terms for Copilot, CodeWhisperer,

Tabnine, and others:

GitHub Copilot: After the initial free beta, Copilot moved to a subscription model. For individual

developers, Copilot costs $10 per month (or $100/year) per user. Students and maintainers of

popular open-source projects can get Copilot for free, which GitHub offers to encourage learning

and OSS contributions. For organizations, GitHub offers Copilot for Business at $19 per

user/month. Business tier includes added features like the aforementioned public code filtering,

organization policy controls, and enterprise support. Just recently, GitHub also introduced

Copilot for Enterprise (sometimes quoted at $39 per user/month) with further features like

centralized seat management, enhanced security (maybe the code referencing feature when it

comes), and potentially larger context models. Essentially, for a company, youʼre looking at

$19/user/month list price for the core Copilot experience integrated with corporate IDEs. The

licensing is user-based – each developer needs a seat, though GitHub might offer volume discounts

for large teams (they havenʼt publicly detailed that, but enterprise sales usually can negotiate).

Copilotʼs value proposition is often justified by productivity gains – e.g., even a 5-10% efficiency

boost can be worth far more than $10-$19 a month in developer salary terms. One should note that

Copilotʼs terms of service have some interesting points: Microsoft disclaims liability for code quality,

and as mentioned, they provide indemnification for IP issues for paid tiers, meaning they take on the

risk to an extent. The Copilot license to use the product is tied to GitHubʼs services agreement.

There is no self-hosted Copilot – itʼs a SaaS only (except some hints at on-prem for very select cases

via Azure OpenAI with Codex, but thatʼs not mainstream).

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 23 of 33

https://aws.amazon.com/blogs/aws/amazon-codewhisperer-free-for-individual-use-is-now-generally-available/#:~:text=The%20code%20developers%20eventually%20locate,generated%2C%20helping%20lower%20the%20risk
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Amazon CodeWhisperer: In a savvy move, AWS made CodeWhisperer free for individual

developers. If you have an AWS account (even a free one) and sign up for CodeWhisperer Individual

Tier, it costs $0. This was announced when it went GA in April 2023, explicitly to drive adoption

(similar to how AWS credits work – get devs using AWS tools). The Individual tier does have some

usage limits: for example, 50 security scans per month are included free. But for normal code

completion, itʼs essentially unlimited for an individual. For professional use (teams/companies), AWS

offers a CodeWhisperer Professional Tier at $19 per user/month (the same price point as Copilot

Business). The Pro tier allows integration with corporate single sign-on (IAM Identity Center), higher

limits on scans, and admin controls like what types of suggestions are allowed (e.g., you could

disable it from suggesting code with certain licenses, or require it to block unsafe code suggestions).

It also presumably covers enterprise support. So, AWSʼs model is free for personal use, paid for

enterprise – which might attract independent developers or startups who can start free and only pay

when scaling up. Importantly, you do not need to be an AWS customer or use AWS infrastructure to

use the free tier – just an AWS login. But of course, AWS hopes it ties you closer to their ecosystem

in the long run. One could imagine AWS bundling CodeWhisperer Pro into some AWS premium

support plans or offering discounts if you already spend a lot on AWS, but thatʼs speculative.

Currently, $19/user/month is the known price for Pro. The licensing terms for CodeWhisperer are

under AWS service terms; they likely have similar indemnifications and usage disclaimers. AWS has

also positioned CodeWhisperer as part of Amazon Q (their bigger dev environment effort), but the

pricing given is specifically for CodeWhisperer service usage.

Tabnine: Tabnine has a freemium model. The basic Tabnine plugin is free to use, but with

limitations. Historically, the free version of Tabnine only provided short, one-line completions (2-3

words at a time). To get the full power (whole-line or full-function predictions, and access to the

more advanced AI models or chat), you need a paid plan. Tabnineʼs paid plans for individuals (called

Tabnine Pro) start at $12 per user/month (when billed annually; slightly more if monthly). This gives

you the full AI completion experience and usually the use of their cloud AI models which are larger

than the local ones. Tabnine Pro also includes Tabnine Chat (their GPT-4 powered chat assistant, as

of their announcements) and the ability to choose different model backends. For organizations,

Tabnine has Enterprise pricing which is not public – you have to contact them for a quote. Enterprise

includes things like on-prem deployment, custom model training, admin dashboards, and priority

support. Given the emphasis on privacy, many big companies opt for Enterprise to get the on-prem

or VPC-hosted solution. That cost likely scales with user count and perhaps additional features (one

article mentioned Copilot Enterprise $39, but Tabnine Enterprise might be in that ballpark or more,

since it offers more custom capability). Tabnine being a smaller company might be flexible in pricing

for large deals. Thereʼs also the aspect that Tabnineʼs free tier is pretty usable for simple tasks, so

some individual devs on a budget might keep using the free one for partial benefit (compared to

Copilot which basically requires subscription after trial, no real free usage except for students).

Tabnine is thus positioned as cost-effective for enterprise if you consider the risk reduction (theyʼll

argue $X per user is worth it to avoid legal issues or data leaks that could cost far more).

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 24 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Others: Sourcegraph Cody is available in Sourcegraphʼs enterprise product (pricing not public, likely

tied to Sourcegraphʼs pricing which can be quite high for big codebases). They do have a free

version of Cody for open-source or small projects (with limits on context size or number of

responses per day). Codeium notably is 100% free for individual and commercial use at the

moment – they use it as a way to build brand and maybe monetize by selling enterprise features later

(currently, they say the core product is free, with possible future paid offerings like self-hosting or

guaranteed support). This makes Codeium attractive for those who want Copilot-like capabilities but

avoid costs – however, one must consider support and quality, which might not match Copilot in all

cases. Replit Ghostwriter costs $10/month as part of Replitʼs paid plans, but thatʼs more relevant for

Replit users specifically.

For a company evaluating which to invest in: if they already have GitHub Enterprise, adding

$19/user for Copilot might be seamless. If they are heavy AWS users, they might already have

some enterprise agreement and can get CodeWhisperer Pro as part of it – plus the free option

means they can trial it without approval. If they are very cost-conscious, Codeiumʼs free solution

or Tabnineʼs lower price could appeal. But often it comes down to which fits their usage and

policies, not just sticker price. For example, a fintech company might choose Tabnine Enterprise

not because itʼs cheaper (it might be more per user than Copilot) but because the self-hosting

satisfies their compliance, which is “priceless” for them.

One more aspect: maintenance and updates. Copilotʼs price includes constant model

improvements (they upgraded from Codex to GPT-4 without changing the fee for Business

users). CodeWhispererʼs price includes integration with AWS tools (like SageMaker Studio,

Cloud9, etc.). Tabnineʼs enterprise license typically is annual and includes support for retraining

models on your latest code periodically. These ongoing benefits should be weighed. Also

consider that using these tools might require paying for increased IDE or cloud usage (e.g. if

devs start coding more, maybe CI build minutes go up – a good problem though!). But nothing

out of the ordinary: itʼs just a SaaS subscription per seat.

Licensing of the tool is straightforward – youʼre not licensing the output code (the output is

generally considered your code, except you must respect any open-source license notifications

given). Microsoft and AWS have clarified that the developer is responsible for the code they

accept, and these tools donʼt take ownership of generated code. Tabnine similarly states

generated code belongs to the user (with no Tabnine IP in it). So you typically arenʼt constrained

in how you use the generated code (aside from respecting if an open-source snippet was

inserted, as discussed prior). The subscriptions are just for service usage. Canceling a

subscription just turns off the AI assistant; it doesnʼt affect any code you wrote using it.

To sum up, Copilot and CodeWhisperer align at ~$19/user/month for business use (with Copilot

having a $10 option for lone developers, and CodeWhisperer being free for lone developers).

Tabnine comes in a bit cheaper for Pro ($12) and negotiable for enterprise, with a free basic tier

to entice. For a team of 100 developers, that means on the order of $1k-$2k per month total

investment for these tools – which is not trivial, but many organizations will justify it if it yields

even marginal productivity or quality gains. And surveys do show substantial perceived

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 25 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

productivity boosts (developers feeling 20-50% faster on certain tasks), which in theory pays for

itself.

Finally, keep in mind the value-add services: Copilot comes with things like CLI and Pull

Request assist at higher tiers, which might reduce other costs (like documentation time or code

review time). CodeWhispererʼs security scans could save you from needing an additional

scanning tool (or at least augment it). Tabnineʼs on-prem might save you compliance effort.

These soft factors are part of the ROI equation beyond the sticker price.

Developer Satisfaction and Community Feedback

The ultimate measure of these tools is how developers feel about them and use them in the real

world – especially on large, complex codebases. Letʼs look at adoption rates, satisfaction

surveys, and anecdotal experiences:

Adoption and Preference: GitHub Copilot has seen widespread adoption at an astonishing

rate. By mid-2023, over 50,000 organizations and a third of Fortune 500 companies had

Copilot in use. Stack Overflowʼs huge 2023 developer survey (90k respondents) found that 55%

of developers were already using Copilot, making it the most popular AI dev tool by far. This

was about four times the usage of the second-place, which was Tabnine at 13%, with AWS

CodeWhisperer at 5%. Moreover, 70% of developers in that survey said they are either using or

plan to use some AI coding tool this year. This indicates a strong positive reception – the

majority are on board with the concept. In the same survey, 77% felt favorable about using AI in

their workflow. However, they also expressed caution: only 3% said they highly trust AI coding

toolsʼ accuracy, with most being somewhat trustful or undecided, meaning developers still

double-check AI output. This mix of enthusiasm and healthy skepticism is typical.

When asking developers which tool is best, many say “Copilot” for general use. For instance, in a

recent comparison, one source concluded “theyʼre both excellent, but it comes down to style,

budget, preferred language” when talking about Copilot vs CodeWhisperer. Another

commentary noted “Copilot offers robust suggestions across languages… CodeWhisperer is

great for AWS… Tabnine for privacy-focused teams… Cursor for deep codebase interaction”.

This implies that devs see each tool as having a niche, but Copilot is viewed as the strong all-

rounder.

Productivity and Satisfaction: GitHub has published stats from surveys: for example, 88% of

developers said Copilot made them more productive or allowed them to focus on more satisfying

work. In one internal study at Microsoft, Copilot users completed tasks significantly faster (55%

faster in some cases). A controlled experiment at a company (ZoomInfo) reported very high

satisfaction (8.8/10) and no negative impact on code quality, with participants praising how

Copilot adapted to their codebase patterns. On the flip side, there were concerns like “need to

modify some suggestions” and “limited visibility across projects” noted by some (meaning the

model didnʼt know about code in other projects) – which aligns with the context limitations we

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 26 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

discussed. Stack Overflowʼs pulse surveys later in 2023 indicated that about one-third of

developers felt increased productivity as the top benefit of AI, and another quarter cited faster

learning of codebases. Developers also said AI helps reduce their cognitive load (no need to

remember every syntax or API) and can prevent burnout by taking away some drudgery.

CodeWhisperer feedback: Among AWS-centric developers, CodeWhisperer is appreciated as a

niche expert. Developers working heavily with AWS services have said itʼs like having an AWS

expert pair-programmer – it suggests the right IAM policies or CLI commands effortlessly. Some

reviews note that outside AWS, itʼs less impressive. But importantly, CodeWhispererʼs security

and license features got positive feedback: one user was “happy to see vulnerability scanning

and origin indication, unlike Copilot”. In community forums, some AWS users mention they use

CodeWhisperer alongside Copilot: for general code they use Copilot, but when writing say a

CloudFormation template or tricky AWS SDK call, theyʼll check CodeWhispererʼs suggestion. The

free price point also encourages trying it – some devs mention switching to it if their Copilot trial

ended and they couldnʼt justify paying individually.

Tabnine feedback: Tabnine has a loyal user base especially from pre-Copilot days. On Reddit

and elsewhere, youʼll find comments like “Copilot is smarter, but I keep Tabnine for local work or

when offline” or “Tabnineʼs suggestions are shorter but it helps with boilerplate and doesnʼt

send my code to cloud”. Enterprise developers often donʼt publicly discuss their tools due to

NDAs, but Tabnine claims it has “over a million monthly users” and “hundreds of thousands of

daily active users”. That indicates many are at least using the free version in editors. One 2022

Reddit thread had users noting “Tabnine was GPT-2 based, Copilot uses GPT-3/Codex, so

Copilotʼs suggestions feel more advanced”, which was true then. However, Tabnine later

incorporated more advanced models (even GPT-3.5/4 via their chat). So developer sentiment is:

Tabnine is good for what it is and especially valued by those with privacy concerns or those who

work in languages not well-covered by Copilot (though thatʼs rare). Some also like that Tabnineʼs

small-model suggestions are instant and never “weird” – they are often small completion of what

you likely were going to type, saving keystrokes (30% of code is automated as they claim). That

incremental help makes devs “happier” in subtle ways, even if itʼs not as flashy as Copilot writing

an entire function.

Community and Ecosystem: Copilot, being tied to GitHub/Microsoft, has a vast community.

Many VS Code extensions even integrate with Copilot or adjust settings for it. GitHubʼs

Octoverse report 2023 found that 92% of developers are now using some form of AI in their

coding, and Copilot was the top pick. They also noted it helps new developers ramp up on

unfamiliar codebases (60-70% found it helpful for learning new languages or codebases). Thatʼs

a huge perk in large codebases: new hires can use Copilot chat to ask questions about the code

(“What does this function do?”) and get quick answers, reducing the onboarding time.

Concerns and Challenges: Some developers voice concerns: Will relying on AI degrade their

coding skills? Are suggestions making code worse in quality or readability? Thereʼs a noted

phenomenon of “AI-generated code smell” where some code from Copilot might be overly

verbose or not idiomatic for a project. A study mentioned an increase in code churn and copy-

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 27 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

pasted code possibly due to Copilot – meaning devs might accept suggestions then later have to

refactor them. Also, at scale, some worry about consistency: if 10 devs use Copilot, do they

produce inconsistent styles? GitHub addressed this by adding configuration options (like style

preferences, and it now respects editor ESLint/Prettier configs for formatting suggestions).

Developer forums have threads like “how do I get Copilot to follow our code style” – which are

being solved via custom instructions files.

Multi-assistant usage: Thereʼs an interesting trend where teams use multiple assistants

tactically. As one Q&A noted: “Yes, some devs do use more than one. Copilot for fast gen,

Tabnine locally for privacy in other languages, Cursor for navigating big codebases.”. This

indicates that advanced users pick the right tool for the job. Of course, juggling them can be

tricky. But anecdotally, developers might keep Copilot enabled in VSCode, and also have a

ChatGPT window open for heavier queries, plus maybe Tabnine if they disconnect from internet.

The fact that 83% of devs use ChatGPT for coding questions (Stack Overflow survey) shows

that even with Copilot, they still consult general AI like ChatGPT for higher-level or broader

questions. So satisfaction is high when these tools are used complementary to each other and to

human knowledge sources.

CTO/Lead perspective: Engineering leads and CTOs often evaluate these tools for ROI. Many

have publicly said that even a single-digit percentage improvement in developer efficiency pays

off the cost. Some case studies: after adopting Copilot, companies reported developers “staying

in flow” more and writing tests more frequently (since Copilot makes writing tests easier). A Bain

& Co report in 2024 suggested companies saw initial 10-15% productivity improvements and

foresee up to 30% with more AI integration. On the other hand, a few orgs have been cautious –

e.g., companies with extremely sensitive code (some financial firms) initially banned Copilot until

on-prem or filtered solutions emerged. Now with offerings like Azure OpenAI (where a company

could host Codex/GPT-4 in their private cloud) or Tabnine Enterprise, even those orgs are

coming around.

From community feedback, CodeWhisperer hasnʼt yet achieved the mindshare Copilot has,

likely because it arrived later and is very AWS-specific in its appeal. But those who use it are

generally positive, especially since itʼs free – itʼs seen as “good enough for many things, and

improving.” If AWS continues pushing it, we might see its share rise.

In summary, developer sentiment is that AI code assistants are extremely helpful tools, though

not a replacement for thinking. They are most appreciated for reducing boilerplate work,

accelerating familiar tasks, and helping with unfamiliar APIs or languages. Large codebase users

specifically appreciate how these tools help navigate and write code that touches many parts of

the system (like writing a new feature that integrates with multiple modules – the AI can remind

you of function names across those modules if youʼve opened them). Satisfaction is high when

the tool saves time; frustration occurs if it suggests wrong or irrelevant code (which can happen

if the model misinterprets context). Fortunately, with each iteration, the relevance is improving

as seen by that stat of a +5% acceptance gain with better context usage.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 28 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

The community also actively shares tips to maximize these tools: e.g., writing good comments

for Copilot to get the outcome you want, or using Copilotʼs “//#region” trick to let it read hidden

parts, etc. This collaboration indicates developers are investing effort to integrate AI into their

workflow, which is a sign of the value they see in it.

As a final data point: Stack Overflowʼs survey also noted an interesting split – younger or

learning developers are even more likely to embrace AI tools (82% of those learning to code

use them vs 70% of pros). This suggests future cohorts of engineers will expect such assistants

by default. Developer satisfaction in the long run will likely hinge on how seamlessly these AI

integrate into team workflows without causing noise or errors. So far, the trend is very optimistic.

One blog put it nicely: “AI tools are empowering and enabling learning… AI will democratize

coding and grow the developer community by several folds”. That reflects a generally positive

community outlook – these assistants are here to stay and largely, developers are happy to have

them as copilots (with an understanding that the pilot – the human – is still in charge).

Conclusion

AI code assistants have quickly evolved from novel experiments to trusted day-to-day partners

for developers, even (and especially) in large-scale, complex projects. GitHub Copilot currently

leads the pack in general adoption and capability, excelling in broad language support and

intelligent context-aware suggestions across diverse open-source frameworks. It integrates

smoothly with popular IDEs and yields significant productivity boosts, though enterprises must

mitigate its licensing and security blind spots (via policy settings and best practices). Amazon

CodeWhisperer stands out as the security-conscious choice – it not only aids coding

(particularly for AWS-centric development) but actively scans and guards against vulnerabilities

and license issues. This makes it highly valuable in organizations where code safety and

compliance are paramount. Its free availability for individuals also lowers the barrier to entry.

Tabnine offers a compelling option for teams prioritizing data privacy and customization – it may

not match Copilotʼs raw generative power in all cases, but it reliably automates boilerplate,

learns an organizationʼs patterns, and operates within strict privacy constraints (including on-

prem deployment), which is critical for regulated industries.

In terms of large codebases with heavy open-source integration, each tool has strengths:

Copilot (with emerging features like repository indexing and custom instructions) is improving at

handling monorepos and can leverage the rich open-source knowledge to suggest code that fits

myriad frameworks. CodeWhisperer, through integration in the AWS toolkit, helps developers

manage cloud-heavy codebases and keep them secure, though it focuses on the file-at-hand

context. Tabnineʼs ability to be fine-tuned on a codebase and run locally means it can adapt to a

big project over time and provide consistent, low-latency assistance even as the codebase

grows – all without sending code outside. Meanwhile, new players like Sourcegraph Cody and

Cursor hint at the future: AI that deeply indexes and understands entire repositories to assist

with navigation, refactoring, and cross-file reasoning. Such tools, as they mature, might be used

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 29 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

in conjunction with Copilot/CodeWhisperer/Tabnine to cover the full spectrum of needs in huge

systems.

From a pricing and ROI perspective, the cost of these tools (on the order of ~$10-$19 per

developer per month for pro versions) is relatively modest compared to developer salaries, and

surveys plus case studies strongly suggest a positive return in productivity, code quality, and

developer satisfaction. Many developers report tangible improvements in their workflow – from

faster coding and fewer tedious tasks to accelerated learning of new codebases and languages.

There is also a cultural shift: developers increasingly expect to have an AI assistant, much like

they expect good compiler support or version control. Engineering leaders should thus view

these assistants as a competitive advantage in developer experience. That said, one size doesnʼt

fit all – a team heavily invested in AWS might lean towards CodeWhisperer for its seamless cloud

integration, while a team working on proprietary algorithms in C++ might prefer Copilot for its

superior suggestions, and use Tabnine Enterprise to ensure none of the code leaves the

network.

Crucially, adopting these tools in large codebases should come with proper process: establish

guidelines for using AI suggestions (always review generated code, especially for security);

enable any available filters (to avoid unwanted license/code); and continue using standard

testing and code review practices to catch issues (AI is a helper, not an infallible author). When

well-integrated, these assistants can even improve those processes – e.g., suggesting unit tests

or pointing out potential bugs early.

In conclusion, AI code assistants are proving their worth across the spectrum of software

development. For large, complex systems that heavily utilize open-source, they offer a way to

navigate complexity by leveraging collective knowledge: whether itʼs recalling a libraryʼs API

usage, propagating a change through multiple modules, or simply keeping the developer in flow

while juggling a massive codebase. GitHub Copilot, Amazon CodeWhisperer, and Tabnine each

have unique strengths and cater to different priorities (general intelligence, security/AWS,

privacy/customization respectively). Many organizations may find value in a hybrid approach. By

staying mindful of their limitations and pairing them with solid engineering practices, teams can

safely enjoy the significant productivity and creativity upsides these AI assistants bring. The

development experience is increasingly one of collaboration with AI – with humans and

machines each doing what they do best – and the result, when managed well, is faster, more

efficient, and perhaps even more enjoyable software development.

Sources:

GitHub Copilot and adoption stats

CodeWhisperer features (security scans, reference tracking) aws.amazon.com

Tabnine enterprise features (permissive training, offline)

Comparative insights on performance and use cases

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 30 of 33

https://aws.amazon.com/blogs/aws/amazon-codewhisperer-free-for-individual-use-is-now-generally-available/#:~:text=The%20code%20developers%20eventually%20locate,generated%2C%20helping%20lower%20the%20risk
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

Developer survey results (AI tool usage, benefits, trust)

Pricing information for Copilot, CodeWhisperer, Tabnine

Copilot context handling in large codebases

CodeWhisperer and Copilot language support

Security research on AI-generated code cyber.nyu.edu

Productivity and satisfaction metrics

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 31 of 33

https://cyber.nyu.edu/2021/10/15/ccs-researchers-find-github-copilot-generates-vulnerable-code-40-of-the-time/#:~:text=A%20recent%20study%20by%20cybersecurity,be%20exploited%20by%20an%20attacker
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

IntuitionLabs - Industry Leadership & Services

North America's #1 AI Software Development Firm for Pharmaceutical & Biotech: IntuitionLabs

leads the US market in custom AI software development and pharma implementations with proven

results across public biotech and pharmaceutical companies.

Elite Client Portfolio: Trusted by NASDAQ-listed pharmaceutical companies including Scilex

Holding Company (SCLX) and leading CROs across North America.

Regulatory Excellence: Only US AI consultancy with comprehensive FDA, EMA, and 21 CFR Part 11

compliance expertise for pharmaceutical drug development and commercialization.

Founder Excellence: Led by Adrien Laurent, San Francisco Bay Area-based AI expert with 20+ years

in software development, multiple successful exits, and patent holder. Recognized as one of the top

AI experts in the USA.

Custom AI Software Development: Build tailored pharmaceutical AI applications, custom CRMs,

chatbots, and ERP systems with advanced analytics and regulatory compliance capabilities.

Private AI Infrastructure: Secure air-gapped AI deployments, on-premise LLM hosting, and private

cloud AI infrastructure for pharmaceutical companies requiring data isolation and compliance.

Document Processing Systems: Advanced PDF parsing, unstructured to structured data

conversion, automated document analysis, and intelligent data extraction from clinical and regulatory

documents.

Custom CRM Development: Build tailored pharmaceutical CRM solutions, Veeva integrations, and

custom field force applications with advanced analytics and reporting capabilities.

AI Chatbot Development: Create intelligent medical information chatbots, GenAI sales assistants,

and automated customer service solutions for pharma companies.

Custom ERP Development: Design and develop pharmaceutical-specific ERP systems, inventory

management solutions, and regulatory compliance platforms.

Big Data & Analytics: Large-scale data processing, predictive modeling, clinical trial analytics, and

real-time pharmaceutical market intelligence systems.

Dashboard & Visualization: Interactive business intelligence dashboards, real-time KPI monitoring,

and custom data visualization solutions for pharmaceutical insights.

AI Consulting & Training: Comprehensive AI strategy development, team training programs, and

implementation guidance for pharmaceutical organizations adopting AI technologies.

Contact founder Adrien Laurent and team at https://intuitionlabs.ai/contact for a consultation.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 32 of 33

https://intuitionlabs.ai/contact?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

DISCLAIMER

The information contained in this document is provided for educational and informational purposes only.

We make no representations or warranties of any kind, express or implied, about the completeness,

accuracy, reliability, suitability, or availability of the information contained herein.

Any reliance you place on such information is strictly at your own risk. In no event will IntuitionLabs.ai or

its representatives be liable for any loss or damage including without limitation, indirect or consequential

loss or damage, or any loss or damage whatsoever arising from the use of information presented in this

document.

This document may contain content generated with the assistance of artificial intelligence technologies.

AI-generated content may contain errors, omissions, or inaccuracies. Readers are advised to

independently verify any critical information before acting upon it.

All product names, logos, brands, trademarks, and registered trademarks mentioned in this document are

the property of their respective owners. All company, product, and service names used in this document

are for identification purposes only. Use of these names, logos, trademarks, and brands does not imply

endorsement by the respective trademark holders.

IntuitionLabs.ai is North America's leading AI software development firm specializing exclusively in

pharmaceutical and biotech companies. As the premier US-based AI software development company for

drug development and commercialization, we deliver cutting-edge custom AI applications, private LLM

infrastructure, document processing systems, custom CRM/ERP development, and regulatory compliance

software. Founded in 2023 by Adrien Laurent, a top AI expert and multiple-exit founder with 20 years of

software development experience and patent holder, based in the San Francisco Bay Area.

This document does not constitute professional or legal advice. For specific guidance related to your

business needs, please consult with appropriate qualified professionals.

© 2025 IntuitionLabs.ai. All rights reserved.

IntuitionLabs - Custom AI Software Development
from the leading AI expert Adrien Laurent A Comparison of AI Code Assistants for Large Codebases

© 2025 IntuitionLabs.ai - North America's Leading AI Software Development Firm for Pharmaceutical & Biotech. All rights reserved. Page 33 of 33

https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://www.linkedin.com/in/adrienlaurent/
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf
https://intuitionlabs.ai/?utm_source=pdf&utm_medium=document&utm_campaign=article&utm_content=a-comparison-of-ai-code-assistants-for-large-codebases.pdf

